Contents
- 1 Question 1
- 2 Question 2
- 3 Question 3
- 4 Question 4 A
- 5 Question 4 B
- 6 Consider ∆ACB, right angled at C, in which AB = 29 units, BC = 21 units and ∠ABC=θ. Determine the values ofa. cos2 θ+ sin2 θb. cos2 θ – sin2 θSol :(a) Cos2θ +sin2 θFirstly we have to find the value of AC.So, we can find the value of AC with the help of Pythagoras theorem.According to Pythagoras theorem,(Hypotenuse)2 = (Base)2 + (Perpendicular)2⇒ (AC)2 + (BC)2 = (AB)2⇒ (AC)2 + (21)2 = (29)2⇒ (AC)2 = (29)2 – (21)2Using the identity a2 –b2 = (a+b) (a – b)⇒ (AC)2 = (29–21)(29+21)⇒ (AC)2 = (8)(50)⇒ (AC)2 = 400⇒ AC =√400⇒ AC =±20But side AC can’t be negative. So, AC = 20unitsNow, we will find the sin θ and cos θ$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$In ∆ACB, Side opposite to angle θ = AC = 20and Hypotenuse = AB = 29So, $\sin \theta=\frac{A C}{A B}=\frac{20}{29}$Now, We know that$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$In ∆ACB, Side adjacent to angle θ = BC = 21and Hypotenuse = AB = 29So, $\cos \theta=\frac{B C}{A B}=\frac{21}{29}$So$\cos ^{2} \theta+\sin ^{2} \theta=\left(\frac{21}{29}\right)^{2}+\left(\frac{20}{29}\right)^{2}$$=\frac{441+400}{29 \times 29}$$=\frac{841}{841}$=1Cos2θ +sin2 θ = 1(b) Cos2θ – sin2 θPutting values, we get$\cos ^{2} \theta-\sin ^{2} \theta=\left(\frac{21}{29}\right)^{2}-\left(\frac{20}{29}\right)^{2}$$=\frac{441-400}{29 \times 29}$$=\frac{41}{841}$
- 7 Question 4 C
- 8 In ∆ABC, ∠A is a right angle, then find the values of sin B, cos C and tan B in each of the following :a. AB = 12, AC = 5, BC = 13b. AB = 20, AC = 21, BC = 29c. BC = √2, AB = AC = 1Sol :Given that ∠A is a right angle.(a) AB = 12, AC = 5, BC = 13To Find : sin B, cos C and tan BWe know that,$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Here, θ = BSide opposite to angle B = AC = 5Hypotenuse = BC =13So, $\sin \mathrm{B}=\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{5}{13}$Now, Cos CWe know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Here, θ = CSide adjacent to angle C = AC = 5Hypotenuse = BC =13So, $\cos C=\frac{A C}{B C}=\frac{5}{13}$Now, tan BWe know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$Here, θ = BThe side opposite to angle B = AC = 5The side adjacent to angle B = AB = 12So, $\tan \mathrm{B}=\frac{\mathrm{AC}}{\mathrm{AB}}=\frac{5}{12}$(b) AB = 20, AC = 21, BC = 29To Find: sin B, cos C and tan BWe know that,$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Here, θ = BThe side opposite to angle B = AC =21Hypotenuse = BC =29So, $\sin B=\frac{A C}{B C}=\frac{21}{29}$Now, Cos CWe know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Here, θ = CSide adjacent to angle C = AC = 21Hypotenuse = BC = 29So,$\cos C=\frac{A C}{B C}=\frac{21}{29}$Now, tan BWe know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$Here, θ = BThe side opposite to angle B = AC = 21The side adjacent to angle B = AB = 20So, $\tan \mathrm{B}=\frac{\mathrm{AC}}{\mathrm{AB}}=\frac{21}{20}$(c) BC =√2, AB = AC = 1To Find: sin B, cos C and tan BWe know that,$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Here, θ = BThe side opposite to angle B = AC =1Hypotenuse = BC =√2So$\sin \mathrm{B}=\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{1}{\sqrt{2}}$Now, Cos CWe know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Here, θ = CSide adjacent to angle C = AC = 1Hypotenuse = BC = √2So, $\cos C=\frac{A C}{B C}=\frac{1}{\sqrt{2}}$Now, tan BWe know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$Here, θ = BThe side opposite to angle B = AC = 1The side adjacent to angle B = AB = 1So,$\tan B=\frac{A C}{A B}=\frac{1}{1}=1$
- 9 Question 5 A
- 10 Find the value of the following : (a) sin θ (b) cos θ (c) tan θ from the figures given below :Sol :Firstly, we give the name to the midpoint of BC i.e. MBC = BM + MC = 2BM or 2MC⇒ BM = 5 and MC = 5Now, we have to find the value of AM, and we can find out with the help of Pythagoras theorem.So, In ∆AMB⇒ (AM)2 + (BM)2 = (AB)2⇒ (AM)2 + (5)2 = (13)2⇒ (AM)2 = (13)2 – (5)2Using the identity a2 –b2 = (a+b) (a – b)⇒ (AM)2 = (13–5)(13+5)⇒ (AM)2 = (8)(18)⇒ (AM)2 = 144⇒ AM =√144⇒ AM =±12But side AM can’t be negative. So, AM = 12a. sin θWe know that,$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$In ∆AMBSide opposite to θ = AM = 12Hypotenuse = AB=13So, $\sin \theta=\frac{A M}{A B}=\frac{12}{13}$So, $\sin \theta=\frac{12}{13}$b. cos θWe know that, $\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$In ∆AMBThe side adjacent to θ = BM = 5Hypotenuse = AB = 13So, $\cos \theta=\frac{B M}{A B}=\frac{5}{13}$So, $\cos \theta=\frac{5}{13}$c. tan θWe know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$In ∆AMBSide opposite to θ = AM = 12The side adjacent to θ = BM = 5So, $\tan \theta=\frac{\mathrm{AM}}{\mathrm{BM}}=\frac{12}{5}$So, $\tan \theta=\frac{12}{5}$
- 11 Question 5 B
- 12 Find the value of the following : (a) sin θ (b) cos θ (c) tan θ from the figures given below :Sol :Firstly, we have to find the value of XM and we can find out with the help of Pythagoras theoremSo, In ∆XMZ⇒ (XM)2 + (MZ)2 = (XZ)2⇒ (XM)2 + (16)2 = (20)2⇒ (XM)2 = (20)2 – (16)2Using the identity a2 –b2 = (a+b) (a – b)⇒ (XM)2 = (20–16)(20+16)⇒ (XM)2 = (4)(36)⇒ (XM)2 = 144⇒ XM =√144⇒ XM =±12But side XM can’t be negative. So, XM = 12Now, In ∆XMY we have the value of XM and MY but we don’t have the value of XY.So, again we apply the Pythagoras theorem in ∆XMY⇒ (XM)2 + (MY)2 = (XY)2⇒ (12)2 + (5)2 = (XY)2⇒ 144 + 25 = (XY)2⇒ (XY)2 = 169⇒ XY =√169⇒ XY =±13But side XY can’t be negative. So, XY = 13a. sin θWe know that,$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$In ∆XMYSide opposite to θ = MY = 5Hypotenuse = XY = 13So, $\sin \theta=\frac{\mathrm{MY}}{\mathrm{XY}}=\frac{5}{13}$b. cos θWe know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$In ∆XMYSide adjacent to θ = XM = 12Hypotenuse = XY = 13So,$\cos \theta=\frac{\mathrm{XM}}{\mathrm{XY}}=\frac{12}{13}$c. tan θWe know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$In ∆XMYThe side opposite to θ = MY = 5Side adjacent to θ = XM = 12So, $\tan \theta=\frac{\mathrm{MY}}{\mathrm{XM}}=\frac{5}{12}$
- 13 Question 6
- 14 In ∆PQR, ∠Q is a right angle PQ = 3, QR = 4. If ∠P=α and ∠R=β, then find the values of(i) sin α (ii) cos α(iii) tan α (iv) sin β(v) cos β (vi) tan βSol :Given : PQ = 3, QR = 4⇒ (PQ)2 + (QR)2 = (PR)2⇒ (3)2 + (4)2 = (PR)2⇒ 9 + 16 = (PR)2⇒ (PR)2 = 25⇒ PR =√25⇒ PR =±5But side PR can’t be negative. So, PR = 5(i) sin αWe know that,$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Here, θ = αThe side opposite to angle α = QR =4Hypotenuse = PR =5So, $\sin \alpha=\frac{4}{5}$(ii) cos αWe know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Here, θ = αThe side adjacent to angle α = PQ =3Hypotenuse = PR =5So, $\cos \alpha=\frac{3}{5}$(iii) tan αWe know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$Here, θ = αSide opposite to angle α = QR =4Side adjacent to angle α = PQ =3So,$\tan \alpha=\frac{4}{3}$(iv) sin βWe know that,$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Here, θ = βThe side opposite to angle β = PQ =3Hypotenuse = PR =5So, $\sin \beta=\frac{3}{5}$(v) cos βWe know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Here, θ = βSide adjacent to angle β = QR =4Hypotenuse = PR =5So, $\cos \beta=\frac{4}{5}$(vi) tan βWe know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$Here, θ = βSide opposite to angle β = PQ =3Side adjacent to angle β = QR =4So, $\tan \beta=\frac{3}{4}$
- 15 Question 7 A
- 16 If $\sin \theta=\frac{4}{5}$ ,then find the values of cos θ and tan θ.Sol :Given: $\sin \theta=\frac{4}{5}$We know that,$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$$\sin \theta=\frac{4}{5} \Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{4}{5} \Rightarrow \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{4}{5}$Let,Perpendicular =AB =4kand Hypotenuse =AC =5kwhere, k is any positive integerSo, by Pythagoras theorem, we can find the third side of a triangleIn right angled ∆ ABC, we have⇒ (AB)2 + (BC)2 = (AC)2⇒ (4k)2 + (BC)2 = (5k)2⇒ 16k2 + (BC)2 = 25k2⇒ (BC)2 = 25 k2 –16 k2⇒ (BC)2 = 9 k2⇒ BC =√9 k2⇒ BC =±3kBut side BC can’t be negative. So, BC = 3kNow, we have to find the value of cos θ and tan θWe know that,$\cos \theta=\frac{\text { base }}{\text { hypotenuse }}$The side adjacent to angle θ or base = BC =3kHypotenuse = AC =5kSo, $\cos \theta=\frac{3 \mathrm{k}}{5 \mathrm{k}}=\frac{3}{5}$Now,We know that,$\tan \theta=\frac{\text { perpendicular }}{\text { base }}$Perpendicular = AB =4kBase = BC =3kSo, $\tan \theta=\frac{4 k}{3 k}=\frac{4}{3}$
- 17 Question 7 B
- 18 If $\sin \mathrm{A}=\frac{3}{4}$ ,calculate cos A and tan A.Sol :Given: Sin A $=\frac{3}{4}$We know that,$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$$\sin \theta=\frac{3}{4} \Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{3}{4} \Rightarrow \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{3}{4}$Let,Side opposite to angle θ = BC =3kand Hypotenuse = AC =4kwhere, k is any positive integerSo, by Pythagoras theorem, we can find the third side of a triangle⇒ (AB)2 + (BC)2 = (AC)2⇒ (AB)2 + (3k)2 = (4k)2⇒ (AB)2 + 9k2 = 16k2⇒ (AB)2 = 16 k2 – 9 k2⇒ (AB)2 = 7 k2⇒ AB =k√7So, AB = k√7Now, we have to find the value of cos A and tan AWe know that,$\cos \theta=\frac{\text { Side adjacent to angle } \theta}{\text { hypotenuse }}$Here, θ = AThe side adjacent to angle A = AB =k√7Hypotenuse = AC =4kSo,$\cos A=\frac{k \sqrt{7}}{4 k}=\frac{\sqrt{7}}{4}$Now,We know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$The side opposite to angle A = BC =3kThe side adjacent to angle A = AB =k√7So,$\tan \mathrm{A}=\frac{3 \mathrm{k}}{\mathrm{k} \sqrt{7}}=\frac{3}{\sqrt{7}}$
