RS Aggarwal Solutions for Class 10 Maths Chapter 10–Trignometric Ratios
RS Aggarwal Solutions for Class 10 Maths Chapter 10–Trignometric Ratios

Class 10: Maths Chapter 10 solutions. Complete Class 10 Maths Chapter 10 Notes.

Contents

RS Aggarwal Solutions for Class 10 Maths Chapter 10–Trignometric Ratios

RS Aggarwal 10th Maths Chapter 1, Class 10 Maths Chapter 10 solutions

Page No 546:

Question 1:

If sin θ=32, find the value of all T-ratios of θ.

Answer:

Let us first draw a right ABC, right angled at B and C=θ.
Now, we know that sin θ = perpendicularhypotenuse= ABAC = 32 .

So, if AB = 3k, then AC = 2k, where k is a positive number.
Now, using Pythagoras theorem, we have:
AC2 = AB2 + BC2 
⇒ BC2 = AC2 AB2 = (2k)2  (3k)2
⇒ BC2 = 4k2 3k2 = k2
⇒ BC = k
Now, finding the other T-ratios using their definitions, we get:
   cos θ  = BCAC = k2k = 12
   tan θ  = ABBC = 3kk = 3

 ∴ cot θ  = 1tan θ = 13, cosec θ = 1sin θ = 23 and sec θ  = 1cos θ = 2

Page No 546:

Question 2:

If cos θ=725  find the values of all T-ratios of θ.

Answer:

Let us first draw a right ABC, right angled at B and C=θ .
Now, we know that cos θ = Basehypotenuse = BCAC  = 725 .

So, if BC = 7k, then AC = 25k, where k is a positive number.
Now, using Pythagoras theorem, we have:
AC2 = AB2 + BC2 
⇒ AB2 = AC2 BC2 = (25k)2  (7k)2.
⇒ AB2 = 625k2 49k2 = 576k2
⇒ AB = 24k
Now, finding the other trigonometric ratios using their definitions, we get:
   sin θ = ABAC  = 24k25k = 2425 
   tan θ = ABBC = 24k7k = 247 
 ∴ cot θ = 1tan θ = 724 , cosec θ = 1sin θ = 2524  and sec θ  = 1cos θ = 257 

Page No 546:

Question 3:

If tan θ=158 find the values of all T-ratios of θ.

Answer:

Let us first draw a right ABC, right angled at B and C=θ.
Now, we know that tan θ = PerpendicularBase = ABBC = 158.

So, if BC = 8k, then AB = 15k, where k is a positive number.
Now, using Pythagoras theorem, we have:
AC2 = AB2 + BC2 = (15k)2 + (8k)2
⇒ AC2 = 225k2 + 64k2 = 289k2
⇒ AC = 17k

Now, finding the other T-ratios using their definitions, we get:
  sin θ  = ABAC = 15k17k = 1517
  cos θ  = BCAC = 8k17k = 817

∴ cot θ  = 1tan θ = 815, cosec θ = 1sin θ = 1715 and sec θ  = 1cos θ = 178

Page No 546:

Question 4:

If cot θ = 2, find the value of all T-ratios of θ.

Answer:

Let us first draw a right ABC, right angled at B and C=θ.
Now, we know that cot θbasePerpendicular = BCAB = 2.


So, if BC = 2k, then AB = k, where k is a positive number.
Now, using Pythagoras theorem, we have:
AC2 = AB2 + BC2 = (2k)2 + (k)2
⇒ AC2 = 4k2 + k2 = 5k2
⇒ AC = 5k
Now, finding the other T-ratios using their definitions, we get:
   sin θ  = ABAC = k5k = 15
   cos θ  = BCAC = 2k5k = 25

∴ tan θ  = 1cot θ = 12, cosec θ = 1sin θ = 5 and sec θ  = 1cos θ = 52

Page No 546:

Question 5:

If cosec θ = 10, the find the values of all T-ratios of θ.

Answer:

Let us first draw a right ABC, right angled at B and C=θ.
Now, we know that cosec θ = HypotenusePerpendicular = ACAB= 101.

So, if AC = (10)k, then AB = k, where k is a positive number.
Now, by using Pythagoras theorem, we have:
AC2 = AB2 + BC2 
⇒ BC2 = AC2 AB2 = 10k2 k2
⇒ BC2 = 9k2
⇒ BC = 3k
Now, finding the other T-ratios using their definitions, we get:
   tan θ  = ABBC = k3k = 13

   cos θ  = BCAC = 3k10k = 310

 ∴ sin θ=1cosec θ=110, cot θ  = 1tan θ = 3 and sec θ  = 1cos θ = 103

Page No 546:

Question 6:

If sinθ=a2b2a2+b2, find the values of all T-ratios of θ.

