Class 11: Maths Chapter 8 solutions. Complete Class 11 Maths Chapter 8 Notes.
Contents
RD Sharma Solutions for Class 11 Maths Chapter 8–Transformation Formulae
RD Sharma 11th Maths Chapter 8, Class 11 Maths Chapter 8 solutions
EXERCISE 8.1 PAGE NO: 8.6
1. Express each of the following as the sum or difference of sines and cosines:
(i) 2 sin 3x cos x
(ii) 2 cos 3x sin 2x
(iii) 2 sin 4x sin 3x
(iv) 2 cos 7x cos 3x
Solution:
(i) 2 sin 3x cos x
By using the formula,
2 sin A cos B = sin (A + B) + sin (A – B)
2 sin 3x cos x = sin (3x + x) + sin (3x – x)
= sin (4x) + sin (2x)
= sin 4x + sin 2x
(ii) 2 cos 3x sin 2x
By using the formula,
2 cos A sin B = sin (A + B) – sin (A – B)
2 cos 3x sin 2x = sin (3x + 2x) – sin (3x – 2x)
= sin (5x) – sin (x)
= sin 5x – sin x
(iii) 2 sin 4x sin 3x
By using the formula,
2 sin A sin B = cos (A – B) – cos (A + B)
2 sin 4x sin 3x = cos (4x – 3x) – cos (4x + 3x)
= cos (x) – cos (7x)
= cos x – cos 7x
(iv) 2 cos 7x cos 3x
By using the formula,
2 cos A cos B = cos (A + B) + cos (A – B)
2 sin 3x cos x = cos (7x + 3x) + cos (7x – 3x)
= cos (10x) + cos (4x)
= cos 10x + cos 4x
2. Prove that:
(i) 2 sin 5π/12 sin π/12 = 1/2
(ii) 2 cos 5π/12 cos π/12 = 1/2
(iii) 2 sin 5π/12 cos π/12 = (√3 + 2)/2
Solution:
(i) 2 sin 5π/12 sin π/12 = 1/2
By using the formula,
2 sin A sin B = cos (A – B) – cos (A + B)
2 sin 5π/12 sin π/12 = cos (5π/12 – π/12) – cos (5π/12 + π/12)
= cos (4π/12) – cos (6π/12)
= cos (π/3) – cos (π/2)
= cos (180o/3) – cos (180o/2)
= cos 60° – cos 90°
= 1/2 – 0
= 1/2
Hence Proved.
(ii) 2 cos 5π/12 cos π/12 = 1/2
By using the formula,
2 cos A cos B = cos (A + B) + cos (A – B)
2 cos 5π/12 cos π/12 = cos (5π/12 + π/12) + cos (5π/12 – π/12)
= cos (6π/12) + cos (4π/12)
= cos (π/2) + cos (π/3)
= cos (180o/2) + cos (180o/3)
= cos 90° + cos 60°
= 0 + 1/2
= 1/2
Hence Proved.
(iii) 2 sin 5π/12 cos π/12 = (√3 + 2)/2
By using the formula,
2 sin A cos B = sin (A + B) + sin (A – B)
2 sin 5π/12 cos π/12 = sin (5π/12 + π/12) + sin (5π/12 – π/12)
= sin (6π/12) + sin (4π/12)
= sin (π/2) + sin (π/3)
= sin (180o/2) + sin (180o/3)
= sin 90° + sin 60°
= 1 + √3
= (2 + √3)/2
= (√3 + 2)/2
Hence Proved.
3. show that:
(i) sin 50o cos 85o = (1 – √2sin 35o)/2√2
(ii) sin 25o cos 115o = 1/2 {sin 140o – 1}
Solution:
(i) sin 50o cos 85o = (1 – √2sin 35o)/2√2
By using the formula,
2 sin A cos B = sin (A + B) + sin (A – B)
sin A cos B = [sin (A + B) + sin (A – B)] / 2
sin 50o cos 85o = [sin(50o + 85o) + sin (50o – 85o)] / 2
= [sin (135o) + sin (-35o)] / 2
= [sin (135o) – sin (35o)] / 2 (since, sin (-x) = -sin x)
= [sin (180o – 45o) – sin 35o] / 2
= [sin 45o – sin 35o] / 2
= [(1/√2) – sin 35o] / 2
= [(1 – sin 35o)/√2] / 2
= (1 – sin 35o) / 2√2
Hence proved.