- 19 Question 8
- 20 If $\sin \theta=\frac{3}{5}$ , then find the values cos θ and tan θ.Sol :Given:$\sin \theta=\frac{3}{5}$We know that,$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$$\sin \theta=\frac{3}{5} \Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{3}{5} \Rightarrow \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{3}{5}$Let,Perpendicular =AB =3kand Hypotenuse =AC =5kwhere, k is any positive integerSo, by Pythagoras theorem, we can find the third side of a triangle⇒ (AB)2 + (BC)2 = (AC)2⇒ (3k)2 + (BC)2 = (5k)2⇒ 9k2 + (BC)2 = 25k2⇒ (BC)2 = 25 k2 – 9 k2⇒ (BC)2 = 16 k2⇒ BC =√16 k2⇒ BC =±4kBut side BC can’t be negative. So, BC = 4kNow, we have to find the value of cos θ and tan θWe know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$The side adjacent to angle θ = BC =4kHypotenuse = AC =5kSo, $\cos \theta=\frac{4 \mathrm{k}}{5 \mathrm{k}}=\frac{4}{5}$Now, tan θWe know that,$\tan \theta=\frac{\text { perpendicular }}{\text { base }}$Perpendicular = AB =3kBase = BC =4kSo, $\tan \theta=\frac{3 \mathrm{k}}{4 \mathrm{k}}=\frac{3}{4}$
- 21 Question 9
- 22 If $\cos \theta=\frac{4}{5}$ , then find the value of tan θ.Sol :We know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Or $\cos \theta=\frac{\text { base }}{\text { Hypotenuse }}$$\cos \theta=\frac{4}{5} \Rightarrow \frac{B}{H}=\frac{4}{5} \Rightarrow \frac{B C}{A C}=\frac{4}{5}$Let,Base =BC = 4kHypotenuse =AC = 5kWhere, k ia any positive integerSo, by Pythagoras theorem, we can find the third side of a triangle⇒ (AB)2 + (BC)2 = (AC)2⇒ (AB)2 + (4k)2 = (5k)2⇒ (AB)2 + 16k2 = 25k2⇒ (AB)2 = 25 k2 –16 k2⇒ (AB)2 = 9 k2⇒ AB =√9 k2⇒ AB =±3kBut side AB can’t be negative. So, AB = 3kNow, we have to find tan θWe know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$Side opposite to angle θ = BC =4kSide adjacent to angle θ = AB =3kSo,$\tan \theta=\frac{4 k}{3 k}=\frac{4}{3}$
- 23 Question 10 A
- 24 If $\tan \theta=\frac{3}{4}$ then find the values of cos θ and sin θ.Sol :We know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$$\tan \theta=\frac{3}{4}$$\Rightarrow \frac{P}{B}=\frac{3}{4}$$\Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{3}{4}$Let,The side opposite to angle θ =AB = 3kThe side adjacent to angle θ =BC = 4kwhere k is any positive integerFirstly we have to find the value of AC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (BC)2 = (AC)2⇒ (3k)2 + (4k)2 = (AC)2⇒ (AC)2 = 9 k2+16 k2⇒ (AC)2 = 25 k2⇒ AC =√25 k2⇒ AC =±5kBut side AC can’t be negative. So, AC = 5kNow, we will find the sin θ and cos θ$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side opposite to angle θ = AB = 3kand Hypotenuse = AC = 5kSo, $\sin \theta=\frac{A B}{A C}=\frac{3 k}{5 k}=\frac{3}{5}$Now, We know that$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Side adjacent to angle θ = BC = 4kand Hypotenuse = AC = 5kSo,$\cos \theta=\frac{B C}{A C}=\frac{4 k}{5 k}=\frac{4}{5}$
- 25 Question 10 B
- 26 If tan A= 4/3. Find the other trigonometric ratios of the angle A.Sol :
- 27
- 28 We know that,
- 29 $\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$Here, θ = A$\tan \mathrm{A}=\frac{4}{3}$$\Rightarrow \frac{P}{B}=\frac{4}{3}$$\Rightarrow \frac{\mathrm{BC}}{\mathrm{AB}}=\frac{4}{3}$Let,The side opposite to angle A =BC = 4kThe side adjacent to angle A =AB = 3kwhere k is any positive integerFirstly we have to find the value of AC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (BC)2 = (AC)2⇒ (3k)2 + (4k)2 = (AC)2⇒ (AC)2 = 9 k2 +16 k2⇒ (AC)2 = 25 k2⇒ AC =√25 k2⇒ AC =±5kBut side AC can’t be negative. So, AC = 5kNow, we will find the sin A and cos A$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side opposite to angle A = BC = 4kand Hypotenuse = AC = 5kSo, $\sin A=\frac{B C}{A C}=\frac{4 k}{5 k}=\frac{4}{5}$Now, We know that$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Side adjacent to angle A = AB = 3kand Hypotenuse = AC = 5kSo, $\cos A=\frac{A B}{A C}=\frac{3 k}{5 k}=\frac{3}{5}$Now, we find other trigonometric ratios$\operatorname{cosec} \mathrm{A}=\frac{1}{\sin \mathrm{A}}$$=\frac{1}{\frac{4}{5}}$$=\frac{5}{4}$$\sec \mathrm{A}=\frac{1}{\cos \mathrm{A}}$$=\frac{1}{\frac{3}{5}}$$=\frac{5}{3}$$\cot A=\frac{1}{\tan A}$$=\frac{1}{\frac{4}{3}}$$=\frac{3}{4}$
- 30 Question 11
- 31 If cot $\theta=\frac{12}{5}$, then find the value of sin θ.Sol :We know that,$\cot \theta=\frac{\text { side adjacent to angle } \theta}{\text { side opposite to angle } \theta}$Or $\cot \theta=\frac{\text { base }}{\text { perpendicular }}$$\cot \theta=\frac{12}{5} \Rightarrow \frac{\mathrm{B}}{\mathrm{P}}=\frac{12}{5} \Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{12}{5}$Let,Side adjacent to angle θ =AB = 12kThe side opposite to angle θ =BC = 5kwhere k is any positive integerFirstly we have to find the value of AC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (BC)2 = (AC)2⇒ (12k)2 + (5k)2 = (AC)2⇒ (AC)2 = 144 k2 +25 k2⇒ (AC)2 = 169 k2⇒ AC =√169 k2⇒ AC =±13kBut side AC can’t be negative. So, AC = 13kNow, we will find the sin θ$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side opposite to angle θ = BC = 5kand Hypotenuse = AC = 13kSo, $\sin \theta=\frac{B C}{A C}=\frac{5 k}{13 k}=\frac{5}{13}$
- 32 Question 12
- 33 If tan $\theta=\frac{5}{12}$, then find the value of cos θ.Sol :We know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$$\tan \theta=\frac{5}{12} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{5}{12} \Rightarrow \frac{\mathrm{BC}}{\mathrm{AB}}=\frac{5}{12}$Let,The side opposite to angle θ =BC = 5kThe side adjacent to angle θ =AB = 12kwhere k is any positive integerFirstly we have to find the value of AC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (BC)2 = (AC)2⇒ (12k)2 + (5k)2 = (AC)2⇒ (AC)2 = 144 k2 +25 k2⇒ (AC)2 = 169 k2⇒ AC =√169 k2⇒ AC =±13kBut side AC can’t be negative. So, AC = 13kNow, We know that$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Side adjacent to angle θ = AB = 12kand Hypotenuse = AC = 13kSo, $\cos \theta=\frac{A B}{A C}=\frac{12 k}{13 k}=\frac{12}{13}$
- 34 Question 13
- 35 If sin $\theta=\frac{12}{13}$, then find the value of cos θ and tan θ.Sol :Given: $\sin \theta=\frac{12}{13}$We know that,$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$$\sin \theta=\frac{12}{13} \Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{12}{13} \Rightarrow \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{12}{13}$Let,Side opposite to angle θ = 12kand Hypotenuse = 13kwhere, k is any positive integerSo, by Pythagoras theorem, we can find the third side of a triangle⇒ (AB)2 + (BC)2 = (AC)2⇒ (12k)2 + (BCk)2 = (13)2⇒ 144 k2 + (BC)2 = 169 k2⇒ (BC)2 = 169 k2 –144 k2⇒ (BC)2 = 25 k2⇒ BC =√25 k2⇒ BC =±5kBut side BC can’t be negative. So, BC = 5kNow, we have to find the value of cos θ and tan θWe know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Side adjacent to angle θ = BC =5kHypotenuse = AC =13kSo, $\cos \theta=\frac{5 \mathrm{k}}{13 \mathrm{k}}=\frac{5}{13}$Now, tan θWe know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$side opposite to angle θ = AB =12kSide adjacent to angle θ = BC =5kSo, $\tan \theta=\frac{12 \mathrm{k}}{5 \mathrm{k}}=\frac{12}{5}$
- 36 Question 14
- 37 If tan θ =0.75, then find the value of sin θ.Sol :We know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$Given: tan θ =0.75$\Rightarrow \tan \theta=\frac{75}{100}=\frac{3}{4}$$\tan \theta=\frac{3}{4} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{3}{4} \Rightarrow \frac{\mathrm{BC}}{\mathrm{AB}}=\frac{3}{4}$Let,The side opposite to angle θ =BC = 3kThe side adjacent to angle θ =AB = 4kFirstly we have to find the value of AC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (BC)2 = (AC)2⇒ (4k)2 + (3k)2 = (AC)2⇒ (AC)2 = 16 k2 +9 k2⇒ (AC)2 = 25 k2⇒ AC =√25 k2⇒ AC =±5kBut side AC can’t be negative. So, AC = 5kNow, we will find the sin θ$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side opposite to angle θ = BC = 3kand Hypotenuse = AC = 5kSo, $\sin \theta=\frac{B C}{A C}=\frac{3 k}{5 k}=\frac{3}{5}$
- 38 Question 15
- 39 If tan B= √3, then find the values of sin B and cos B.Sol :We know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$Given: tan B = √3$\Rightarrow \tan \mathrm{B}=\frac{\sqrt{3}}{1}$$\tan \mathrm{B}=\frac{\sqrt{3}}{1} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{\sqrt{3}}{1} \Rightarrow \frac{\mathrm{AC}}{\mathrm{AB}}=\frac{\sqrt{3}}{1}$Let,Side opposite to angle B =AC = √3kThe side adjacent to angle B =AB = 1kwhere k is any positive integerFirstly we have to find the value of BC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (AC)2 = (BC)2⇒ (1k)2 + (√3k)2 = (BC)2⇒ (BC)2 = 1 k2 +3 k2⇒ (BC)2 = 4 k2⇒ BC =√2 k2⇒ BC =±2kBut side BC can’t be negative. So, BC = 2kNow, we will find the sin B and cos B$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side opposite to angle B = AC = k√3and Hypotenuse = BC = 2kSo, $\sin \mathrm{B}=\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{k} \sqrt{3}}{2 \mathrm{k}}=\frac{\sqrt{3}}{2}$Now, we know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$The side adjacent to angle B = AB =1kHypotenuse = BC =2kSo, $\cos \mathrm{B}=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{1 \mathrm{k}}{2 \mathrm{k}}=\frac{1}{2}$
- 40 Question 16