Answer:

We have sinθ=a2b2a2+b2,

As,

cos2θ=1sin2θ=1a2b2a2+b22=11a2b22a2+b22=a2+b22a2b22a2+b22=a2+b2a2b2a2+b2+a2b2a2+b22
=a2+b2a2+b2a2+b2+a2b2a2+b22=2b22a2a2+b22cos2θ=4a2b2a2+b22cosθ=4a2b2a2+b22cosθ=2aba2+b2

Also,

tanθ=sinθcosθ=a2b2a2+b22aba2+b2=a2b22ab

Now,

cosecθ=1sinθ=1a2b2a2+b2=a2+b2a2b2

Also,

secθ=1cosθ=12aba2+b2=a2+b22ab

And,

cotθ=1tanθ=1a2b22ab=2aba2b2

Page No 546:

Question 7:

If sinθ=cc2+d2, where d > 0 then find the values of cos θ and tan θ.

Answer:

Given: sinθ=cc2+d2Since, sinθ=PHP=c and H=c2+d2Using Pythagoras theorem,P2+B2=H2c2+B2=c2+d2B2=d2B=dTherefore,cosθ=BH=dc2+d2tanθ=PB=cdHence, cosθ=dc2+d2 and tanθ=cd.

Page No 546:

Question 8:

If 3 tan θ=1 then evaluate (cos2θ – sin2θ).

Answer:

Given: 3tanθ=1tanθ=13Since, tanθ=PBP=1 and B=3Using Pythagoras theorem,P2+B2=H212+32=H2H2=1+3=4H=2Therefore,sinθ=PH=12cosθ=BH=32cos2θsin2θ=322122                   =3414=24                   =12Hence, cos2θsin2θ=12.

Page No 546:

Question 9:

If 4tan θ = 3 then prove that sin θ cos θ=1225.

Answer:

Given: 4tanθ=3tanθ=34Since, tanθ=PBP=3 and B=4Using Pythagoras theorem,P2+B2=H232+42=H2H2=9+16=25H=5Therefore,sinθ=PH=35cosθ=BH=45sinθ×cosθ=35×45                   =1225Hence, sinθ×cosθ=1225.

Page No 546:

Question 10:

If sinθ=ab, show that secθ+tanθ=b+aba.

Answer:

LHS=secθ+tanθ=1cosθ+sinθcosθ=1+sinθcosθ=1+sinθ1sin2θ=1+ab1ab2
=11+ab11a2b2=b+abb2a2b2=b+abb2a2b=b+ab+aba
=b+ab+aba=b+aba=b+aba=RHS

Page No 547:

Question 11:

If tan θ = abab, show that (a sinθb cosθa sinθ+b cosθ)=(a2b2)(a2+b2).a sinθb cosθa sinθ+b cosθ=a2b2a2+b2.

Answer:

It is given that tan θ = abθ = ab.

LHS = a sinθ  b cosθa sinθ + b cosθa sinθ  b cosθa sinθ + b cosθ
 Dividing the numerator and denominator by cos θθ, we get:

 a tan θ  ba tan θ + ba tan θ  ba tan θ + b       (∵ tan θ = sin θcos θθ = sin θcos θ)
Now, substituting the value of tan θθ in the above expression, we get:
 a(ab)  ba(ab) + b= a2b  ba2b + b= a2  b2a2 + b2 = RHSaab  baab + b= a2b  ba2b + b= a2  b2a2 + b2 = RHS
  i.e., LHS = RHS

 Hence proved.

Page No 547:

Question 12:

If sin θ=1213sin θ=1213 then evaluate (2sin θ−3cos θ4sin θ−9cos θ)2sin θ3cos θ4sin θ9cos θ.

Answer:

Given: sinθ=1213Since, sinθ=PHP=12 and H=13Using Pythagoras theorem,P2+B2=H2122+B2=132B2=169144B2=25B=5Therefore,cosθ=BH=513Now,(2sinθ3cosθ4sinθ9cosθ)=(2(1213)3(513)4(1213)9(513))                        =(2413151348134513)                        =(24154845)                        =93                        =3Hence, (2sinθ3cosθ4sinθ9cosθ)=3.Given: sinθ=1213Since, sinθ=PHP=12 and H=13Using Pythagoras theorem,P2+B2=H2122+B2=132B2=169144B2=25B=5Therefore,cosθ=BH=513Now,2sinθ3cosθ4sinθ9cosθ=212133513412139513                        =2413151348134513                        =24154845                        =93                        =3Hence, 2sinθ3cosθ4sinθ9cosθ=3.

