Class 9: Maths Chapter 3.4 solutions. Complete Class 9 Maths Chapter 3.4 Notes.
Contents
Maharashtra Board Solutions Class 9-Maths (Part 2): Chapter 3.4- Triangles
Maharashtra Board 9th Maths Chapter 3.4, Class 9 Maths Chapter 3.4 solutions
Question 1.
In the adjoining figure, point A is on the bisector of ∠XYZ. If AX = 2 cm, then find AZ.
Solution:
AX = 2 cm [Given]
Point A lies on the bisector of ∠XYZ. [Given]
Point A is equidistant from the sides of ∠XYZ. [Every point on the bisector of an angle is equidistant from the sides of the angle]
∴ A Z = AX
∴ AZ = 2 cm
Question 2.
In the adjoining figure, ∠RST = 56°, seg PT ⊥ ray ST, seg PR ⊥ ray SR and seg PR ≅ seg PT. Find the measure of ∠RSP.
State the reason for your answer.
Solution:
seg PT ⊥ ray ST, seg PR ⊥ ray SR [Given]
seg PR ≅ seg PT
∴ Point P lies on the bisector of ∠TSR [Any point equidistant from the sides of an angle is on the bisector of the angle]
∴ Ray SP is the bisector of ∠RST.
∠RSP = 56° [Given]
∴ ∠RSP = 12∠RST
= 12 x 56°
∴ ∠RSP = 28°
Question 3.
In ∆PQR, PQ = 10 cm, QR = 12 cm, PR triangle. 8 cm. Find out the greatest and the smallest angle of the triangle.
Solution:
In ∆PQR,
PQ = 10 cm, QR = 12 cm, PR = 8 cm [Given]
Since, 12 > 10 > 8
∴ QR > PQ > PR
∴ ∠QPR > ∠PRQ > PQR [Angle opposite to greater side is greater]
∴ In ∆PQR, ∠QPR is the greatest angle and ∠PQR is the smallest angle.
Question 4.
In ∆FAN, ∠F = 80°, ∠A = 40°. Find out the greatest and the smallest side of the triangle. State the reason.
Solution:
In ∆FAN,
∠F + ∠A + ∠N = 180° [Sum of the measures of the angles of a triangle is 180°]
∴ 80° + 40° + ∠N = 180°
∴ ∠N = 180° – 80° – 40°
∴∠N = 60°
Since, 80° > 60° > 40°
∴ ∠F > ∠N > ∠A
∴ AN > FA > FN [Side opposite to greater angle is greater]
∴ In ∆FAN, AN is the greatest side and FN is the smallest side.
Question 5.
Prove that an equilateral triangle is equiangular.
Given: ∆ABC is an equilateral triangle.
To prove: ∆ABC is equiangular
i.e. ∠A ≅ ∠B ≅ ∠C …(i) [Sides of an equilateral triangle]
In ∆ABC,
seg AB ≅ seg BC [From (i)]
∴ ∠C = ∠A (ii) [Isosceles triangle theorem]
In ∆ABC,
seg BC ≅ seg AC [From (i)]
∴ ∠A ≅ ∠B (iii) [Isosceles triangle theorem]
∴ ∠A ≅ ∠B ≅ ∠C [From (ii) and (iii)]
∴ ∆ABC is equiangular.
Question 6.
Prove that, if the bisector of ∠BAC of ∆ABC is perpendicular to side BC, then AABC is an isosceles triangle.
Given: Seg AD is the bisector of ∠BAC.
seg AD ⊥ seg BC
To prove: AABC is an isosceles triangle.
Proof.
In ∆ABD and ∆ACD,
∠BAD ≅ ∠CAD [seg AD is the bisector of ∠BAC]
seg AD ≅ seg AD [Common side]
∠ADB ≅ ∠ADC [Each angle is of measure 90°]
∴ ∆ABD ≅ ∆ACD [ASA test]
∴ seg AB ≅ seg AC [c. s. c. t.]
∴ ∆ABC is an isosceles triangle.
Question 7.
In the adjoining figure, if seg PR ≅ seg PQ, show that seg PS > seg PQ.
Solution:
Proof.
In ∆PQR,
seg PR ≅ seg PQ [Given]
∴ ∠PQR ≅ ∠PRQ ….(i) [Isosceles triangle theorem]
∠PRQ is the exterior angle of ∆PRS.
∴ ∠PRQ > ∠PSR ….(ii) [Property of exterior angle]
∴ ∠PQR > ∠PSR [From (i) and (ii)]
i.e. ∠Q > ∠S ….(iii)
In APQS,
∠Q > ∠S [From (iii)]
∴ PS > PQ [Side opposite to greater angle is greater]
∴ seg PS > seg PQ
Question 8.