(ii) sin 25o cos 115o = 1/2 {sin 140o – 1}
By using the formula,
2 sin A cos B = sin (A + B) + sin (A – B)
sin A cos B = [sin (A + B) + sin (A – B)] / 2
sin 20o cos 115o = [sin(25o + 115o) + sin (25o – 115o)] / 2
= [sin (140o) + sin (-90o)] / 2
= [sin (140o) – sin (90o)] / 2 (since, sin (-x) = -sin x)
= 1/2 {sin 140o – 1}
Hence proved.
4. Prove that:
4 cos x cos (π/3 + x) cos (π/3 – x) = cos 3x
Solution:
Let us consider LHS:
4 cos x cos (π/3 + x) cos (π/3 – x) = 2 cos x (2 cos (π/3 + x) cos (π/3 – x))
By using the formula,
2 cos A cos B = cos (A + B) + cos (A – B)
2 cos x (2 cos (π/3+x) cos (π/3 – x)) = 2 cos x (cos (π/3+x + π/3-x) + cos (π/3+x – π/3+ x))
= 2 cos x (cos (2π/3) + cos (2x))
= 2 cos x {cos 120° + cos 2x}
= 2 cos x {cos (180° – 60°) + cos 2x}
= 2 cos x (cos 2x – cos 60°) (since, {cos (180° – A) = – cos A})
= 2 cos 2x cos x – 2 cos x cos 60°
= (cos (x + 2x) + cos (2x – x)) – (2cos x)/2
= cos 3x + cos x – cos x
= cos 3x
= RHS
Hence Proved.
EXERCISE 8.2 PAGE NO: 8.17
1. Express each of the following as the product of sines and cosines:
(i) sin 12x + sin 4x
(ii) sin 5x – sin x
(iii) cos 12x + cos 8x
(iv) cos 12x – cos 4x
(v) sin 2x + cos 4x
Solution:
(i) sin 12x + sin 4x
By using the formula,
sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2
sin 12x + sin 4x = 2 sin (12x + 4x)/2 cos (12x – 4x)/2
= 2 sin 16x/2 cos 8x/2
= 2 sin 8x cos 4x
(ii) sin 5x – sin x
By using the formula,
sin A – sin B = 2 cos (A+B)/2 sin (A-B)/2
sin 5x – sin x = 2 cos (5x + x)/2 sin (5x – x)/2
= 2 cos 6x/2 sin 4x/2
= 2 cos 3x sin 2x
(iii) cos 12x + cos 8x
By using the formula,
cos A + cos B = 2 cos (A+B)/2 cos (A-B)/2
cos 12x + cos 8x = 2 cos (12x + 8x)/2 cos (12x – 8x)/2
= 2 cos 20x/2 cos 4x/2
= 2 cos 10x cos 2x
(iv) cos 12x – cos 4x
By using the formula,
cos A – cos B = -2 sin (A+B)/2 sin (A-B)/2
cos 12x – cos 4x = -2 sin (12x + 4x)/2 sin (12x – 4x)/2
= -2 sin 16x/2 sin 8x/2
= -2 sin 8x sin 4x
(v) sin 2x + cos 4x
sin 2x + cos 4x = sin 2x + sin (90o – 4x)
By using the formula,
sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2
sin 2x + sin (90o – 4x) = 2 sin (2x + 90o – 4x)/2 cos (2x – 90o + 4x)/2
= 2 sin (90o – 2x)/2 cos (6x – 90o)/2
= 2 sin (45° – x) cos (3x – 45°)
= 2 sin (45° – x) cos {-(45° – 3x)} (since, {cos (-x) = cos x})
= 2 sin (45° – x) cos (45° – 3x)
= 2 sin (π/4 – x) cos (π/4 – 3x)
2. Prove that :
(i) sin 38° + sin 22° = sin 82°
(ii) cos 100° + cos 20° = cos 40°
(iii) sin 50° + sin 10° = cos 20°
(iv) sin 23° + sin 37° = cos 7°
(v) sin 105° + cos 105° = cos 45°
(vi) sin 40° + sin 20° = cos 10°
Solution:
(i) sin 38° + sin 22° = sin 82°
Let us consider LHS:
sin 38° + sin 22°
By using the formula,
sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2
sin 38° + sin 22° = 2 sin (38o + 22o)/2 cos (38o – 22o)/2
= 2 sin 60o/2 cos 16o/2
= 2 sin 30o cos 8o
= 2 × 1/2 × cos 8o
= cos 8o
= cos (90° – 82°)
= sin 82° (since, {cos (90° – A) = sin A})
= RHS
Hence Proved.