Page No 547:

Question 13:

If tan θ=12tan θ=12 then evaluate (cos θsin θ+sin θ1+cos θ)cos θsin θ+sin θ1+cos θ

Answer:

Given: tanθ=12Since, tanθ=PBP=1 and B=2Using Pythagoras theorem,P2+B2=H212+22=H2H2=1+4H2=5H=5Therefore,sinθ=PH=15cosθ=BH=25Now,(cosθsinθ+sinθ1+cosθ)=(2515+151+25)                             =21+155+25                             =(21+15+2)                             =(2+(15+2×5252))                             =(2+(5254))                             =(2+52)                             =5Hence, (cosθsinθ+sinθ1+cosθ)=5.Given: tanθ=12Since, tanθ=PBP=1 and B=2Using Pythagoras theorem,P2+B2=H212+22=H2H2=1+4H2=5H=5Therefore,sinθ=PH=15cosθ=BH=25Now,cosθsinθ+sinθ1+cosθ=2515+151+25                             =21+155+25                             =21+15+2                             =2+15+2×5252                             =2+5254                             =2+52                             =5Hence, cosθsinθ+sinθ1+cosθ=5.

Page No 547:

Question 14:

If sinα=12sinα=12, prove that (3cosα−4cos3α)=03cosα4cos3α=0.

Answer:

LHS=(3cosα4cos3α)=cosα(34cos2α)=1sin2α[34(1sin2α)]=1(12)2[34(1(12)2)]=1114[34(1114)]=34[34(34)]=34[33]=34[0]=0=RHSLHS=3cosα4cos3α=cosα34cos2α=1sin2α341sin2α=1122341122=1114341114=343434=3433=340=0=RHS

Page No 547:

Question 15:

If 3 cot θ = 2, show that (4sinθ3cosθ2sinθ+6cosθ)=13.4sinθ3cosθ2sinθ+6cosθ=13.

Answer:

It is given that cot θ = 23θ = 23.

LHS  = 4 sinθ  3 cosθ2 sinθ + 6 cosθ4 sinθ  3 cosθ2 sinθ + 6 cosθ
Dividing the above expression by sin θθ, we get:
4  3 cot θ2 + 6 cot θ4  3 cot θ2 + 6 cot θ                     [∵ cot θ = cosθsinθθ = cosθsinθ]
Now, substituting the values of cot θθ in the above expression, we get:
 4  3(23)2 + 6(23)= 4  22 + 4 = 26=13 4  3232 + 623= 4  22 + 4 = 26=13
 i.e., LHS = RHS
 
Hence proved.

Page No 547:

Question 16:

If sec θ = 178178 then prove that 34sin2θ4cos2θ3=3tan2θ13tan2θ34sin2θ4cos2θ3=3tan2θ13tan2θ.

Answer:

It is given that sec θθ = 178178.

Let us consider a right ABC right angled at B and C=θC=θ.
We know that cos θθ = 1sec θ= 817 = BCAC1sec θ= 817 = BCAC
 
So, if BC = 8k, then AC = 17k, where k is a positive number.
Using Pythagoras theorem, we have:
AC2 = AB2 + BC2
⇒ AB2 = AC2 BC2 = (17k)2 (8k)2
⇒ AB2 = 289k2 64k2 = 225k2
⇒ AB = 15k.

Now, tan θθ  = ABBC = 158ABBC = 158 and sin θθ = ABAC = 15k17k= 1517ABAC = 15k17k= 1517

The given expression is 3  4sin2θ4cos2θ 3 = 3  tan2θ1  3tan2θ3  4sin2θ4cos2θ 3 = 3  tan2θ1  3tan2θ.
 
 Substituting the values in the above expression, we get:
 LHS= 3  4(1517)24(817)2  3 = 3  900289256289 3 = 867900256867= 33611=33611LHS= 3  41517248172  3 = 3  900289256289 3 = 867900256867= 33611=33611

RHS = 3(158)213(158)2=322564167564=19222564675=33611=33611RHS = 31582131582=322564167564=19222564675=33611=33611

∴ LHS = RHS
Hence proved.