In the adjoining figure, in AABC, seg AD and seg BE are altitudes and AE = BD. Prove that seg AD = seg BE.
Solution:
Proof:
In ∆ADB and ∆BEA,
seg BD ≅ seg AE [Given]
∠ADB ≅ ∠BEA = 90° [Given]
seg AB ≅ seg BA [Common side]
∴ ∆ADB ≅ ∆BEA [Hypotenuse-side test]
∴ seg AD ≅ seg BE [c. s. c. t.]
Question 1.
As shown in the given figure, draw ∆XYZ such that side XZ > side XY. Find which of ∠Z and ∠Y is greater. (Textbook pg. no. 41)
Answer:
From the given figure, ∠Z = 25° and ∠Y = 51°
∴ ∠Y is greater.
Download PDF
Maharashtra Board Solutions Class 9-Maths (Part 2): Chapter 3.4- Triangles
Download PDF: Maharashtra Board Solutions Class 9-Maths (Part 2): Chapter 3.4- Triangles PDF
Chapterwise Maharashtra Board Solutions Class 9 Maths :
Part 2
- Chapter 1.1- Basic Concepts in Geometry
- Chapter 1.2- Basic Concepts in Geometry
- Chapter 1.3- Basic Concepts in Geometry
- Chapter 2.1- Parallel Lines
- Chapter 2.2- Parallel Lines
- Chapter 3.1- Triangles
- Chapter 3.2- Triangles
- Chapter 3.3- Triangles
- Chapter 3.4- Triangles
- Chapter 3.5- Triangles
- Chapter 4.1- Constructions of Triangles
- Chapter 4.2- Constructions of Triangles
- Chapter 4.3- Constructions of Triangles
- Chapter 5.1- Quadrilaterals
- Chapter 5.2- Quadrilaterals
- Chapter 5.3- Quadrilaterals
- Chapter 5.4- Quadrilaterals
- Chapter 5.5- Quadrilaterals
- Chapter 6.1- Circle
- Chapter 6.2- Circle
- Chapter 6.3- Circle
- Chapter 7.1- Co-ordinate Geometry
- Chapter 7.2- Co-ordinate Geometry
- Chapter 8.1- Trigonometry
- Chapter 8.2- Trigonometry
- Chapter 9.1- Surface Area and Volume
- Chapter 9.2- Surface Area and Volume
- Chapter 9.3- Surface Area and Volume
FAQs
You can download the Maharashtra State Board Books from the eBalbharti official website, i.e. cart.ebalbharati.in or from this article.
Students can get the Maharashtra Books for primary, secondary, and senior secondary classes from here. You can view or download the Maharashtra State Board Books from this page or from the official website for free of cost. Students can follow the detailed steps below to visit the official website and download the e-books for all subjects or a specific subject in different mediums.
Step 1: Visit the official website ebalbharati.in
Step 2: On the top of the screen, select “Download PDF textbooks”
Step 3: From the “Classes” section, select your class.
Step 4: From “Medium”, select the medium suitable to you.
Step 5: All Maharashtra board books for your class will now be displayed on the right side.
Step 6: Click on the “Download” option to download the PDF book.
As of now, the MSCERT and Balbharti are responsible for the syllabus and textbooks of Classes 1 to 8, while Classes 9 and 10 are under the Maharashtra State Board of Secondary and Higher Secondary Education (MSBSHSE).
The Maharashtra State Board of Secondary & Higher Secondary Education, conducts the HSC and SSC Examinations in the state of Maharashtra through its nine Divisional Boards located at Pune, Mumbai, Aurangabad, Nasik, Kolhapur, Amravati, Latur, Nagpur and Ratnagiri.
About Maharashtra State Board (MSBSHSE)
The Maharashtra State Board of Secondary and Higher Secondary Education or MSBSHSE (Marathi: महाराष्ट्र राज्य माध्यमिक आणि उच्च माध्यमिक शिक्षण मंडळ), is an autonomous and statutory body established in 1965. The board was amended in the year 1977 under the provisions of the Maharashtra Act No. 41 of 1965.
The Maharashtra State Board of Secondary & Higher Secondary Education (MSBSHSE), Pune is an independent body of the Maharashtra Government. There are more than 1.4 million students that appear in the examination every year. The Maha State Board conducts the board examination twice a year. This board conducts the examination for SSC and HSC.
The Maharashtra government established the Maharashtra State Bureau of Textbook Production and Curriculum Research, also commonly referred to as Ebalbharati, in 1967 to take up the responsibility of providing quality textbooks to students from all classes studying under the Maharashtra State Board. MSBHSE prepares and updates the curriculum to provide holistic development for students. It is designed to tackle the difficulty in understanding the concepts with simple language with simple illustrations. Every year around 10 lakh students are enrolled in schools that are affiliated with the Maharashtra State Board.