- 41 If $\tan \theta=\frac{\mathrm{m}}{\mathrm{n}}$, then find the values of cos θ and sin θ.Sol :We know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$Here, $\tan \theta=\frac{\mathrm{m}}{\mathrm{n}}$So, Side opposite to angle θ =AC = mThe side adjacent to angle θ =AB = nFirstly we have to find the value of BC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (AC)2 = (BC)2⇒ (n)2 + (m)2 = (BC)2⇒ (BC)2 = m2 + n2⇒ BC =√ m2 + n2So, BC =√(m2 + n2)Now, we will find the sin B and cos B$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side opposite to angle θ = AC = mand Hypotenuse = BC =√(m2 + n2)So, $\sin \theta=\frac{A C}{B C}=\frac{m}{\sqrt{m^{2}+n^{2}}}$Now, we know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Side adjacent to angle θ = AB =nHypotenuse = BC =√(m2 + n2)So, $\cos \theta=\frac{A B}{B C}=\frac{n}{\sqrt{m^{2}+n^{2}}}$
- 42 Question 17
- 43 If sin θ = √3 cos θ, then find the values of cos θ and sin θ.Sol :Given : sin θ =√3cos θ$\Rightarrow \frac{\sin \theta}{\cos \theta}=\sqrt{3}$⇒ tan θ =√3We know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$and tan θ = √3$\Rightarrow \tan \theta=\frac{\sqrt{3}}{1}$$\tan \theta=\frac{\sqrt{3}}{1} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{\sqrt{3}}{1} \Rightarrow \frac{\mathrm{AC}}{\mathrm{AB}}=\frac{\sqrt{3}}{1}$Let,The side opposite to angle θ =AC = k√3The side adjacent to angle θ =AB = 1kwhere k is any positive integerFirstly we have to find the value of BC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (AC)2 = (BC)2⇒ (1k)2 + (k√3)2 = (BC)2⇒ (BC)2 = 1 k2 +3 k2⇒ (BC)2 = 4 k2⇒ BC =√2 k2⇒ BC =±2kBut side BC can’t be negative. So, BC = 2kNow, we will find the sin θ and cos θ$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side opposite to angle θ = AC = k√3and Hypotenuse = BC = 2kSo,$\sin \theta=\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{k} \sqrt{3}}{2 \mathrm{k}}=\frac{\sqrt{3}}{2}$Now, we know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$The side adjacent to angle θ = AB =1kHypotenuse = BC =2kSo, $\cos \theta=\frac{A B}{B C}=\frac{1 k}{2 k}=\frac{1}{2}$
- 44 Question 18 A
- 45 If $\cot \theta=\frac{21}{20}$, then find the values of cos θ and sin θ.Sol :We know that,$\cot \theta=\frac{\text { side adjacent to angle } \theta}{\text { side opposite to angle } \theta}$Or $\cot \theta=\frac{\text { base }}{\text { perpendicular }}$$\cot \theta=\frac{21}{20} \Rightarrow \frac{\mathrm{B}}{\mathrm{P}}=\frac{21}{20} \Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{21}{20}$Let,Side adjacent to angle θ =AB = 21kThe side opposite to angle θ =BC = 20kwhere k is any positive integerFirstly we have to find the value of AC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (BC)2 = (AC)2⇒ (21k)2 + (20k)2 = (AC)2⇒ (AC)2 = 441 k2 +400 k2⇒ (AC)2 = 841 k2⇒ AC =√841 k2⇒ AC =±29kBut side AC can’t be negative. So, AC = 29kNow, we will find the sin θ$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side opposite to angle θ = BC = 20kand Hypotenuse = AC = 29kSo, $\sin \theta=\frac{B C}{A C}=\frac{20 k}{29 k}=\frac{20}{29}$Now, we know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Side adjacent to angle θ = AB =21kHypotenuse = AC =29kSo, $\cos \theta=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{21 \mathrm{k}}{29 \mathrm{k}}=\frac{21}{29}$
- 46 Question 18 B
- 47 If 15 cot A=18, find sin A and sec A.Sol :Given: 15 cot A = 8$\Rightarrow \cot A=\frac{8}{15}$And we know that,$\cot \theta=\frac{\text { side adjacent to angle } \theta}{\text { side opposite to angle } \theta}$Or $\cot \theta=\frac{\text { base }}{\text { perpendicular }}$$\cot \mathrm{A}=\frac{8}{15} \Rightarrow \frac{\mathrm{B}}{\mathrm{P}}=\frac{8}{15} \Rightarrow \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{8}{15}$Let,Side adjacent to angle A =AB = 8kThe side opposite to angle A =BC = 15kwhere k is any positive integerFirstly we have to find the value of AC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (BC)2 = (AC)2⇒ (8k)2 + (15k)2 = (AC)2⇒ (AC)2 = 64 k2 +225 k2⇒ (AC)2 = 289 k2⇒ AC =√289 k2⇒ AC =±17kBut side AC can’t be negative. So, AC = 17kNow, we will find the sin θ$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side opposite to angle θ = BC = 15kand Hypotenuse = AC = 17kSo, $\sin \theta=\frac{B C}{A C}=\frac{15 k}{17 k}=\frac{15}{17}$Now, we know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$The side adjacent to angle θ = AB =8Hypotenuse = AC =17So, $\cos \theta=\frac{A B}{A C}=\frac{8 k}{17 k}=\frac{8}{17}$$\therefore \sec \theta=\frac{1}{\cos \theta}$$=\frac{1}{\frac{8}{17}}$$=\frac{17}{8}$
- 48 Question 19
- 49 If sin θ = cos θ and 0° < θ <90°, then find the values of sin θ and cos θ.Sol :Given: sinθ = cosθ$\Rightarrow \frac{\sin \theta}{\cos \theta}=1$⇒ tan θ = 1$\tan \theta=\frac{1}{1} \Rightarrow \frac{P}{B}=\frac{1}{1} \Rightarrow \frac{A B}{B C}=\frac{1}{1}$Let,Side opposite to angle θ = AB =1kThe side adjacent to angle θ = BC =1kwhere k is any positive integerFirstly we have to find the value of AC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (BC)2 = (AC)2⇒ (1k)2 + (1k)2 = (AC)2⇒ (AC)2 = 1k2 +1k2⇒ (AC)2 = 2k2⇒ AC =√2k2⇒ AC =k√2So, AC = k√2Now, we will find the sin θ$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side opposite to angle θ = AB= 1kand Hypotenuse = AC = k√2So, $\sin \theta=\frac{A B}{A C}=\frac{1 k}{k \sqrt{2}}=\frac{1}{\sqrt{2}}$Now, we know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$The side adjacent to angle θ = BC =1kHypotenuse = AC =k√2So, $\cos \theta=\frac{B C}{A C}=\frac{1 k}{k \sqrt{2}}=\frac{1}{\sqrt{2}}$
- 50 Question 20
- 51 If $\sin \theta=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$, then find the values of cos θ and $\frac{1}{\tan \theta}$.Sol :$\sin \theta=\frac{x^{2}-y^{2}}{x^{2}+v^{2}}$We know that,$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Or, $\sin \theta=\frac{\text { Perpendicular }}{\text { hypotenuse }}$$\sin \theta=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ $\Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{\mathrm{x}^{2}-\mathrm{y}^{2}}{\mathrm{x}^{2}+\mathrm{y}^{2}}$ $ \Rightarrow \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{x}^{2}-\mathrm{y}^{2}}{\mathrm{x}^{2}+\mathrm{y}^{2}}$Let,Side opposite to angle θ = AB = x2 – y2and Hypotenuse = AC = x2 + y2In right angled ∆ABC, we have(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]⇒ (x2 – y2 )2 + (BC)2 = (x2 + y2 )2⇒ (BC)2 = (x2 + y2 )2 – (x2 – y2 )2Using the identity, a2 – b2 = (a+b)(a – b)⇒ (BC)2 = [(x2 + y2 + x2 – y2 )][ x2 + y2 –( x2 – y2)]⇒ (BC)2 = (2x2)(2y2)⇒ (BC)2 = (4x2y2)⇒ BC =√4x2y2⇒ BC = ±2xy⇒ BC = 2xy [taking positive square root since, side cannot be negative]$\therefore \cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}=\frac{\text { BC }}{\text { AC }}=\frac{2 x y}{x^{2}+y^{2}}$and $\tan \theta=\frac{\text { Perpendicular }}{\text { Base }}=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{x}^{2}-\mathrm{y}^{2}}{2 \mathrm{xy}}$So, $\frac{1}{\tan \theta}=\frac{1}{\frac{x^{2}-y^{2}}{2 x y}}=\frac{2 x y}{x^{2}-y^{2}}$
- 52 Question 21
- 53 Iftan $\theta=\frac{\sqrt{\mathrm{m}^{2}-\mathrm{n}^{2}}}{\mathrm{n}}$, then find the values of sin θ and cos θ.Sol :Given: $\tan \theta=\frac{\sqrt{\mathrm{m}^{2}-\mathrm{n}^{2}}}{\mathrm{n}}$We know that,$\tan \theta=\frac{\sqrt{\mathrm{m}^{2}-\mathrm{n}^{2}}}{\mathrm{n}} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{\sqrt{\mathrm{m}^{2}-\mathrm{n}^{2}}}{\mathrm{n}} \Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\sqrt{\mathrm{m}^{2}-\mathrm{n}^{2}}}{\mathrm{n}}$Let,AB = √(m2 – n2) and BC = nIn right angled ∆ABC, we have(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]⇒ (√(m2 – n2))2 + (n)2 = (AC )2⇒ m2 – n2 + n2 = (AC )2⇒ (AC)2 = (m2)⇒ AC =√ m2⇒ AC = ±m⇒ AC = m [taking positive square root since, side cannot be negative]Now, we have to find the value of cos θ and sin θWe, know that$\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}$$=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\mathrm{n}}{\mathrm{m}}$and$\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$$=\frac{A B}{A C}=\frac{\sqrt{m^{2}-n^{2}}}{m}$
- 54 Question 22 A
- 55 If sec θ = 2, then find the values of other t–ratios of angle θ.Sol :Given: sec θ = 2We know that,$\sec \theta=\frac{\text { hypotenuse }}{\text { base }}$$\operatorname{Sec} \theta=\frac{2}{1} \Rightarrow \frac{\mathrm{H}}{\mathrm{B}}=\frac{2}{1} \Rightarrow \frac{\mathrm{AC}}{\mathrm{BC}}=\frac{2}{1}$Let,BC = 1k and AC = 2kwhere, k is any positive integer.In right angled ∆ABC, we have(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]⇒ (AB)2 + (1k)2 = (2k )2⇒ (AB)2 + k2 = 4k2⇒ (AB)2 = 4k2 – k2⇒ (AB)2 = 3k2⇒ AB = k√3Now, we have to find the value of other trigonometric ratios.We, know that$\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$$=\frac{A B}{A C}=\frac{k \sqrt{3}}{2 k}=\frac{\sqrt{3}}{2}$$\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}$$=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{1 \mathrm{k}}{2 \mathrm{k}}=\frac{1}{2}$$\tan \theta=\frac{\text { Perpendicular }}{\text { Base }}$$=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{k} \sqrt{3}}{1 \mathrm{k}}=\frac{\sqrt{3}}{1}=\sqrt{3}$$\operatorname{cosec} \theta=\frac{1}{\sin \theta}=\frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}}$$\cot \theta=\frac{1}{\tan \theta}=\frac{1}{\sqrt{3}}$
- 56 Question 22 B
- 57 Given $\sec \theta=\frac{13}{12}$ calculate all other trigonometric ratios.Sol :
- 58
- 59 Given: $\sec \theta=\frac{13}{12}$