Page No 547:

Question 17:

If tan θ = 20212021, show that(1sinθ+cosθ)(1+sinθ+cosθ)=37.1sinθ+cosθ1+sinθ+cosθ=37.

Answer:

Let us consider a right ABC right angled at B and C=θC=θ.
Now, we know that tan θθABBCABBC = 20212021

So, if AB = 20k, then BC = 21k, where k is a positive number.
Using Pythagoras theorem, we get:
 AC2 = AB2 + BC2
⇒ AC2= (20k)2 + (21k)2
⇒ AC2 = 841k2
⇒  AC = 29k
Now, sin θθ = ABAC = 2029ABAC = 2029 and cos θθ = BCAC = 2129BCAC = 2129

Substituting these values in the given expression, we get:
  LHS=1  sinθ + cosθ1 + sinθ + cosθ= 1  2029 + 21291 + 2029 + 2129= 29  20 + 212929 + 20 + 2129= 3070 = 37 = RHS LHS=1  sinθ + cosθ1 + sinθ + cosθ= 1  2029 + 21291 + 2029 + 2129= 29  20 + 212929 + 20 + 2129= 3070 = 37 = RHS
∴ LHS = RHS

Hence proved.

Page No 547:

Question 18:

If tan θ = 1717 then prove that (cosec2θ+sec2θcosec2θsec2θ)=43.cosec2θ+sec2θcosec2θsec2θ=43.

Answer:

Let us consider a right ABC, right-angled at B and C=θ.
Now it is given that tan θABBC17.

So, if AB = k, then BC = 7k, where k is a positive number.
Using Pythagoras theorem, we have:
AC2 = AB2 + BC2
⇒ AC2 = (k)2 + (7k)2
⇒ AC2 = k2 + 7k2
⇒ AC = 22k
Now, finding out the values of the other trigonometric ratios, we have:
sin θ  = ABAC = k22k = 122
cos θ  = BCAC = 7 k22k = 722
∴ cosec θ  = 1sin θ = 22 and sec θ   = 1cos θ = 227
Substituting the values of cosec θ  and sec θ  in the given expression, we get:
 cosec2θ – sec2θcosec2θ + sec2θ=(22)2 – 2272(22)2 + 2272=8 – 878 + 87=56 – 8756 + 87=4864 = 34 = RHS
 i.e., LHS = RHS
 
Hence proved.

Page No 547:

Question 19:

If sinθ=34sinθ=34, show that cosec2θcot2θsec2θ1=73cosec2θcot2θsec2θ1=73.

Answer:

LHS=cosec2θcot2θsec2θ1=1tan2θ=cot2θ=cotθ=cosec2θ1=(1sinθ)21=(1(34))21=(43)21=1691=1699=79=73=RHSLHS=cosec2θcot2θsec2θ1=1tan2θ=cot2θ=cotθ=cosec2θ1=1sinθ21=13421=4321=1691=1699=79=73=RHS

Page No 547:

Question 20:

If 3 tan A = 4 then prove that
(i) sec Acosec Asec A+cosec A=17sec Acosec Asec A+cosec A=17
(ii) 1sin A1+cos A=1221sin A1+cos A=122

Answer:

(i)
 ​LHS=secθcosecθsecθ+cosecθ=(1cosθ1sinθ)(1cosθ+1sinθ)=(sinθcosθsinθ cosθ)(sinθ+cosθsinθ cosθ)=(sinθcosθsinθ)(sinθ+cosθsinθ)=(sinθsinθcosθsinθ)(sinθsinθ+cosθsinθ)=1cotθ1+cotθ=(134)(1+34)LHS=secθcosecθsecθ+cosecθ=1cosθ1sinθ1cosθ+1sinθ=sinθcosθsinθ cosθsinθ+cosθsinθ cosθ=sinθcosθsinθsinθ+cosθsinθ=sinθsinθcosθsinθsinθsinθ+cosθsinθ=1cotθ1+cotθ=1341+34
=(14)(74)=17=17=RHS=1474=17=17=RHS

(ii)
Given: 3tanA=4tanA=43Since, tanA=PBP=4 and B=3Using Pythagoras theorem,P2+B2=H242+32=H2H2=16+9H2=25H=5Therefore,sinA=PH=45cosA=BH=35Now,1sinA1+cosA=1451+35                  =5455+35                  =1585                  =18                  =122Hence, 1sinA1+cosA=122.Given: 3tanA=4tanA=43Since, tanA=PBP=4 and B=3Using Pythagoras theorem,P2+B2=H242+32=H2H2=16+9H2=25H=5Therefore,sinA=PH=45cosA=BH=35Now,1sinA1+cosA=1451+35                  =5455+35                  =1585                  =18                  =122Hence, 1sinA1+cosA=122.