(ii) cos 100° + cos 20° = cos 40°
Let us consider LHS:
cos 100° + cos 20°
By using the formula,
cos A + cos B = 2 cos (A+B)/2 cos (A-B)/2
cos 100° + cos 20° = 2 cos (100o + 20o)/2 cos (100o – 20o)/2
= 2 cos 120o/2 cos 80o/2
= 2 cos 60o cos 4o
= 2 × 1/2 × cos 40o
= cos 40o
= RHS
Hence Proved.
(iii) sin 50° + sin 10° = cos 20°
Let us consider LHS:
sin 50° + sin 10°
By using the formula,
sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2
sin 50° + sin 10° = 2 sin (50o + 10o)/2 cos (50o – 10o)/2
= 2 sin 60o/2 cos 40o/2
= 2 sin 30o cos 20o
= 2 × 1/2 × cos 20o
= cos 20o
= RHS
Hence Proved.
(iv) sin 23° + sin 37° = cos 7°
Let us consider LHS:
sin 23° + sin 37°
By using the formula,
sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2
sin 23° + sin 37° = 2 sin (23o + 37o)/2 cos (23o – 37o)/2
= 2 sin 60o/2 cos -14o/2
= 2 sin 30o cos -7o
= 2 × 1/2 × cos -7o
= cos 7o (since, {cos (-A) = cos A})
= RHS
Hence Proved.
(v) sin 105° + cos 105° = cos 45°
Let us consider LHS: sin 105° + cos 105°
sin 105° + cos 105° = sin 105o + sin (90o – 105o) [since, {sin (90° – A) = cos A}]
= sin 105o + sin (-15o)
= sin 105o – sin 15o [{sin(-A) = – sin A}]
By using the formula,
Sin A – sin B = 2 cos (A+B)/2 sin (A-B)/2
sin 105o – sin 15o = 2 cos (105o + 15o)/2 sin (105o – 15o)/2
= 2 cos 120o/2 sin 90o/2
= 2 cos 60o sin 45o
= 2 × 1/2 × 1/√2
= 1/√2
= cos 45o
= RHS
Hence proved.
(vi) sin 40° + sin 20° = cos 10°
Let us consider LHS:
sin 40° + sin 20°
By using the formula,
sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2
sin 40° + sin 20° = 2 sin (40o + 20o)/2 cos (40o – 20o)/2
= 2 sin 60o/2 cos 20o/2
= 2 sin 30o cos 10o
= 2 × 1/2 × cos 10o
= cos 10o
= RHS
Hence Proved.
3. Prove that:
(i) cos 55° + cos 65° + cos 175° = 0
(ii) sin 50° – sin 70° + sin 10° = 0
(iii) cos 80° + cos 40° – cos 20° = 0
(iv) cos 20° + cos 100° + cos 140° = 0
(v) sin 5π/18 – cos 4π/9 = √3 sin π/9
(vi) cos π/12 – sin π/12 = 1/√2
(vii) sin 80° – cos 70° = cos 50°
(viii) sin 51° + cos 81° = cos 21°
Solution:
(i) cos 55° + cos 65° + cos 175° = 0
Let us consider LHS:
cos 55° + cos 65° + cos 175°
By using the formula,
cos A + cos B = 2 cos (A+B)/2 cos (A-B)/2
cos 55° + cos 65° + cos 175° = 2 cos (55o + 65o)/2 cos (55o – 65o) + cos (180o – 5o)
= 2 cos 120o/2 cos (-10o)/2 – cos 5o (since, {cos (180° – A) = – cos A})
= 2 cos 60° cos (-5°) – cos 5° (since, {cos (-A) = cos A})
= 2 × 1/2 × cos 5o – cos 5o
= 0
= RHS
Hence Proved.