- 60 We know that,$\sec \theta=\frac{\text { hypotenuse }}{\text { base }}$$\sec \theta=\frac{13}{12} \Rightarrow \frac{\mathrm{H}}{\mathrm{B}}=\frac{13}{12} \Rightarrow \frac{\mathrm{AC}}{\mathrm{BC}}=\frac{13}{12}$Let,BC = 12k and AC = 13kwhere, k is any positive integer.In right angled ∆ABC, we have(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]⇒ (AB)2 + (12k)2 = (13k )2⇒ (AB)2 + 144k2 = 169k2⇒ (AB)2 = 169k2 – 144k2⇒ (AB)2 = 25k2⇒ AB = √25k2⇒ AB =±5k [taking positive square root since, side cannot be negative]Now, we have to find the value of other trigonometric ratios.We, know that$\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$$=\frac{A B}{A C}=\frac{5 k}{13 k}=\frac{5}{13}$$\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}$$=\frac{B C}{A C}=\frac{12 k}{13 k}=\frac{12}{13}$$\tan \theta=\frac{\text { Perpendicular }}{\text { Base }}$$=\frac{A B}{B C}=\frac{5 k}{12 k}=\frac{5}{12}$$\operatorname{cosec} \theta=\frac{1}{\sin \theta}=\frac{1}{\frac{5}{13}}=\frac{13}{5}$$\cot \theta=\frac{1}{\tan \theta}=\frac{1}{\frac{5}{12}}=\frac{12}{5}$
- 61 Question 23
- 62 If $\operatorname{cosec} \theta=\sqrt{10}$, then find the values of other t–ratios of angle θ.Sol :We know that,$\operatorname{cosec} \theta=\frac{\text { hypotenuse }}{\text { perpendicular }}$$\operatorname{cosec} \theta=\frac{\sqrt{10}}{1} \Rightarrow \frac{\mathrm{H}}{\mathrm{P}}=\frac{\sqrt{10}}{1} \Rightarrow \frac{\mathrm{AC}}{\mathrm{AB}}=\frac{\sqrt{10}}{1}$Let,AB = 1k and AC = k√10where, k is any positive integer.In right angled ∆ABC, we have(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]⇒ (1k )2+ (BC)2 = (k√10)2⇒ (BC)2 = 10k2 – k2⇒ (BC)2 = 9k2⇒ BC = √9k2⇒ BC =±3k [taking positive square root since, side cannot be negative]Now, we have to find the value of other trigonometric ratios.We, know that$\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$$=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{1 \mathrm{k}}{\mathrm{k} \sqrt{10}}=\frac{1}{\sqrt{10}}$$\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}$$=\frac{B C}{A C}=\frac{3 k}{k \sqrt{10}}=\frac{3}{\sqrt{10}}$$\tan \theta=\frac{\text { Perpendicular }}{\text { Base }}$$=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{1 \mathrm{k}}{3 \mathrm{k}}=\frac{1}{3}$$\sec \theta=\frac{1}{\cos \theta}=\frac{1}{\frac{3}{\sqrt{10}}}=\frac{\sqrt{10}}{3}$$\cot \theta=\frac{1}{\tan \theta}=\frac{1}{\frac{1}{3}}=3$
- 63 Question 24 A
- 64 If $\tan \mathrm{A}=\frac{\sqrt{3}}{2}$ then find the values of sin A + cos A.Sol :We know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$Given: $\tan \mathrm{A}=\frac{\sqrt{3}}{2}$$\Rightarrow \tan \mathrm{A}=\frac{\sqrt{3}}{2}$$\tan \mathrm{A}=\frac{\sqrt{3}}{2} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{\sqrt{3}}{2} \Rightarrow \frac{\mathrm{BC}}{\mathrm{AB}}=\frac{\sqrt{3}}{2}$Let,Side opposite to angle A =BC = k√3Side adjacent to angle A =AB = 2kwhere, k is any positive integerFirstly we have to find the value of BC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (BC)2 = (AC)2⇒ (2k)2 + (√3k)2 = (AC)2⇒ (AC)2 = 4 k2 +3 k2⇒ (AC)2 = 7 k2⇒ AC =√7 k2⇒ AC =k√7So, AC = k√7Now, we will find the sin A and cos A$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side opposite to angle A = BC = k√3and Hypotenuse = AC = k√7So, $\sin \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\mathrm{k} \sqrt{3}}{\mathrm{k} \sqrt{7}}=\frac{\sqrt{3}}{\sqrt{7}}$Now, we know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Side adjacent to angle A = AB =2kHypotenuse = AC = k√7So, $\cos \mathrm{A}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{2 \mathrm{k}}{\mathrm{k} \sqrt{7}}=\frac{2}{\sqrt{7}}$Now, we have to find sin A +cos APutting values of sin A and cos A, we get$\sin \mathrm{A}+\cos \mathrm{A}=\frac{\sqrt{3}}{\sqrt{7}}+\frac{2}{\sqrt{7}}=\frac{\sqrt{3}+2}{\sqrt{7}}$
- 65 Question 24 B
- 66 If $\sin \theta=\sqrt{3} \cos \theta$ find the value of cos θ – sin θ.Sol :Given: sin θ =√3cos θ$\Rightarrow \frac{\sin \theta}{\cos \theta}=\sqrt{3}$⇒ tan θ = √3We know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$Given: tan θ = √3$\Rightarrow \tan \theta=\frac{\sqrt{3}}{1}$$\tan \theta=\frac{\sqrt{3}}{1} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{\sqrt{3}}{1} \Rightarrow \frac{\mathrm{AC}}{\mathrm{AB}}=\frac{\sqrt{3}}{1}$Let,Side opposite to angle θ =AC = √3kSide adjacent to angle θ =AB = 1kwhere k is any positive integerFirstly we have to find the value of BC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (AC)2 = (BC)2⇒ (1k)2 + (√3k)2 = (BC)2⇒ (BC)2 = 1 k2 +3 k2⇒ (BC)2 = 4 k2⇒ BC =√2 k2⇒ BC =±2kBut side BC can’t be negative. So, BC = 2kNow, we will find the sin B and cos B$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side opposite to angle θ = AC = k√3and Hypotenuse = BC = 2kSo, $\sin \theta=\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{k} \sqrt{3}}{2 \mathrm{k}}=\frac{\sqrt{3}}{2}$Now, we know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$The side adjacent to angle θ = AB =1kHypotenuse = BC =2kSo, $\cos \theta=\frac{A B}{B C}=\frac{1 k}{2 k}=\frac{1}{2}$Now, we have to find the value of cos θ – sin θPutting the values of sin θ and cos θ, we get$\cos \theta-\sin \theta=\frac{1}{2}-\frac{\sqrt{3}}{2}=\frac{1-\sqrt{3}}{2}$
- 67 Question 24 C
- 68 If $\tan \theta=\frac{8}{15}$, find the value of 1+ cos2 θ.Sol :We know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$$\tan \theta=\frac{8}{15} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{8}{15} \Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{8}{15}$Let,Side opposite to angle θ =AB = 8kSide adjacent to angle θ =BC = 15kwhere, k is any positive integerFirstly we have to find the value of AC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (BC)2 = (AC)2⇒ (8k)2 + (15k)2 = (AC)2⇒ (AC)2 = 64k2+225k2⇒ (AC)2 = 289 k2⇒ AC =√289 k2⇒ AC =±17kBut side AC can’t be negative. So, AC = 17kNow, we will find the cos θWe know that$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Side adjacent to angle θ = BC = 15kand Hypotenuse = AC = 17kSo, $\cos \theta=\frac{B C}{A C}=\frac{15 k}{17 k}=\frac{15}{17}$Now, we have to find the value of 1+ cos2 θPutting the value of cos θ, we get$1+\cos ^{2} \theta=1+\left(\frac{15}{17}\right)^{2}$$=1+\frac{225}{289}$$=\frac{289+225}{289}$$=\frac{514}{289}$
- 69 Question 25
- 70 If $\cot \theta=\frac{7}{8}$, evaluate(i) $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$(ii) $\cot ^{2} \theta$Sol :Given: $\cot \theta=\frac{7}{8}$We know that,$\cot \theta=\frac{\text { side adjacent to angle } \theta}{\text { side opposite to angle } \theta}$Or $\cot \theta=\frac{\text { base }}{\text { perpendicular }}$$\cot \theta=\frac{7}{8} \Rightarrow \frac{\mathrm{B}}{\mathrm{P}}=\frac{7}{8} \Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{7}{8}$Let,Side adjacent to angle θ =AB = 7kSide opposite to angle θ =BC = 8kwhere, k is any positive integerFirstly we have to find the value of AC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (BC)2 = (AC)2⇒ (7k)2 + (8k)2 = (AC)2⇒ (AC)2 = 49 k2 +69 k2⇒ (AC)2 = 113 k2⇒ AC =√113 k2⇒ AC =k√113$\therefore \sin \theta=\frac{\mathrm{P}}{\mathrm{H}}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{8 \mathrm{k}}{\mathrm{k} \sqrt{113}}=\frac{8}{\sqrt{113}}$and $\cos \theta=\frac{B}{H}=\frac{A B}{A C}=\frac{7 k}{k \sqrt{113}}=\frac{7}{\sqrt{113}}$(i) $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$We know that,(a+b)(a – b) = (a2 – b2)So, using this identity, we get$=\frac{(1)^{2}-(\sin \theta)^{2}}{(1)^{2}-(\cos \theta)^{2}}$$=\frac{1-\sin ^{2} \theta}{1-\cos ^{2} \theta}$$=\frac{1-\left(\frac{8}{\sqrt{113}}\right)^{2}}{1-\left(\frac{7}{\sqrt{113}}\right)^{2}}$$=\frac{1-\frac{64}{113}}{1-\frac{49}{113}}$$=\frac{\frac{113-64}{113}}{\frac{113-49}{113}}$$=\frac{49}{64}$(ii) cot2 θGiven $\cot \theta=\frac{7}{8}$$=\left(\frac{7}{8}\right)^{2}$$=\frac{49}{64}$
- 71 Question 26 A
- 72 If 3 cot A = 4, check whether $\frac{1-\tan ^{2} A}{1+\tan ^{2} A}$=cos2A–sin2 A or not.Sol :Given: 3cot A = 4$\Rightarrow \cot A=\frac{4}{3}$We know that,$\cot \theta=\frac{\text { side adjacent to angle } \theta}{\text { side opposite to angle } \theta}$Or $\cot \theta=\frac{\text { base }}{\text { perpendicular }}$$\cot A=\frac{4}{3} \Rightarrow \frac{B}{P}=\frac{4}{3} \Rightarrow \frac{A B}{B C}=\frac{4}{3}$Let,Side adjacent to angle A =AB = 4kThe side opposite to angle A =BC = 3kwhere k is any positive integerFirstly we have to find the value of AC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (BC)2 = (AC)2⇒ (4k)2 + (3k)2 = (AC)2⇒ (AC)2 = 16 k2 + 9 k2⇒ (AC)2 = 25 k2⇒ AC =√25k2⇒ AC = ±5k [taking positive square root since, side cannot be negative]$\therefore \tan \mathrm{A}=\frac{1}{\cot \mathrm{A}}=\frac{1}{\frac{4}{3}}=\frac{3}{4}$$\sin \mathrm{A}=\frac{\mathrm{P}}{\mathrm{H}}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{3 \mathrm{k}}{5 \mathrm{k}}=\frac{3}{5}$and $\cos A=\frac{B}{H}=\frac{A B}{A C}=\frac{4 k}{5 k}=\frac{4}{5}$Now, $\mathrm{LHS}=\frac{1-\tan ^{2} \mathrm{A}}{1+\tan ^{2} \mathrm{A}}=\frac{1-\left(\frac{3}{4}\right)^{2}}{1+\left(\frac{3}{4}\right)^{2}}$$=\frac{1-\frac{9}{16}}{1+\frac{9}{16}}$$=\frac{\frac{16-9}{16}}{\frac{16+9}{16}}$$=\frac{7}{25}$ …(i)And RHS = cos2 A – sin2 A$=\left(\frac{4}{5}\right)^{2}-\left(\frac{3}{5}\right)^{2}$$=\frac{16}{25}-\frac{9}{25}$$=\frac{7}{25}$ …(ii)From Eqs. (i) and (ii) LHS =RHSHence Proved
- 73 Question 26 B
- 74 In a right triangle ABC, right angled at B, if tan A = 1, then verify that 2 sin A cos A = 1.Sol :tan A = 1As we know$\tan \theta=\frac{\text { perpedicular }}{\text { base }}$Now construct a right angle triangle right angled at B such that∠ BAC = θHence perpendicular = BC = 1 and base = AB = 1By Pythagoras theorem,AC2 = AB2 + BC2⇒ AC2 = (1)2 + (1)2⇒ AC2 = 2⇒ AC = As,$\sin \theta=\frac{\text { perpendicular }}{\text { hypotenuse }}$ and $\cos \theta=\frac{\text { base }}{\text { hypotenuse }}$⇒ $\sin \theta=\frac{1}{\sqrt{2}}$ and $\cos \theta=\frac{1}{\sqrt{2}}$Hence,2 sin A cos A=$2 \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}$⇒ 2 sin A cos A=$2 \times \frac{1}{2}$⇒ 2 sin A cos A=1= R.H.SHence proved.