Page No 547:

Question 21:

If cot θ=158 then evaluate (1+sin θ) (1sin θ)(1+cos θ) (1cos θ)cot θ=158 then evaluate 1+sin θ 1sin θ1+cos θ 1cos θ.

Answer:

Given: cotθ=158Since, cotθ=BPP=8 and B=15Using Pythagoras theorem,P2+B2=H282+152=H2H2=64+225H2=289H=17Therefore,sinθ=PH=817cosθ=BH=1517Now,(1+sinθ)(1sinθ)(1+cosθ)(1cosθ)=1sin2θ1cos2θ                               =cos2θsin2θ             (sin2θ+cos2θ=1)                               =cot2θ                               =(158)2                               =22564Hence, (1+sinθ)(1sinθ)(1+cosθ)(1cosθ)=22564.Given: cotθ=158Since, cotθ=BPP=8 and B=15Using Pythagoras theorem,P2+B2=H282+152=H2H2=64+225H2=289H=17Therefore,sinθ=PH=817cosθ=BH=1517Now,1+sinθ1sinθ1+cosθ1cosθ=1sin2θ1cos2θ                               =cos2θsin2θ             sin2θ+cos2θ=1                               =cot2θ                               =1582                               =22564Hence, 1+sinθ1sinθ1+cosθ1cosθ=22564.

Page No 547:

Question 22:

In a right ΔABCABC, right-angled at BB, if tanA=1tanA=1, then verify that 2sinAcosA=12sinA·cosA=1.

Answer:

We have,tanA=1sinAcosA=1sinA=cosAsinAcosA=0Squaring both sides, we get(sinAcosA)2=0sin2A+cos2A2sinAcosA=012sinAcosA=02sinAcosA=1We have,tanA=1sinAcosA=1sinA=cosAsinAcosA=0Squaring both sides, we getsinAcosA2=0sin2A+cos2A2sinA·cosA=012sinA·cosA=02sinA·cosA=1

Page No 547:

Question 23:

In the given figure, ABCD is a rectangle in which diag. AC = 17 cm, ∠BCA = θ and sin θ=817sin θ=817.
Find (i) the area of rect. ABCD, (ii) the perimeter of rect. ABCD.

Answer:

Given: In ΔABC,AC=17 cmsinθ=817Since, sinθ=PHP=8 and H=17Using Pythagoras theorem,P2+B2=H282+B2=172B2=28964B2=225B=15Therefore,AB= 8 cm and BC=15 cmTherefore,(i) Area of rectangle ABCD=AB×BC                                       =8×15                                       =120 cm2(ii) Perimeter of rectangle ABCD=2(AB+BC)                                               =2(8+15)                                               =2(23)                                               =46 cmGiven: In ABC,AC=17 cmsinθ=817Since, sinθ=PHP=8 and H=17Using Pythagoras theorem,P2+B2=H282+B2=172B2=28964B2=225B=15Therefore,AB= 8 cm and BC=15 cmTherefore,i Area of rectangle ABCD=AB×BC                                       =8×15                                       =120 cm2ii Perimeter of rectangle ABCD=2AB+BC                                               =28+15                                               =223                                               =46 cm

Page No 547:

Question 24:

If x=cosecA+cosAx=cosecA+cosA and y=cosecAcosAy=cosecAcosA, then prove that (2x+y)2+(xy2)21=02x+y2+xy221=0.

Answer:

LHS=(2x+y)2+(xy2)21=[2(cosecA+cosA)+(cosecAcosA)]2+[(cosecA+cosA)(cosecAcosA)2]21=[2cosecA+cosA+cosecAcosA]2+[cosecA+cosAcosecA+cosA2]21=[22cosecA]2+[2cosA2]21LHS=2x+y2+xy221=2cosecA+cosA+cosecAcosA2+cosecA+cosAcosecAcosA221=2cosecA+cosA+cosecAcosA2+cosecA+cosAcosecA+cosA221=22cosecA2+2cosA221
=[1cosecA]2+[cosA]21=[sinA]2+[cosA]21=sin2A+cos2A1=11=0=RHS=1cosecA2+cosA21=sinA2+cosA21=sin2A+cos2A1=11=0=RHS

Page No 548:

Question 25:

If x=cotA+cosAx=cotA+cosA and y=cotAcosAy=cotAcosA, prove that (xyx+y)2+(xy2)2=1xyx+y2+xy22=1.