(ii) sin 50° – sin 70° + sin 10° = 0
Let us consider LHS:
sin 50° – sin 70° + sin 10°
By using the formula,
sin A – sin B = 2 cos (A+B)/2 sin (A-B)/2
sin 50° – sin 70° + sin 10° = 2 cos (50o + 70o)/2 sin (50o – 70o) + sin 10o
= 2 cos 120o/2 sin (-20o)/2 + sin 10o
= 2 cos 60o (- sin 10o) + sin 10o [since,{sin (-A) = -sin (A)}]
= 2 × 1/2 × – sin 10o + sin 10o
= 0
= RHS
Hence proved.
(iii) cos 80° + cos 40° – cos 20° = 0
Let us consider LHS:
cos 80° + cos 40° – cos 20°
By using the formula,
cos A + cos B = 2 cos (A+B)/2 cos (A-B)/2
cos 80° + cos 40° – cos 20° = 2 cos (80o + 40o)/2 cos (80o – 40o) – cos 20o
= 2 cos 120o/2 cos 40o/2 – cos 20o
= 2 cos 60° cos 20o – cos 20°
= 2 × 1/2 × cos 20o – cos 20o
= 0
= RHS
Hence Proved.
(iv) cos 20° + cos 100° + cos 140° = 0
Let us consider LHS:
cos 20° + cos 100° + cos 140°
By using the formula,
cos A + cos B = 2 cos (A+B)/2 cos (A-B)/2
cos 20° + cos 100° + cos 140° = 2 cos (20o + 100o)/2 cos (20o – 100o) + cos (180o – 40o)
= 2 cos 120o/2 cos (-80o)/2 – cos 40o (since, {cos (180° – A) = – cos A})
= 2 cos 60° cos (-40°) – cos 40° (since, {cos (-A) = cos A})
= 2 × 1/2 × cos 40o – cos 40o
= 0
= RHS
Hence Proved.
(v) sin 5π/18 – cos 4π/9 = √3 sin π/9
Let us consider LHS:
sin 5π/18 – cos 4π/9 = sin 5π/18 – sin (π/2 – 4π/9) (since, cos A = sin (90o – A))
= sin 5π/18 – sin (9π – 8π)/18
= sin 5π/18 – sin π/18
By using the formula,
sin A – sin B = 2 cos (A+B)/2 sin (A-B)/2

= 2 cos (6π/36) sin (4π/36)
= 2 cos π/6 sin π/9
= 2 cos 30o sin π/9
= 2 × √3/2 × sin π/9
= √3 sin π/9
= RHS
Hence proved.
(vi) cos π/12 – sin π/12 = 1/√2
Let us consider LHS:
cos π/12 – sin π/12 = sin (π/2 – π/12) – sin π/12 (since, cos A = sin(90o – A))
= sin (6π – 5π)/12 – sin π/12
= sin 5π/12 – sin π/12
By using the formula,
sin A – sin B = 2 cos (A+B)/2 sin (A-B)/2

= 2 cos (6π/24) sin (4π/24)
= 2 cos π/4 sin π/6
= 2 cos 45o sin 30o
= 2 × 1/√2 × 1/2
= 1/√2
= RHS
Hence proved.
(vii) sin 80° – cos 70° = cos 50°
sin 80° = cos 50° + cos 70o
So, now let us consider RHS
cos 50° + cos 70o
By using the formula,
cos A + cos B = 2 cos (A+B)/2 cos (A-B)/2
cos 50° + cos 70o = 2 cos (50o + 70o)/2 cos (50o – 70o)/2
= 2 cos 120o/2 cos (-20o)/2
= 2 cos 60o cos (-10o)
= 2 × 1/2 × cos 10o (since, cos (-A) = cos A)
= cos 10o
= cos (90° – 80°)
= sin 80° (since, cos (90° – A) = sin A)
= LHS
Hence Proved.
(viii) sin 51° + cos 81° = cos 21°
Let us consider LHS:
sin 51° + cos 81° = sin 51o + sin (90o – 81o)
= sin 51o + sin 9o (since, sin (90° – A) = cos A)
By using the formula,
sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2
sin 51o + sin 9o = 2 sin (51o + 9o)/2 cos (51o – 9o)/2
= 2 sin 60o/2 cos 42o/2
= 2 sin 30o cos 21o
= 2 × 1/2 × cos 21o
= cos 21o
= RHS
Hence proved.