- 75 Question 27
- 76 If 4sin2 θ =3 and 0o < θ <90o, find the value of 1 + cos θ.Sol :4sin2 θ =3$\Rightarrow \sin ^{2} \theta=\frac{3}{4}$$\Rightarrow \sin \theta=\pm \frac{\sqrt{3}}{2}$But it is given 0o< θ <90oSo, $\sin \theta=\frac{\sqrt{3}}{2}$$\sin \theta=\frac{\sqrt{3}}{2} \Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{\sqrt{3}}{2}$Let, P =k√3 and H =2kIn right angled ∆ABC, we haveB2 + P2 = H2⇒ B2 + (k√3)2 = (2k)2⇒ B2 + 3k2 = 4k2⇒ B2 = 4k2 – 3k2⇒ B2 = k2⇒ B = ±k⇒ B = k [taking positive square root since, side cannot be negative]$\therefore \cos \theta=\frac{B}{H}=\frac{k}{2 k}=\frac{1}{2}$So, $1+\cos \theta=1+\frac{1}{2}=\frac{2+1}{2}=\frac{3}{2}$
- 77 Question 28
- 78 If $\tan \theta=\frac{p}{q}$find the value of $\frac{p \sin \theta-q \cos \theta}{p \sin \theta+q \cos \theta}$.Sol :Given:$\tan \theta=\frac{p}{q}$Now, $\frac{p \sin \theta-q \cos \theta}{p \sin \theta+q \cos \theta}$$\Rightarrow \frac{\cos \theta\left(\frac{p \sin \theta}{\cos \theta}-q\right)}{\cos \theta\left(\frac{p \sin \theta}{\cos \theta}+q\right)}$$\Rightarrow \frac{p \tan \theta-q}{p \tan \theta+q}$ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$$\Rightarrow \frac{p\left(\frac{p}{q}\right)-q}{p\left(\frac{p}{q}\right)+q}$$\Rightarrow \frac{\frac{p^{2}-q^{2}}{q}}{\frac{p^{2}+q^{2}}{q}}$$\Rightarrow \frac{p^{2}-q^{2}}{p^{2}+q^{2}}$$\therefore \frac{p \sin \theta-q \cos \theta}{p \sin \theta+q \cos \theta}=\frac{p^{2}-q^{2}}{p^{2}+q^{2}}$
- 79 Question 29
- 80 If 13 cos θ = 5, $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}$.Sol :Given: 13 cosθ = 5$\Rightarrow \cos \theta=\frac{5}{13}$We know that,$\cos \theta=\frac{\text { Base }}{\text { hypotenuse }}$$\cos \theta=\frac{5}{13} \Rightarrow \frac{B}{H}=\frac{5}{13}$Let AB =5k and BC = 13kIn right angled ∆ABC, we haveB2 + P2 = H2⇒ (5k)2 + P2 = (13k)2⇒ P2 + 25k2 = 169k2⇒ P2 = 169k2 – 25k2⇒ P2 = 144k2⇒ P =√144k2⇒ P = ±12k⇒ P = 12k [taking positive square root since, side cannot be negative]$\therefore \sin \theta=\frac{P}{H}=\frac{12}{13}$Now, $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}$$=\frac{\frac{12}{13}+\frac{5}{13}}{\frac{12}{13}-\frac{5}{13}}$$=\frac{17}{7}$
- 81 Question 30
- 82 If $\sec \theta=\frac{13}{5}$, show that $\frac{2 \sin \theta-3 \cos \theta}{4 \sin \theta-9 \cos \theta}=3$.Sol :Given: $\sec \theta=\frac{13}{5}$We know that,$\sec \theta=\frac{\text { hypotenuse }}{\text { base }}$$\operatorname{Sec} \theta=\frac{13}{5} \Rightarrow \frac{\mathrm{H}}{\mathrm{B}}=\frac{13}{5} \Rightarrow \frac{\mathrm{AC}}{\mathrm{BC}}=\frac{13}{5}$Let,BC = 5k and AC = 13kwhere, k is any positive integer.In right angled ∆ABC, we have(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]⇒ (AB)2 + (5k)2 = (13k )2⇒ (AB)2 + 25k2 = 169k2⇒ (AB)2 = 169k2 – 25k2⇒ (AB)2 = 144k2⇒ AB = √144k2⇒ AB =±12k [taking positive square root since, side cannot be negative]Now, we have to find the value of other trigonometric ratios.We, know that$\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$$=\frac{A B}{A C}=\frac{12 k}{13 k}=\frac{12}{13}$$\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}$$=\frac{B C}{A C}=\frac{5 k}{13 k}=\frac{5}{13}$Now, LHS $=\frac{2 \sin \theta-3 \cos \theta}{4 \sin \theta-9 \cos \theta}$$=\frac{2\left(\frac{12}{13}\right)-3\left(\frac{5}{13}\right)}{4\left(\frac{12}{13}\right)-9\left(\frac{5}{13}\right)}$$=\frac{24-15}{48-45}$$=\frac{9}{3}$=3 =RHSHence Proved
- 83 Question 31
- 84 If 2 tan θ = 1, find the value of $\frac{3 \cos \theta+\sin \theta}{2 \cos \theta-\sin \theta}$.Sol :Given: 2 tan θ = 1$\Rightarrow \tan \theta=\frac{1}{2}$We know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$$\tan \theta=\frac{1}{2} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{1}{2} \Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{1}{2}$Let,Side opposite to angle θ =AB = 1kSide adjacent to angle θ =BC = 2kwhere, k is any positive integerFirstly we have to find the value of AC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (BC)2 = (AC)2⇒ (k)2 + (2k)2 = (AC)2⇒ (AC)2 = k2+4k2⇒ (AC)2 = 5k2⇒ AC =√5k2⇒ AC =±k√5But side AC can’t be negative. So, AC = k√5Now, we will find the sin θ and cos θ
- 85 We know that$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Side adjacent to angle θ = BC = 2kand Hypotenuse = AC = k√5So,$\cos \theta=\frac{B C}{A C}=\frac{2 k}{k \sqrt{5}}=\frac{2}{\sqrt{5}}$And $\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side adjacent to angle θ =AB = 1kAnd Hypotenuse =AC = k√5So, $\sin \theta=\frac{A B}{A C}=\frac{1 k}{k \sqrt{5}}=\frac{1}{\sqrt{5}}$Now, $\frac{3 \cos \theta+\sin \theta}{2 \cos \theta-\sin \theta}$$=\frac{3\left(\frac{2}{\sqrt{5}}\right)+\frac{1}{\sqrt{5}}}{2\left(\frac{2}{\sqrt{5}}\right)-\frac{1}{\sqrt{5}}}$
- 86 $=\frac{6+1}{4-1}$
- 87 $=\frac{7}{3}$
- 88 Question 32
- 89 If 5 tan α = 4, show that $\frac{5 \sin \alpha-3 \cos \alpha}{5 \sin \alpha+2 \cos \alpha}=\frac{1}{6}$.Sol :Given: 5 tan = 4$\Rightarrow \tan \alpha=\frac{4}{5}$We know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$$\tan \alpha=\frac{4}{5} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{4}{5} \Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{4}{5}$Let,The side opposite to angle α =AB = 4kThe side adjacent to angle α =BC = 5kwhere k is any positive integerFirstly we have to find the value of AC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (BC)2 = (AC)2⇒ (4k)2 + (5k)2 = (AC)2⇒ (AC)2 = 16k2+25k2⇒ (AC)2 = 41k2⇒ AC =√41k2⇒ AC =±k√41But side AC can’t be negative. So, AC = k√41Now, we will find the sin α and cos αWe know that$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Side adjacent to angle α = BC = 5kand Hypotenuse = AC = k√41So, $\cos \alpha=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{5 \mathrm{k}}{\mathrm{k} \sqrt{41}}=\frac{5}{\sqrt{41}}$And $\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side adjacent to angle α =AB = 4kAnd Hypotenuse =AC = k√5So, $\sin \alpha=\frac{A B}{A C}=\frac{4 k}{k \sqrt{4} 1}=\frac{4}{\sqrt{41}}$Now, LHS $=\frac{5 \sin \alpha-3 \cos \alpha}{5 \sin \alpha+2 \cos \alpha}$$=\frac{5\left(\frac{4}{\sqrt{41}}\right)-3\left(\frac{5}{\sqrt{41}}\right)}{5\left(\frac{4}{\sqrt{41}}\right)+2\left(\frac{5}{\sqrt{41}}\right)}$$=\frac{20-15}{20+10}$$=\frac{5}{30}$$=\frac{1}{6}$ = RHSHence Proved
- 90 Question 33
- 91 If $\cot \theta=\frac{3}{4}$prove that $\sqrt{\frac{\sec \theta+\operatorname{cosec} \theta}{\sec \theta-\operatorname{cosec} \theta}}=\sqrt{7}$.Sol :We know that,$\cot \theta=\frac{\text { side adjacent to angle } \theta}{\text { side opposite to angle } \theta}$Or $\cot \theta=\frac{\text { base }}{\text { perpendicular }}$$\cot \theta=\frac{3}{4} \Rightarrow \frac{\mathrm{B}}{\mathrm{P}}=\frac{3}{4} \Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{3}{4}$Let,Side adjacent to angle θ =AB = 3kThe side opposite to angle θ =BC = 4kwhere k is any positive integerFirstly we have to find the value of AC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (BC)2 = (AC)2⇒ (3k)2 + (4k)2 = (AC)2⇒ (AC)2 = 9k2 +16k2⇒ (AC)2 = 25k2⇒ AC =√25k2⇒ AC =±5kBut side AC can’t be negative. So, AC = 5kNow, we will find the sin θ$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side opposite to angle θ = BC = 4kand Hypotenuse = AC = 5kSo, $\sin \theta=\frac{B C}{A C}=\frac{4 k}{5 k}=\frac{4}{5}$Now, we know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$The side adjacent to angle θ = AB =3kHypotenuse = AC =5kSo, $\cos \theta=\frac{A B}{A C}=\frac{3 k}{5 k}=\frac{3}{5}$$\therefore \sec \theta=\frac{1}{\cos \theta}=\frac{1}{\frac{3}{5}}=\frac{5}{3}$And$\operatorname{cosec} \theta=\frac{1}{\sin \theta}=\frac{1}{\frac{4}{5}}=\frac{5}{4}$Now, LHS$=\sqrt{\frac{\sec \theta+\operatorname{cosec} \theta}{\sec \theta-\operatorname{cosec} \theta}}$$=\sqrt{\frac{\left(\frac{5}{3}\right)+\left(\frac{5}{4}\right)}{\left(\frac{5}{3}\right)-\left(\frac{5}{4}\right)}}$$=\sqrt{\frac{\left(\frac{20+15}{12}\right)}{\left(\frac{20-15}{12}\right)}}$$=\sqrt{\frac{35}{5}}$$=\sqrt{7}$ = RHSHence Proved
- 92 Question 34