Answer:

LHS=(xyx+y)2+(xy2)2=[(cotA+cosA)(cotAcosA)(cotA+cosA)+(cotAcosA)]2+[(cotA+cosA)(cotAcosA)2]2=[cotA+cosAcotA+cosAcotA+cosA+cotAcosA]2+[cotA+cosAcotA+cosA2]2=[2cosA2cotA]2+[2cosA2]2=[cosA(cosAsinA)]2+[cosA]2=[sinA cosAcosA]2+[cosA]2=[sinA]2+[cosA]2=sin2A+cos2A=1=RHSLHS=xyx+y2+xy22=cotA+cosAcotAcosAcotA+cosA+cotAcosA2+cotA+cosAcotAcosA22=cotA+cosAcotA+cosAcotA+cosA+cotAcosA2+cotA+cosAcotA+cosA22=2cosA2cotA2+2cosA22=cosAcosAsinA2+cosA2=sinA cosAcosA2+cosA2=sinA2+cosA2=sin2A+cos2A=1=RHS

Page No 548:

Question 26:

In the figure of ΔPQR, P=θ° and R=ϕ°PQR, P=θ° and R=ϕ°. Find
(i) (x+1)cotϕ(ii) (x3+x2)tanθ(iii) cosθi x+1cotϕii x3+x2tanθiii cosθ

Answer:


In ΔPQR, Q=90°PQR, Q=90°,

Using Pythagoras theorem, we get

PQ=PR2QR2=(x+2)2x2=x2+4x+4x2=4(x+1)=2x+1PQ=PR2QR2=x+22x2=x2+4x+4x2=4x+1=2x+1

Now,

(i) (x+1)cotϕ=(x+1)×QRPQ=(x+1)×x2x+1=x2i x+1cotϕ=x+1×QRPQ=x+1×x2x+1=x2

(ii) (x3+x2)tanθ=(x2(x+1))×QRPQ=x(x+1)×x2x+1=x22ii x3+x2tanθ=x2x+1×QRPQ=xx+1×x2x+1=x22

(iii) cosθ=PQPR=2x+1(x+2)iii cosθ=PQPR=2x+1x+2

Page No 548:

Question 27:

If cot A+1cot A=2cot A+1cot A=2, find the value of (cot2A+1cot2A)cot2A+1cot2A.

Answer:

Given:cotA+1cotA=2cotA+1cotA=2Squaring both sides, we get(cotA+1cotA)2=22cot2A+(1cotA)2+2(cotA)(1cotA)=4cot2A+1cot2A+2=4cot2A+1cot2A=42cot2A+1cot2A=2Hence, the value of (cot2A+1cot2A) is 2.Given:cotA+1cotA=2cotA+1cotA=2Squaring both sides, we getcotA+1cotA2=22cot2A+1cotA2+2cotA1cotA=4cot2A+1cot2A+2=4cot2A+1cot2A=42cot2A+1cot2A=2Hence, the value of cot2A+1cot2A is 2.

Page No 548:

Question 28:

Answer:

Given:3tanθ=3sinθ3tanθ=3sinθ3sinθcosθ=3sinθ3sinθcosθ3sinθ=03sinθ3sinθcosθcosθ=03sinθ3sinθcosθ=03sinθ13cosθ=0sinθ=0 or 13cosθ=0sinθ=0 or cosθ=13sinθ=0 or cos2θ=13sinθ=0 or 1cos2θ=113sinθ=0 or sin2θ=23sinθ=0 or sinθ=23Hence, the value of sinθ is 0 or 23.

Page No 548:

Question 29:

If A and B are acute angles such that sinA = sinB, then prove that A = B.

Answer:


In ABC, C = 90°
sinA = BCAB and
sinB = ACAB

As, sinA = sinB
BCAB = ACAB
BC = AC
So, A = B             (Angles opposite to equal sides are equal)

Page No 548:

Question 30:

If A and B are acute angles such that tanA = tanB, the prove that A=B.

Answer:



In ABC, C=90°,

tanA=BCAC andtanB=ACBC

As, tanA=tanB
BCAC=ACBCBC2=AC2BC=ACSo, A=B             Angles opposite to equal sides are equal

Page No 555:

Question 1:

If tan θ=815 then cosec θ=?
(a) 1517

(b) 1715

(c) 178

(d) 817

Answer:

Given: tanθ=815Since, tanθ=PBP=8 and B=15Using Pythagoras theorem,P2+B2=H282+152=H2H2=64+225H2=289H=17Therefore,cosecθ=HP=178

Hence, the correct option is (c).