4. Prove that:
(i) cos (3π/4 + x) – cos (3π/4 – x) = -√2 sin x
(ii) cos (π/4 + x) + cos (π/4 – x) = √2 cos x
Solution:
(i) cos (3π/4 + x) – cos (3π/4 – x) = -√2 sin x
Let us consider LHS:
cos (3π/4 + x) – cos (3π/4 – x)
By using the formula,
cos A – cos B = -2 sin (A+B)/2 sin (A-B)/2
cos (3π/4 + x) – cos (3π/4 – x) = -2 sin (3π/4 + x + 3π/4 – x)/2 sin (3π/4 + x – 3π/4 + x)/2
= -2 sin (6π/4)/2 sin 2x/2
= -2 sin 6π/8 sin x
= -2 sin 3π/4 sin x
= -2 sin (π – π/4) sin x
= -2 sin π/4 sin x (since, (π-A) = sin A)
= -2 × 1/√2 × sin x
= -√2 sin x
= RHS
Hence proved.
(ii) cos (π/4 + x) + cos (π/4 – x) = √2 cos x
Let us consider LHS:
cos (π/4 + x) + cos (π/4 – x)
By using the formula,
cos A + cos B = 2 cos (A+B)/2 cos (A-B)/2
cos (π/4 + x) + cos (π/4 – x) = 2 cos (π/4 + x + π/4 – x)/2 cos (π/4 + x – π/4 + x)/2
= 2 cos (2π/4)/2 cos 2x/2
= 2 cos 2π/8 cos x
= 2 sin π/4 cos x
= 2 × 1/√2 × cos x
= √2 cos x
= RHS
Hence proved.
5. Prove that:
(i) sin 65o + cos 65o = √2 cos 20o
(ii) sin 47o + cos 77o = cos 17o
Solution:
(i) sin 65o + cos 65o = √2 cos 20o
Let us consider LHS:
sin 65o + cos 65o = sin 65o + sin (90o – 65o)
= sin 65o + sin 25o
By using the formula,
sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2
sin 65o + sin 25o = 2 sin (65o + 25o)/2 cos (65o – 25o)/2
= 2 sin 90o/2 cos 40o/2
= 2 sin 45o cos 20o
= 2 × 1/√2 × cos 20o
= √2 cos 20o
= RHS
Hence proved.
(ii) sin 47o + cos 77o = cos 17o
Let us consider LHS:
sin 47o + cos 77o = sin 47o + sin (90o – 77o)
= sin 47o + sin 13o
By using the formula,
sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2
sin 47o + sin 13o = 2 sin (47o + 13o)/2 cos (47o – 13o)/2
= 2 sin 60o/2 cos 34o/2
= 2 sin 30o cos 17o
= 2 × 1/2 × cos 17o
= cos 17o
= RHS
Hence proved.
6. Prove that:
(i) cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
(ii) cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
(iii) sin A + sin 2A + sin 4A + sin 5A = 4 cos A/2 cos 3A/2 sin 3A
(iv) sin 3A + sin 2A – sin A = 4 sin A cos A/2 cos 3A/2
(v) cos 20o cos 100o + cos 100o cos 140o – cos 140o cos 200o = – 3/4
(vi) sin x/2 sin 7x/2 + sin 3x/2 sin 11x/2 = sin 2x sin 5x
(vii) cos x cos x/2 – cos 3x cos 9x/2 = sin 4x sin 7x/2
Solution:
(i) cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Let us consider LHS:
cos 3A + cos 5A + cos 7A + cos 15A
So now,
(cos 5A + cos 3A) + (cos 15A + cos 7A)
By using the formula,
cos A + cos B = 2 cos (A+B)/2 cos (A-B)/2
(cos 5A + cos 3A) + (cos 15A + cos 7A)
= [2 cos (5A+3A)/2 cos (5A-3A)/2] + [2 cos (15A+7A)/2 cos (15A-7A)/2]
= [2 cos 8A/2 cos 2A/2] + [2 cos 22A/2 cos 8A/2]
= [2 cos 4A cos A] + [2 cos 11A cos 4A]
= 2 cos 4A (cos 11A + cos A)
Again by using the formula,
cos A + cos B = 2 cos (A+B)/2 cos (A-B)/2
2 cos 4A (cos 11A + cos A) = 2 cos 4A [2 cos (11A+A)/2 cos (11A-A)/2]
= 2 cos 4A [2 cos 12A/2 cos 10A/2]
= 2 cos 4A [2 cos 6A cos 5A]
= 4 cos 4A cos 5A cos 6A
= RHS
Hence proved.