- 93 If $\cot \theta=\frac{1}{\sqrt{3}}$ verify that: $\frac{1-\cos ^{2} \theta}{2-\sin ^{2} \theta}=\frac{3}{5}$.Sol :We know that,$\cot \theta=\frac{\text { side adjacent to angle } \theta}{\text { side opposite to angle } \theta}$Or $\cot \theta=\frac{\text { base }}{\text { perpendicular }}$$\cot \theta=\frac{1}{\sqrt{3}} \Rightarrow \frac{\mathrm{B}}{\mathrm{P}}=\frac{1}{\sqrt{3}} \Rightarrow \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{1}{\sqrt{3}}$Let,Side adjacent to angle θ =AB = 1kSide opposite to angle θ =AC = k√3where, k is any positive integerFirstly we have to find the value of BC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (AC)2 = (BC)2⇒ (1k)2 + (√3k)2 = (BC)2⇒ (BC)2 = 1 k2 +3 k2⇒ (BC)2 = 4 k2⇒ BC =√2 k2⇒ BC =±2kBut side BC can’t be negative. So, BC = 2kNow, we will find the sin θ and cos θ$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side opposite to angle θ = AC = k√3and Hypotenuse = BC = 2kSo$\sin \theta=\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{k} \sqrt{3}}{2 \mathrm{k}}=\frac{\sqrt{3}}{2}$Now, we know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Side adjacent to angle θ = AB =1kHypotenuse = BC =2kSo, $\cos \theta=\frac{A B}{B C}=\frac{1 k}{2 k}=\frac{1}{2}$Now, LHS $=\frac{1-\cos ^{2} \theta}{2-\sin ^{2} \theta}$$=\frac{1-\left(\frac{1}{2}\right)^{2}}{2-\left(\frac{\sqrt{3}}{2}\right)^{2}}$$=\frac{1-\frac{1}{4}}{2-\frac{3}{4}}$$=\frac{\frac{4-1}{4}}{\frac{8-3}{4}}$$=\frac{3}{5}$ = RHSHence Proved
- 94 Question 35
- 95 If $\tan \theta=\frac{x}{y}$ find the value of x sin θ + y cos θ.Sol :
- 96
- 97 We know that,
- 98 $\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$$\tan \theta=\frac{x}{y} \Rightarrow \frac{P}{B}=\frac{x}{y} \Rightarrow \frac{A B}{B C}=\frac{x}{y}$Let,Side opposite to angle θ =AB = xSide adjacent to angle θ =BC = ywhere, k is any positive integerFirstly we have to find the value of AC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (BC)2 = (AC)2⇒ (x)2 + (y)2 = (AC)2⇒ (AC)2 = x2+y2⇒ AC =√( x2+y2)Now, we will find the sin θ and cos θWe know that$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Side adjacent to angle θ = BC = yand Hypotenuse = AC = √( x2+y2)So,$\cos \theta=\frac{B C}{A C}=\frac{y}{\sqrt{x^{2}+y^{2}}}$And $\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side adjacent to angle θ =AB = xAnd Hypotenuse =AC = √( x2+y2)So, $\sin \theta=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}$Now, x sin θ +y cos θ$=\mathrm{x}\left(\frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}\right)+\mathrm{y}\left(\frac{\mathrm{y}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}\right)$$=\frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}}}$= √( x2+y2)
- 99 Question 36
- 100 If $\sin \theta=\frac{3}{5}$, find the value of tan2θ + sinθ cosθ + cotθ.Given: $\sin \theta=\frac{3}{5}$We know that,$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypollyuse }}$$\sin \theta=\frac{3}{5} \Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{3}{5} \Rightarrow \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{3}{5}$Let,Perpendicular =AB =3kand Hypotenuse =AC =5kwhere, k is any positive integerSo, by Pythagoras theorem, we can find the third side of a triangleIn right angled ∆ ABC, we have⇒ (AB)2 + (BC)2 = (AC)2⇒ (3k)2 + (BC)2 = (5k)2⇒ 9k2 + (BC)2 = 25k2⇒ (BC)2 = 25 k2 –9k2⇒ (BC)2 = 16k2⇒ BC =√16k2⇒ BC =±4kBut side BC can’t be negative. So, BC = 4kNow, we have to find the value of cos θ and tan θWe know that,$\cos \theta=\frac{\text { base }}{\text { hypotenuse }}$The side adjacent to angle θ or base = BC =4kHypotenuse = AC =5kSo,$\cos \theta=\frac{4 k}{5 k}=\frac{4}{5}$Now,We know that,$\tan \theta=\frac{\text { perpendicular }}{\text { base }}$Perpendicular = AB =3kBase = BC =4kSo, $\tan \theta=\frac{3 \mathrm{k}}{4 \mathrm{k}}=\frac{3}{4}$$\cot \theta=\frac{1}{\tan \theta}=\frac{1}{\frac{3}{4}}=\frac{4}{3}$Now, tan2 θ + sin θ cos θ + cot θ$=\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{5}\right)\left(\frac{4}{5}\right)+\left(\frac{4}{3}\right)$$=\left(\frac{9}{16}\right)+\left(\frac{13}{25}\right)+\left(\frac{4}{3}\right)$$=\frac{675+576+1600}{16 \times 25 \times 3}$$=\frac{2851}{1200}$
- 101 Question 37
- 102 If 4cot θ = 3, show that $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=7$.Sol :Given: $\cot \theta=\frac{3}{4}$We know that,$\cot \theta=\frac{\text { side adjacent to angle } \theta}{\text { side opposite to angle } \theta}$Or $\cot \theta=\frac{\text { base }}{\text { perpendicular }}$$\cot \theta=\frac{3}{4} \Rightarrow \frac{\mathrm{B}}{\mathrm{P}}=\frac{3}{4} \Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{3}{4}$Let,Side adjacent to angle θ =AB = 3kThe side opposite to angle θ =BC = 4kwhere k is any positive integerFirstly we have to find the value of AC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (BC)2 = (AC)2⇒ (3k)2 + (4k)2 = (AC)2⇒ (AC)2 = 9k2 +16k2⇒ (AC)2 = 25k2⇒ AC =√25k2⇒ AC =±5kBut side AC can’t be negative. So, AC = 5kNow, we will find the sin θ$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side opposite to angle θ = BC = 4kand Hypotenuse = AC = 5kSo, $\sin \theta=\frac{B C}{A C}=\frac{4 k}{5 k}=\frac{4}{5}$Now, we know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Side adjacent to angle θ = AB =3kHypotenuse = AC =5kSo, $\cos \theta=\frac{A B}{A C}=\frac{3 k}{5 k}=\frac{3}{5}$Now, LHS $=\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}$$=\frac{\frac{4}{5}+\frac{3}{5}}{\frac{4}{5}-\frac{3}{5}}$$=\frac{7}{1}$= 7 = RHSHence Proved
- 103 Question 38
- 104 If $\sin \theta=\frac{\mathrm{m}}{\sqrt{\mathrm{m}^{2}+\mathrm{n}^{2}}}$, prove that $\mathrm{m} \sin \theta+\mathrm{n} \cos \theta=\sqrt{\mathrm{m}^{2}+\mathrm{n}^{2}}$Sol :Given: $\sin \theta=\frac{\mathrm{m}}{\sqrt{\mathrm{m}^{2}+\mathrm{n}^{2}}}$We know that,$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$$\sin \theta=\frac{\mathrm{m}}{\sqrt{\mathrm{m}^{2}+\mathrm{n}^{2}}} \Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{\mathrm{m}}{\sqrt{\mathrm{m}^{2}+\mathrm{n}^{2}}} \Rightarrow \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{m}}{\sqrt{\mathrm{m}^{2}+\mathrm{n}^{2}}}$Let,Perpendicular =AB =mand Hypotenuse =AC =√(m2 + n2)where, k is any positive integerSo, by Pythagoras theorem, we can find the third side of a triangleIn right angled ∆ ABC, we have⇒ (AB)2 + (BC)2 = (AC)2⇒ (m)2 + (BC)2 = (√(m2 + n2))2⇒ m2 + (BC)2 = m2 + n2⇒ (BC)2 = m2 + n2 – m2⇒ (BC)2 = n2⇒ BC =√n2⇒ BC =±nBut side BC can’t be negative. So, BC = nNow, we have to find the value of cos θ and tan θWe know that,$\cos \theta=\frac{\text { base }}{\text { hypotenuse }}$Side adjacent to angle θ or base = BC =nHypotenuse = AC =√(m2 + n2)So, $\cos \theta=\frac{n}{\sqrt{m^{2}+n^{2}}}$Now, LHS = m sin θ +n cosθ$=\mathrm{m}\left(\frac{\mathrm{m}}{\sqrt{\mathrm{m}^{2}+\mathrm{n}^{2}}}\right)+\mathrm{n}\left(\frac{\mathrm{n}}{\sqrt{\mathrm{m}^{2}+\mathrm{n}^{2}}}\right)$$=\frac{\mathrm{m}^{2}+\mathrm{n}^{2}}{\sqrt{\mathrm{m}^{2}+\mathrm{n}^{2}}}$=√(m2 + n2) = RHSHence Proved
- 105 Question 39
- 106 If $\cos \alpha=\frac{12}{13}$ show that $\sin \alpha(1-\tan \alpha)=\frac{35}{156}$Sol :We know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Or $\cos \theta=\frac{\text { base }}{\text { Hypotenuse }}$$\cos \alpha=\frac{12}{13} \Rightarrow \frac{\mathrm{B}}{\mathrm{H}}=\frac{12}{13} \Rightarrow \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{12}{13}$Let,Base =BC = 12kHypotenuse =AC = 13kWhere, k ia any positive integerSo, by Pythagoras theorem, we can find the third side of a triangle⇒ (AB)2 + (BC)2 = (AC)2⇒ (AB)2 + (12k)2 = (13k)2⇒ (AB)2 + 144k2 = 169k2⇒ (AB)2 = 169 k2 –144 k2⇒ (AB)2 = 25 k2⇒ AB =√25 k2⇒ AB =±5kBut side AB can’t be negative. So, AB = 5kNow, we have to find sin α and tan α
- 107 We know that,$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side opposite to angle α = AB =5kAnd Hypotenuse = AC =13kSo, $\sin \alpha=\frac{5 \mathrm{k}}{13 \mathrm{k}}=\frac{5}{13}$
- 108 We know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$Side opposite to angle α = AB =5kSide adjacent to angle α = BC =12kSo, $\tan \alpha=\frac{5 \mathrm{k}}{12 \mathrm{k}}=\frac{5}{12}$Now, LHS = sin α (1 – tan α)
- 109 $=\frac{5}{13}\left(1-\frac{5}{12}\right)$
- 110 $=\frac{5}{13}\left(\frac{12-5}{12}\right)$
- 111 $=\frac{35}{156}$ = RHSHence Proved
- 112 Question 40
- 113 If $\mathrm{q} \cos \theta=\sqrt{\mathrm{q}^{2}-\mathrm{p}^{2}}$, prove that q sin θ = p.Sol :Given : q cos θ = √(q2 – p2)$\Rightarrow \cos \theta=\frac{\sqrt{\mathrm{q}^{2}-\mathrm{p}^{2}}}{\mathrm{q}}$
- 114
- 115 We know that,
- 116 $\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Or $\cos \theta=\frac{\text { base }}{\text { Hypotenuse }}$$\cos \theta=\frac{\sqrt{\mathrm{q}^{2}-\mathrm{p}^{2}}}{\mathrm{q}} \Rightarrow \frac{\mathrm{B}}{\mathrm{H}}=\frac{\sqrt{\mathrm{q}^{2}-\mathrm{p}^{2}}}{\mathrm{q}} \Rightarrow \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\sqrt{\mathrm{q}^{2}-\mathrm{p}^{2}}}{\mathrm{q}}$