Page No 555:

Question 2:

If tan θ=3 then sec θ = ?

(a) 2

(b) 12

(c) 32

(d) 23

Answer:

Given: tanθ=31Since, tanθ=PBP=3 and B=1Using Pythagoras theorem,P2+B2=H232+12=H2H2=3+1H2=4H=2Therefore,secθ=HB=21=2

Hence, the correct option is (a).

Page No 555:

Question 3:

If cosec θ=10 then sec θ=?

(a) 110

(b) 210

(c) 310

(d) 103

Answer:

Given: cosecθ=101Since, cosecθ=HPP=1 and H=10Using Pythagoras theorem,P2+B2=H212+B2=102B2=101B2=9B=3Therefore,secθ=HB=103

Hence, the correct option is (d).

Page No 555:

Question 4:

If sec θ=257 then sin θ=?

(a) 725

(b) 2425

(c) 724

(d) 247

Answer:

Given: secθ=257Since, secθ=HBB=7 and H=25Using Pythagoras theorem,P2+B2=H2P2+72=252P2=62549P2=576P=24Therefore,sinθ=PH=2425

Hence, the correct option is (b).

Page No 555:

Question 5:

If sin θ=12 then cot θ=?
(a) 32

(b) 1

(c) 3

(d) 13

Answer:

Given: sinθ=12Since, sinθ=PHP=1 and H=2Using Pythagoras theorem,P2+B2=H212+B2=22B2=41B2=3B=3Therefore,cotθ=BP=31

Hence, the correct option is (c).

Page No 555:

Question 6:

If cos θ=45 then tan θ=?
(a) 34

(b) 43

(c) 35

(d) 53

Answer:

Given: cosθ=45Since, cosθ=BHB=4 and H=5Using Pythagoras theorem,P2+B2=H2P2+42=52P2=2516P2=9P=3Therefore,tanθ=PB=34

Hence, the correct option is (a).

Page No 556:

Question 7:

If tan θ=43 then sin θ+cos θ=?
(a) 73

(b) 74

(c) 75

(d) 57

Answer:

Given: tanθ=43Since, tanθ=PBP=4 and B=3Using Pythagoras theorem,P2+B2=H242+32=H2H2=16+9H2=25H=5Therefore,sinθ=PH=45cosθ=BH=35Now,sinθ+cosθ=45+35                 =75

Hence, the correct option is (c).

Page No 556:

Question 8:

If (tan θ + cot θ) = 5 then (tan2 θ + cot2 θ) = ?
(a) 27
(b) 25
(c) 24
(d) 23

Answer:

Given:tanθ+cotθ=5tanθ+cotθ=5Squaring both sides, we gettanθ+cotθ2=52tan2θ+cot2θ+2cotθtanθ=25tan2θ+cot2θ+21tanθtanθ=25           cotθ=1tanθtan2θ+cot2θ+2=25tan2θ+cot2θ=23Hence, the correct option is d.

Page No 556:

Question 9:

If (cos θ + sec θ) = 52 then (cos2 θ + sec2 θ) = ?
(a) 174

(b) 214

(c) 294

(d) 334

Answer:

Given:cosθ+secθ=52cosθ+secθ=52Squaring both sides, we getcosθ+secθ2=522cos2θ+sec2θ+2cosθsecθ=254cos2θ+sec2θ+2cosθ1cosθ=254            secθ=1cosθcos2θ+sec2θ+2=254cos2θ+sec2θ=2542cos2θ+sec2θ=2584cos2θ+sec2θ=174Hence, the correct option is a.

Page No 556:

Question 10:

If 4tan θ = 3 then (cos2 θ – sin2 θ) = ?
(a) 425

(b) 725

(c) 1

(d) 1125

Answer:

Given: 4tanθ=3tanθ=34Since, tanθ=PBP=3 and B=4Using Pythagoras theorem,P2+B2=H232+42=H2H2=9+16H2=25H=5Therefore,sinθ=PH=35cosθ=BH=45cos2θsin2θ=452352                   =1625925                   =16925                   =725Hence, the correct option is b.