(ii) cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Let us consider LHS:
cos A + cos 3A + cos 5A + cos 7A
So now,
(cos 3A + cos A) + (cos 7A + cos 5A)
By using the formula,
cos A + cos B = 2 cos (A+B)/2 cos (A-B)/2
(cos 3A + cos A) + (cos 7A + cos 5A)
= [2 cos (3A+A)/2 cos (3A-A)/2] + [2 cos (7A+5A)/2 cos (7A-5A)/2]
= [2 cos 4A/2 cos 2A/2] + [2 cos 12A/2 cos 2A/2]
= [2 cos 2A cos A] + [2 cos 6A cos A]
= 2 cos A (cos 6A + cos 2A)
Again by using the formula,
cos A + cos B = 2 cos (A+B)/2 cos (A-B)/2
2 cos A (cos 6A + cos 2A) = 2 cos A [2 cos (6A+2A)/2 cos (6A-2A)/2]
= 2 cos A [2 cos 8A/2 cos 4A/2]
= 2 cos A [2 cos 4A cos 2A]
= 4 cos A cos 2A cos 4A
= RHS
Hence proved.
(iii) sin A + sin 2A + sin 4A + sin 5A = 4 cos A/2 cos 3A/2 sin 3A
Let us consider LHS:
sin A + sin 2A + sin 4A + sin 5A
So now,
(sin 2A + sin A) + (sin 5A + sin 4A)
By using the formula,
sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2
(sin 2A + sin A) + (sin 5A + sin 4A) =
= [2 sin (2A+A)/2 cos (2A-A)/2] + [2 sin (5A+4A)/2 cos (5A-4A)/2]
= [2 sin 3A/2 cos A/2] + [2 sin 9A/2 cos A/2]
= 2 cos A/2 (sin 9A/2 + sin 3A/2)
Again by using the formula,
sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2
2 cos A/2 (sin 9A/2 + sin 3A/2) = 2 cos A/2 [2 sin (9A/2 + 3A/2)/2 cos (9A/2 – 3A/2)/2]
= 2 cos A/2 [2 sin ((9A+3A)/2)/2 cos ((9A-3A)/2)/2]
= 2 cos A/2 [2 sin 12A/4 cos 6A/4]
= 2 cos A/2 [2 sin 3A cos 3A/2]
= 4 cos A/2 cos 3A/2 sin 3A
= RHS
Hence proved.
(iv) sin 3A + sin 2A – sin A = 4 sin A cos A/2 cos 3A/2
Let us consider LHS:
sin 3A + sin 2A – sin A
So now,
(sin 3A – sin A) + sin 2A
By using the formula,
sin A – sin B = 2 cos (A+B)/2 sin (A-B)/2
(sin 3A – sin A) + sin 2A = 2 cos (3A + A)/2 sin (3A – A)/2 + sin 2A
= 2 cos 4A/2 sin 2A/2 + sin 2A
We know that, sin 2A = 2 sin A cos A
= 2 cos 2A Sin A + 2 sin A cos A
= 2 sin A (cos 2A + cos A)
Again by using the formula,
cos A + cos B = 2 cos (A+B)/2 cos (A-B)/2
2 sin A (cos 2A + cos A) = 2 sin A [2 cos (2A+A)/2 cos (2A-A)/2]
= 2 sin A [2 cos 3A/2 cos A/2]
= 4 sin A cos A/2 cos 3A/2
= RHS
Hence proved.