- 117 Let,Base =BC = √(q2 – p2)Hypotenuse =AC = qWhere, k ia any positive integerSo, by Pythagoras theorem, we can find the third side of a triangle⇒ (AB)2 + (BC)2 = (AC)2⇒ (AB)2 + (√(q2 – p2))2 = (q)2⇒ (AB)2 + (q2 – p2) = q2⇒ (AB)2 = q2 – q2 + p2)⇒ (AB)2 = p2⇒ AB =√p2⇒ AB =±pBut side AB can’t be negative. So, AB = pNow, we have to find sin θ
- 118 We know that,$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$The side opposite to angle θ = AB =pAnd Hypotenuse = AC =qSo, $\sin \theta=\left(\frac{p}{q}\right)$Now, LHS = q sin θ$=\mathrm{q}\left(\frac{\mathrm{p}}{\mathrm{q}}\right)$= q = RHSHence Proved
- 119 Question 41
- 120 If $\sin \theta=\frac{3}{5}$, show that : $\frac{\cos \theta-\frac{1}{\tan \theta}}{2 \cot \theta}=-\frac{1}{5}$Sol :Given: $\sin \theta=\frac{3}{5}$
- 121
- 122 We know that,
- 123 $\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$$\sin \theta=\frac{3}{5} \Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{3}{5} \Rightarrow \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{3}{5}$Let,Perpendicular =AB =3kand Hypotenuse =AC =5kwhere, k is any positive integerSo, by Pythagoras theorem, we can find the third side of a triangleIn right angled ∆ ABC, we have⇒ (AB)2 + (BC)2 = (AC)2⇒ (3k)2 + (BC)2 = (5k)2⇒ 9k2 + (BC)2 = 25k2⇒ (BC)2 = 25 k2 –9k2⇒ (BC)2 = 16k2⇒ BC =√16k2⇒ BC =±4kBut side BC can’t be negative. So, BC = 4kNow, we have to find the value of cos θ and tan θ
- 124 We know that,$\cos \theta=\frac{\text { base }}{\text { hypotenuse }}$The side adjacent to angle θ or base = BC =4kHypotenuse = AC =5kSo, $\cos \theta=\frac{4 k}{5 k}=\frac{4}{5}$Now,We know that,$\tan \theta=\frac{\text { perpendicular }}{\text { base }}$Perpendicular = AB =3kBase = BC =4kSo, $\tan \theta=\frac{3 \mathrm{k}}{4 \mathrm{k}}=\frac{3}{4}$$\cot \theta=\frac{1}{\tan \theta}=\frac{1}{\frac{3}{4}}=\frac{4}{3}$Now, LHS $=\frac{\cos \theta-\frac{1}{\tan \theta}}{2 \cot \theta}$$=\frac{\left(\frac{4}{5}\right)-\left(\frac{1}{\frac{3}{4}}\right)}{2\left(\frac{4}{3}\right)}$$=\frac{\left(\frac{4}{5}\right)-\left(\frac{4}{3}\right)}{\left(\frac{8}{3}\right)}$$=\frac{\frac{12-20}{15}}{\left(\frac{8}{3}\right)}$$=\frac{\left(-\frac{8}{15}\right)}{\left(\frac{8}{3}\right)}$$=-\frac{1}{5}$ = RHSHence Proved
- 125 Question 42 A
- 126 Find the value ofcos A sin B + sin A. cos B, if sin A= 4/5 and cos B = 12/13.Sol :
- 127
- 128 Given: $\sin A=\frac{4}{5}$ and $\cos B=\frac{12}{13}$To find: cos A sin B + sin A cos BAs, we have the value of sin A and cos B but we don’t have the value of cos A and sin BSo, First we find the value of cos A and sin B$\sin A=\frac{4}{5}$
- 129 We know that,$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$
- 130 $\sin A=\frac{4}{5} \Rightarrow \frac{P}{H}=\frac{4}{5}$Let,Side opposite to angle A = 4kand Hypotenuse = 5kwhere, k is any positive integerSo, by Pythagoras theorem, we can find the third side of a triangle⇒ (P)2 + (B)2 = (H)2⇒ (4k)2 + (B)2 = (5)2⇒ 16 k2 + (B)2 = 25 k2⇒ (B)2 = 25 k2 –16 k2⇒ (B)2 = 9 k2⇒ B =√9 k2⇒ B =±3k [taking positive square root since, side cannot be negative]So, Base = 3kNow, we have to find the value of cos AWe know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Side adjacent to angle A =3kHypotenuse =5kSo, $\cos \mathrm{A}=\frac{3 \mathrm{k}}{5 \mathrm{k}}=\frac{3}{5}$Now, we have to find the sin B
- 131
- 132 We know that,
- 133 $\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$$\cos \mathbf{B}=\frac{12}{13} \Rightarrow \frac{B}{H}=\frac{12}{13}$Let,Side adjacent to angle B =12kHypotenuse =13kwhere, k is any positive integerSo, by Pythagoras theorem, we can find the third side of a triangle⇒ (B)2 + (P)2 = (H)2⇒ (12k)2 + (P)2 = (13)2⇒ 144 k2 + (P)2 = 169 k2⇒ (P)2 = 169 k2 –144 k2⇒ (P)2 = 25 k2⇒ P =√25 k2⇒ P =±5k [taking positive square root since, side cannot be negative]So, Perpendicular = 5kNow, we have to find the value of sin B
- 134 We know that,$\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$$\sin \mathrm{B}=\frac{\mathrm{P}}{\mathrm{H}}=\frac{5 \mathrm{k}}{13 \mathrm{k}}=\frac{5}{13}$Now, cos A sin B + sin A cos B
- 135 Putting the values of sin A, sin B cos A and Cos B, we get
- 136 $\Rightarrow\left(\frac{3}{5}\right)\left(\frac{5}{13}\right)+\left(\frac{4}{5}\right)\left(\frac{12}{13}\right)$
- 137 $\Rightarrow \frac{15+48}{5 \times 13}$
- 138 $\Rightarrow \frac{63}{65}$
- 139 Question 42 B
- 140 Find the value ofsin A. cos B – cos A. sin B, if tan A= √3 and sin B = 1/2.Sol :
- 141
- 142 Given: tan A =√3 and $\sin B=\frac{1}{2}$We know that,$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$$\sin \mathrm{B}=\frac{1}{2} \Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{1}{2}$Let,Side opposite to angle θ = 1kand Hypotenuse = 2kwhere, k is any positive integerSo, by Pythagoras theorem, we can find the third side of a triangle⇒ (AC)2 + (BC)2 = (AB)2⇒ (1k)2 + (BC)2 = (2k)2⇒ k2 + (BC)2 = 4k2⇒ (BC)2 = 4k2 –k2⇒ (BC)2 = 3 k2⇒ BC =√3k2⇒ BC =k√3So, BC = k√3
- 143 Now, we have to find the value of cos BWe know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$The side adjacent to angle B = BC =k√3Hypotenuse = AB =2kSo, $\cos \mathbf{B}=\frac{k \sqrt{3}}{2 k}=\frac{\sqrt{3}}{2}$
- 144 We know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$Or $\tan \theta=\frac{\text { perpendicular }}{\text { base }}$Given: tan A = √3$\Rightarrow \tan \mathrm{A}=\frac{\sqrt{3}}{1}$$\tan \mathrm{A}=\frac{\sqrt{3}}{1} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{\sqrt{3}}{1} \Rightarrow \frac{\mathrm{BC}}{\mathrm{AB}}=\frac{\sqrt{3}}{1}$Let,The side opposite to angle A =BC = √3kThe side adjacent to angle A =AB = 1kwhere k is any positive integerFirstly we have to find the value of AC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (BC)2 = (AC)2⇒ (1k)2 + (√3k)2 = (AC)2⇒ (AC)2 = 1 k2 +3 k2⇒ (AC)2 = 4 k2⇒ AC =√2 k2⇒ AC =±2kBut side AC can’t be negative. So, AC = 2kNow, we will find the sin A and cos A$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side opposite to angle A = BC = k√3and Hypotenuse = AC = 2kSo, $\sin \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\mathrm{k} \sqrt{3}}{2 \mathrm{k}}=\frac{\sqrt{3}}{2}$
- 145 Now, we know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$The side adjacent to angle A = AB =1kHypotenuse = AC =2k
- 146 So, $\cos \mathrm{A}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{1 \mathrm{k}}{2 \mathrm{k}}=\frac{1}{2}$Now, sin A. cos B – cos A. sin B
- 147 Putting the values of sin A, sin B cos A and Cos B, we get
- 148 $\Rightarrow\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)-\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)$
- 149 $\Rightarrow \frac{3}{4}-\frac{1}{4}$
- 150 $\Rightarrow \frac{2}{4}$
- 151 $=\frac{1}{2}$
- 152 Question 42 C
- 153 Find the value ofsin A. cos B + cos A. sin B. if $\tan \mathrm{A}=\frac{1}{\sqrt{3}}$and tan B = √3.Sol :Given:
- 154
- 155 $\tan \mathrm{A}=\frac{1}{\sqrt{3}}$$\tan \mathrm{A}=\frac{1}{\sqrt{3}} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{1}{\sqrt{3}}$Let,Side opposite to angle A =BC = 1kSide adjacent to angle A =AB = k√3where, k is any positive integerFirstly we have to find the value of BC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (BC)2 = (AC)2⇒ (√3k)2 + (1k)2 = (AC)2⇒ (AC)2 = 1 k2 +3 k2⇒ (AC)2 = 4 k2⇒ AC =√2 k2⇒ AC =±2kBut side AC can’t be negative. So, AC = 2k
- 156 Now, we will find the sin A and cos A
- 157 $\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side opposite to angle A = BC = kand Hypotenuse = AC = 2kSo, $\operatorname{Sin} \mathbf{A}=\frac{B C}{A C}=\frac{1 k}{2 k}=\frac{1}{2}$
- 158 Now, we know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Side adjacent to angle A = AB =k√3Hypotenuse = AC =2kSo, $\cos \mathbf{A}=\frac{A B}{B C}=\frac{k \sqrt{3}}{2 k}=\frac{\sqrt{3}}{2}$Now,
- 159
- 160 Given: tan B = √3$\Rightarrow \tan \mathrm{B}=\frac{\sqrt{3}}{1}$$\tan \mathrm{B}=\frac{\sqrt{3}}{1} \Rightarrow \frac{\mathrm{P}}{\mathrm{B}}=\frac{\sqrt{3}}{1} \Rightarrow \frac{\mathrm{AC}}{\mathrm{AB}}=\frac{\sqrt{3}}{1}$Let,Side opposite to angle B =AC = √3kSide adjacent to angle B =AB = 1kwhere, k is any positive integerFirstly we have to find the value of BC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (AC)2 = (BC)2⇒ (1k)2 + (√3k)2 = (BC)2⇒ (BC)2 = 1 k2 +3 k2⇒ (BC)2 = 4 k2⇒ BC =√2 k2⇒ BC =±2kBut side BC can’t be negative. So, BC = 2k