Page No 556:

Question 11:

If 4cot θ=3 then sin θcos θsin θ+cos θ=?
(a) 37

(b) 27

(c) 17

(d) 0

Answer:

Given: 4cotθ=3cotθ=34Since, cotθ=BPP=4 and B=3Using Pythagoras theorem,P2+B2=H242+32=H2H2=16+9H2=25H=5Therefore,sinθ=PH=45cosθ=BH=35sinθcosθsinθ+cosθ=453545+35                     =4354+35                     =17Hence, the correct option is c.

Page No 556:

Question 12:

If 3cos θ = 2 then (2sec2 θ + 2tan2 θ – 7) = ?
(a) 0
(b) 1
(c) 3
(4) 4

Answer:

Given: 3cosθ=2cosθ=23Since, cosθ=BHB=2 and H=3Using Pythagoras theorem,P2+B2=H2P2+22=32P2=94P2=5P=5Therefore,secθ=HB=32tanθ=PB=52Now,2sec2θ+2tan2θ7=2322+25227                               =294+2547                               =92+527                               =9+527                               =1427                               =77                               =0Hence, the correct option is a.

Page No 556:

Question 13:

If sec θ + tan θ + 1 = 0 then (sec θ – tan θ) = ?
(a) 1
(b) –1
(c) 0
(d) 2

Answer:

Given: secθ+tanθ+1=0secθ+tanθ+1=0secθ+tanθ=1Multiplying and dividing LHS by secθtanθ, we getsecθ+tanθ×secθtanθsecθtanθ=1sec2θtan2θsecθtanθ=11+tan2θtan2θsecθtanθ=1           sec2θ=1+tan2θ1secθtanθ=1secθtanθ=1Hence, the correct option is b.

Page No 556:

Question 14:

If cos A + cos2 A = 1 then (sin2 A + sin4 A) = ?
(a) 12

(b) 2

(c) 1

(d) 4

Answer:

Given: cosA+cos2A=1cosA+cos2A=1cosA=1cos2AcosA=sin2A          sin2A+cos2A=1Now,sin2A+sin4A=sin2A+sin2A2                   =cosA+cosA2                   =cosA+cos2A                   =1Hence, the correct option is c.

Page No 556:

Question 15:

If sin θ=32then cosec θ+cot θ=?

(a) 2+3

(b) 23

(c) 2

(d) 3

Answer:

Given: sinθ=32Since, sinθ=PHP=3 and H=2Using Pythagoras theorem,P2+B2=H232+B2=22B2=43B2=1B=1Therefore,cosecθ=HP=23cotθ=BP=13Now,cosecθ+cotθ=23+13                      =2+13                      =33                      =3Hence, the correct option is d.

Page No 556:

Question 16:

If 3 tan θ = 3sin θ then (sin2θ – cos2θ) = ?

(a) 13

(b) 13

(c) 3

(d) 23

Answer:

Given:3tanθ=3sinθ3tanθ=3sinθ3sinθcosθ=3sinθ3sinθcosθ3sinθ=03sinθ3sinθcosθcosθ=03sinθ3sinθcosθ=03sinθ13cosθ=0sinθ=0 or 13cosθ=0sinθ=0 or cosθ=13sinθ=0 or cos2θ=13sinθ=0 or 1cos2θ=113sinθ=0 or sin2θ=23sinθ=0 or sinθ=23For sinθ=0,sin2θ=01sin2θ=10cos2θ=1Thus, sin2θcos2θ=1For sinθ=23,sin2θ=231sin2θ=123cos2θ=13Thus, sin2θcos2θ=2313=13 

Hence, the correct option is (a).
 

RS Aggarwal Solutions for Class 10 Maths Chapter 10: Download PDF

RS Aggarwal Solutions for Class 10 Maths Chapter 10–Trignometric Ratios

Download PDF: RS Aggarwal Solutions for Class 10 Maths Chapter 10–Trignometric Ratios PDF

About Rs Aggarwal

He was born on January 2, 1946 in a village of Delhi. He graduated from Kirori Mal College, University of Delhi. After completing his M.Sc. in Mathematics in 1969, he joined N.A.S. College, Meerut, as a lecturer. In 1976, he was awarded a fellowship for 3 years and joined the University of Delhi for his Ph.D. Thereafter, he was promoted as a reader in N.A.S. College, Meerut. In 1999, he joined M.M.H. College, Ghaziabad, as a reader and took voluntary retirement in 2003. He has authored more than 75 titles ranging from Nursery to M. Sc. He has also written books for competitive examinations right from the clerical grade to the I.A.S. level.

Read More