(v) cos 20o cos 100o + cos 100o cos 140o – cos 140o cos 200o = – 3/4
Let us consider LHS:
cos 20o cos 100o + cos 100o cos 140o – cos 140o cos 200o =
We shall multiply and divide by 2 we get,
= 1/2 [2 cos 100o cos 20o + 2 cos 140o cos 100o – 2 cos 200o cos 140o]
We know that 2 cos A cos B = cos (A+B) + cos (A-B)
So,
= 1/2 [cos (100o + 20o) + cos (100o – 20o) + cos (140o + 100o) + cos (140o – 100o) – cos (200o + 140o) – cos (200o – 140o)]]
= 1/2 [cos 120o + cos 80o + cos 240o + cos 40o – cos 340o – cos 60o]
= 1/2 [cos (90o + 30o) + cos 80o + cos (180o + 60o) + cos 40o – cos (360o – 20o) – cos 60o]
We know, cos (180o + A) = – cos A, cos (90o + A) = – sin A, cos (360o – A) = cos A
So,
= 1/2 [- sin 30o + cos 80o – cos 60o + cos 40o – cos 20o – cos 60o]
= 1/2 [- sin 30o + cos 80o + cos 40o – cos 20o – 2 cos 60o]
Again by using the formula,
cos A + cos B = 2 cos (A+B)/2 cos (A-B)/2
= 1/2 [- sin 30o + 2 cos (80o+40o)/2 cos (80o-40o)/2 – cos 20o – 2 × 1/2]
= 1/2 [- sin 30o + 2 cos 120o/2 cos 40o/2 – cos 20o – 1]
= 1/2 [- sin 30o + 2 cos 60o cos 20o – cos 20o – 1]
= 1/2 [- 1/2 + 2×1/2×cos 20o – cos 20o – 1]
= 1/2 [-1/2 + cos 20o – cos 20o – 1]
= 1/2 [-1/2 -1]
= 1/2 [-3/2]
= -3/4
= RHS
Hence proved.
(vi) sin x/2 sin 7x/2 + sin 3x/2 sin 11x/2 = sin 2x sin 5x
Let us consider LHS:
sin x/2 sin 7x/2 + sin 3x/2 sin 11x/2 =
We shall multiply and divide by 2 we get,
= 1/2 [2 sin 7x/2 sin x/2 + 2 sin 11x/2 sin 3x/2]
We know that 2 sin A sin B = cos (A-B) – cos (A+B)
So,
= 1/2 [cos (7x/2 – x/2) – cos (7x/2 + x/2) + cos (11x/2 – 3x/2) – cos (11x/2 + 3x/2)]
= 1/2 [cos (7x-x)/2 – cos (7x+x)/2 + cos (11x-3x)/2 – cos (11x+3x)/2]
= 1/2 [cos 6x/2 – cos 8x/2 + cos 8x/2 – cos 14x/2]
= 1/2 [cos 3x – cos 7x]
= – 1/2 [cos 7x – cos 3x]
Again by using the formula,
cos A – cos B = -2 sin (A+B)/2 sin (A-B)/2
= -1/2 [-2 sin (7x+3x)/2 sin (7x-3x)/2]
= -1/2 [-2 sin 10x/2 sin 4x/2]
= -1/2 [-2 sin 5x sin 2x]
= -2/-2 sin 5x sin 2x
= sin 2x sin 5x
= RHS
Hence proved.
(vii) cos x cos x/2 – cos 3x cos 9x/2 = sin 4x sin 7x/2
Let us consider LHS:
cos x cos x/2 – cos 3x cos 9x/2 =
We shall multiply and divide by 2 we get,
= 1/2 [2 cos x cos x/2 – 2 cos 9x/2 cos 3x]
We know that 2 cos A cos B = cos (A+B) + cos (A-B)
So,
= 1/2 [cos (x + x/2) + cos (x – x/2) – cos (9x/2 + 3x) – cos (9x/2 – 3x)]
= 1/2 [cos (2x+x)/2 + cos (2x-x)/2 – cos (9x+6x)/2 – cos (9x-6x)/2]
= 1/2 [cos 3x/2 + cos x/2 – cos 15x/2 – cos 3x/2]
= 1/2 [cos x/2 – cos 15x/2]
= – 1/2 [cos 15x/2 – cos x/2]
Again by using the formula,
cos A – cos B = -2 sin (A+B)/2 sin (A-B)/2
= – 1/2 [-2 sin (15x/2 + x/2)/2 sin (15x/2 – x/2)/2]
= -1/2 [-2 sin (16x/2)/2 sin (14x/2)/2]
= -1/2 [-2 sin 16x/4 sin 7x/2]
= – 1/2 [-2 sin 4x sin 7x/2]
= -2/-2 [sin 4x sin 7x/2]
= sin 4x sin 7x/2
= RHS
Hence proved.
7. Prove that:


Solution:






8. Prove that:



Solution:









= cot 6A
= RHS
Hence proved.




By using the formulas,
sin A – sin B = 2 cos (A+B)/2 sin (A-B)/2
cos A – cos B = -2 sin (A+B)/2 sin (A-B)/2





= RHS
Hence proved.




9. Prove that:
(i) sin α + sin β + sin γ – sin (α + β + γ) = 4 sin (α + β)/2 sin (β + γ)/2 sin (α + γ)/2
(ii) cos (A + B + C) + cos (A – B + C) + cos (A + B – C) + cos (-A + B + C) = 4 cos A cos B cos C
Solution:
(i) sin α + sin β + sin γ – sin (α + β + γ) = 4 sin (α + β)/2 sin (β + γ)/2 sin (α + γ)/2
Let us consider LHS:
sin α + sin β + sin γ – sin (α + β + γ)
By using the formulas,
Sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2
Sin A – sin B = 2 cos (A+B)/2 sin (A-B)/2


= RHS
Hence proved.
(ii) cos (A + B + C) + cos (A – B + C) + cos (A + B – C) + cos (-A + B + C) = 4 cos A cos B cos C
Let us consider LHS:
cos (A + B + C) + cos (A – B + C) + cos (A + B – C) + cos (-A + B + C)
so,
cos (A + B + C) + cos (A – B + C) + cos (A + B – C) + cos (-A + B + C) =
={cos (A + B + C) + cos (A – B + C)} + {cos (A + B – C) + cos (-A + B + C)}
By using the formula,
Cos A + cos B = 2 cos (A+B)/2 cos (A-B)/2

= 4 cos A cos B cos C
= RHS
Hence proved.
RD Sharma Solutions for Class 11 Maths Chapter 8: Download PDF
RD Sharma Solutions for Class 11 Maths Chapter 8–Transformation Formulae
Download PDF: RD Sharma Solutions for Class 11 Maths Chapter 8–Transformation Formulae PDF
Chapterwise RD Sharma Solutions for Class 11 Maths :
- Chapter 1–Sets
- Chapter 2–Relations
- Chapter 3–Functions
- Chapter 4–Measurement of Angles
- Chapter 5–Trigonometric Functions
- Chapter 6–Graphs of Trigonometric Functions
- Chapter 7–Values of Trigonometric Functions at Sum or Difference of Angles
- Chapter 8–Transformation Formulae
- Chapter 9–Values of Trigonometric Functions at Multiples and Submultiples of an Angle
- Chapter 10–Sine and Cosine Formulae and their Applications
- Chapter 11–Trigonometric Equations
- Chapter 12–Mathematical Induction
- Chapter 13–Complex Numbers
- Chapter 14–Quadratic Equations
- Chapter 15–Linear Inequations
- Chapter 16–Permutations
- Chapter 17–Combinations
- Chapter 18–Binomial Theorem
- Chapter 19–Arithmetic Progressions
- Chapter 20–Geometric Progressions
- Chapter 21–Some Special Series
- Chapter 22–Brief review of Cartesian System of Rectangular Coordinates
- Chapter 23–The Straight Lines
- Chapter 24–The Circle
- Chapter 25–Parabola
- Chapter 26–Ellipse
- Chapter 27–Hyperbola
- Chapter 28–Introduction to Three Dimensional Coordinate Geometry
- Chapter 29–Limits
- Chapter 30–Derivatives
- Chapter 31–Mathematical Reasoning
- Chapter 32–Statistics
- Chapter 33–Probability
About RD Sharma
RD Sharma isn’t the kind of author you’d bump into at lit fests. But his bestselling books have helped many CBSE students lose their dread of maths. Sunday Times profiles the tutor turned internet star
He dreams of algorithms that would give most people nightmares. And, spends every waking hour thinking of ways to explain concepts like ‘series solution of linear differential equations’. Meet Dr Ravi Dutt Sharma — mathematics teacher and author of 25 reference books — whose name evokes as much awe as the subject he teaches. And though students have used his thick tomes for the last 31 years to ace the dreaded maths exam, it’s only recently that a spoof video turned the tutor into a YouTube star.
R D Sharma had a good laugh but said he shared little with his on-screen persona except for the love for maths. “I like to spend all my time thinking and writing about maths problems. I find it relaxing,” he says. When he is not writing books explaining mathematical concepts for classes 6 to 12 and engineering students, Sharma is busy dispensing his duty as vice-principal and head of department of science and humanities at Delhi government’s Guru Nanak Dev Institute of Technology.