- 161 Now, we will find the sin B and cos B$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side opposite to angle B = AC = k√3and Hypotenuse = BC = 2kSo, $\sin \mathrm{B}=\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{k} \sqrt{3}}{2 \mathrm{k}}=\frac{\sqrt{3}}{2}$
- 162 Now, we know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Side adjacent to angle B = AB =1kHypotenuse = BC =2kSo, $\cos \mathbf{B}=\frac{A B}{B C}=\frac{1 k}{2 k}=\frac{1}{2}$Now, sin A. cos B + cos A. sin B
- 163 Putting the values of sin A, sin B cos A and Cos B, we get
- 164 $\Rightarrow\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)+\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)$
- 165 $\Rightarrow \frac{1}{4}+\frac{3}{4}$
- 166 $\Rightarrow \frac{4}{4}$
- 167 =1
- 168 Question 42 D
- 169 Find the value of$\frac{\tan A+\tan B}{1-\tan A \cdot \tan B}$, if sin A = $\frac{1}{\sqrt{2}}$and cos $\mathrm{B}=\frac{\sqrt{3}}{2}$Sol :Given $: \sin \mathrm{A}=\frac{1}{\sqrt{2}}$ and $\cos \mathrm{B}=\frac{\sqrt{3}}{2}$$\sin \mathrm{A}=\frac{1}{\sqrt{2}}$
- 170 We know that,$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$$\sin \mathrm{A}=\frac{1}{\sqrt{2}} \Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{1}{\sqrt{2}}$
- 171 Let,Side opposite to angle A = kand Hypotenuse = k√2where, k is any positive integerSo, by Pythagoras theorem, we can find the third side of a triangle⇒ (P)2 + (B)2 = (H)2⇒ (k)2 + (B)2 = (k√2)2⇒ k2 + (B)2 = 2k2⇒ (B)2 = 2k2 – k2⇒ (B)2 = k2⇒ B =√k2⇒ B =±k [taking positive square root since, side cannot be negative]So, Base = kNow, we have to find the value of tan A
- 172 We know that,$\tan \theta=\frac{\text { perpendicular }}{\text { base }}$So, $\tan \mathrm{A}=\frac{\mathrm{k}}{\mathrm{k}}=1$
- 173 Now, we have to find the tan BWe know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$$\cos \mathbf{B}=\frac{\sqrt{3}}{2} \Rightarrow \frac{B}{H}=\frac{\sqrt{3}}{2}$Let,Side adjacent to angle B =k√3Hypotenuse =2kwhere, k is any positive integerSo, by Pythagoras theorem, we can find the third side of a triangle⇒ (B)2 + (P)2 = (H)2⇒ (k√3)2 + (P)2 = (2k)2⇒ 3k2 + (P)2 = 4k2⇒ (P)2 = 4k2 –3 k2⇒ (P)2 = k2⇒ P =√k2⇒ P =±k [taking positive square root since, side cannot be negative]So, Perpendicular = kNow, we have to find the value of sin BWe know that,$\tan \theta=\frac{\text { perpendicular }}{\text { base }}$So, $\tan \mathrm{B}=\frac{\mathrm{k}}{\mathrm{k} \sqrt{3}}=\frac{1}{\sqrt{3}}$
- 174 Now, $\frac{\tan A+\tan B}{1-\tan A \tan B}$$\Rightarrow \frac{(1)+\left(\frac{1}{\sqrt{3}}\right)}{1-(1)\left(\frac{1}{\sqrt{3}}\right)}$
- 175 $\Rightarrow \frac{\frac{\sqrt{3}+1}{\sqrt{3}}}{\frac{\sqrt{3}-1}{\sqrt{3}}}$
- 176 $\Rightarrow \frac{\sqrt{3}+1}{\sqrt{3}-1}$
- 177 Now, multiply and divide by the conjugate of √3 – 1, we get$\Rightarrow \frac{\sqrt{3}+1}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}$$\Rightarrow \frac{(\sqrt{3}+1)^{2}}{(\sqrt{3})^{2}-(1)^{2}}$ [∵ (a – b)(a+b) = (a2 – b2)]
- 178 $\Rightarrow \frac{3+1+2 \sqrt{3}}{3-1}$
- 179 $\Rightarrow \frac{4+2 \sqrt{3}}{2}$
- 180 ⇒ 2+√3
- 181 Question 42 E
- 182 Find the value ofsec A. tan A+tan2A – cosec A, if tan A =2Sol :Given: tan A = 2 ⇒ tan2A = 4We know that, sec2 A = 1+ tan2A⇒ sec2 A = 1 + 4⇒ sec2 A = 5⇒ sec A =√5$\Rightarrow \cos A=\frac{1}{\sqrt{5}}$
- 183 Now, we know that tan A$=\frac{\sin A}{\cos A}$$\Rightarrow 2=\frac{\sin A}{\frac{1}{\sqrt{5}}}$⇒ 2 =√5 sin A
- 184 $\Rightarrow \sin A=\frac{2}{\sqrt{5}}$
- 185 $\Rightarrow \operatorname{cosec} A=\frac{\sqrt{5}}{2}$
- 186 Now, putting all the values in the given equation, we getsec A. tan A+tan2A – cosec A
- 187 $\Rightarrow(\sqrt{5})(2)+(4)-\left(\frac{\sqrt{5}}{2}\right)$
- 188 $\Rightarrow \frac{4 \sqrt{5}+8-\sqrt{5}}{2}$
- 189 $\Rightarrow \frac{3 \sqrt{5}+8}{2}$
- 190 Question 42 F
- 191 Find the value of$\frac{1}{\tan \mathrm{A}}+\frac{\sin \mathrm{A}}{1+\cos \mathrm{A}}$, if cosec A = 2Sol :Given: cosec A =2Now, we have to find $\frac{1}{\tan A}+\frac{\sin A}{1+\cos A}$First, we simplify the above given trigonometry equation, we get$\frac{1}{\frac{\sin A}{\cos A}}+\frac{\sin A}{1+\cos A}$$\Rightarrow \frac{\cos A}{\sin A}+\frac{\sin A}{1+\cos A}$
- 192 Taking the LCM, we get$\Rightarrow \frac{\cos A(1+\cos A)+\sin A(\sin A)}{(\sin A)(1+\cos A)}$$\Rightarrow \frac{\cos A+\cos ^{2} A+\sin ^{2} A}{\sin A(1+\cos A)}$ [∵ cos2θ +sin2 θ = 1]$\Rightarrow \frac{\cos A+1}{\sin A(1+\cos A)}$$\Rightarrow \frac{1}{\sin A}$ [∵ cosec θ $=\frac{1}{\sin \theta}$ ]⇒ cosec A⇒ 2
- 193 Question 43 A
- 194 If $\sin \mathrm{B}=\frac{1}{2}$, prove that : 3 cos B – 4cos3 B = 0Sol :Given: $\sin B=\frac{1}{2}$
- 195
- 196 We know that,$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$$\sin B=\frac{1}{2} \Rightarrow \frac{P}{H}=\frac{1}{2} \Rightarrow \frac{A B}{A C}=\frac{1}{2}$Let,Perpendicular =AB =kand Hypotenuse =AC =2kwhere, k is any positive integerSo, by Pythagoras theorem, we can find the third side of a triangleIn right angled ∆ ABC, we have⇒ (AB)2 + (BC)2 = (AC)2⇒ (k)2 + (BC)2 = (2k)2⇒ k2 + (BC)2 = 4k2⇒ (BC)2 = 4k2 –k2⇒ (BC)2 = 3k2⇒ BC =√3k2⇒ BC =k√3So, BC = k√3Now, we have to find the value of cos B
- 197 We know that,$\cos \theta=\frac{\text { base }}{\text { hypotenuse }}$Side adjacent to angle B or base = BC = k√3Hypotenuse = AC =2kSo, $\cos \mathrm{B}=\frac{\mathrm{k} \sqrt{3}}{2 \mathrm{k}}=\frac{\sqrt{3}}{2}$Now, LHS = 3 cos B – 4cos3 B
- 198 $\Rightarrow 3\left(\frac{\sqrt{3}}{2}\right)-4\left(\frac{\sqrt{3}}{2}\right)^{3}$
- 199 $\Rightarrow \frac{3 \sqrt{3}}{2}-4\left(\frac{3 \sqrt{3}}{8}\right)$
- 200 $\Rightarrow \frac{3 \sqrt{3}}{2}-\frac{3 \sqrt{3}}{2}=0$
- 201 =RHSHence Proved
- 202 Question 43 B
- 203 If $\cos \theta=\frac{\sqrt{3}}{2}$, prove that: 3sinθ – 4sin3θ = 1.Sol :
- 204
- 205 We know that,
- 206 $\cos \theta=\frac{\text { Base }}{\text { hypotenuse }}$$\cos \theta=\frac{\sqrt{3}}{2} \Rightarrow \frac{\mathrm{B}}{\mathrm{H}}=\frac{\sqrt{3}}{2}$Let AB =k√3 and BC = 2kIn right angled ∆ABC, we haveB2 + P2 = H2⇒ (k√3)2 + P2 = (2k)2⇒ P2 + 3k2 = 4k2⇒ P2 = 4k2 – 3k2⇒ P2 = k2⇒ P =√k2⇒ P = ±k⇒ P = k [taking positive square root since, side cannot be negative]Now,We know that,$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$$\therefore \sin \theta=\frac{P}{H}=\frac{k}{2 k}=\frac{1}{2}$
- 207 Now, LHS = 3sin θ – 4sin3 θ
- 208 $=3\left(\frac{1}{2}\right)-4\left(\frac{1}{2}\right)^{3}$
- 209 $\Rightarrow \frac{3}{2}-\frac{4}{8}$
- 210 $\Rightarrow \frac{3}{2}-\frac{1}{2}$
- 211 $\Rightarrow \frac{3-1}{2}$
- 212 $\Rightarrow \frac{2}{2}$
- 213 ⇒ 1 = RHSHence Proved
- 214 Question 43 C
- 215 If $\sec \theta=\frac{5}{4}$, prove that : $\frac{\tan \theta}{1+\tan ^{2} \theta}=\frac{\sin \theta}{\sec \theta}$Sol :Given: $\sec \theta=\frac{5}{4}$
- 216
- 217 We know that,
- 218 $\sec \theta=\frac{\text { hypotenuse }}{\text { base }}$$\operatorname{Sec} \theta=\frac{5}{4} \Rightarrow \frac{\mathrm{H}}{\mathrm{B}}=\frac{5}{4} \Rightarrow \frac{\mathrm{AC}}{\mathrm{BC}}=\frac{5}{4}$Let,BC = 4k and AC = 5kwhere, k is any positive integer.In right angled ∆ABC, we have(AB)2 + (BC)2 = (AC)2 [by using Pythagoras theorem]⇒ (AB)2 + (4k)2 = (5k )2⇒ (AB)2 + 16k2 = 25k2⇒ (AB)2 = 25k2 – 16k2⇒ (AB)2 = 9k2⇒ AB = √9k2⇒ AB =±3k [taking positive square root since, side cannot be negative]Now, we have to find the value of other trigonometric ratios.We, know that
- 219 $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$
- 220 $=\frac{A B}{A C}=\frac{3 k}{5 k}=\frac{3}{5}$
- 221 $\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}$
- 222 $=\frac{B C}{A C}=\frac{4 k}{5 k}=\frac{4}{5}$
- 223 $\tan \theta=\frac{\text { Perpendicular }}{\text { Base }}$
- 224 $=\frac{A B}{B C}=\frac{3 k}{4 k}=\frac{3}{4}$
- 225 Now, LHS $=\frac{\tan \theta}{1+\tan ^{2} \theta}$
- 226 $=\frac{\left(\frac{3}{4}\right)}{1+\left(\frac{3}{4}\right)^{2}}$
- 227 $=\frac{\left(\frac{3}{4}\right)}{1+\left(\frac{9}{16}\right)}$
- 228 $=\frac{\left(\frac{3}{4}\right)}{\left(\frac{16+9}{16}\right)}$
- 229 $=\frac{\left(\frac{3}{4}\right)}{\left(\frac{25}{16}\right)}$
- 230 $=\frac{3}{4} \times \frac{16}{25}$
- 231 $=\frac{12}{25}$
- 232 Now, RHS $=\frac{\sin \theta}{\sec \theta}$
- 233 $=\frac{\left(\frac{3}{5}\right)}{\left(\frac{5}{4}\right)}$
- 234 $=\frac{3}{5} \times \frac{4}{5}$
- 235 $=\frac{12}{25}$
- 236 ∴ LHS = RHSHence Proved
- 237 Question 43 D
- 238 $\cot B=\frac{12}{5}$, prove that : tan2B – sin2 B=sin4 B sec2 B.Sol :
- 239
- 240 We know that,$\cot \theta=\frac{\text { side adjacent to angle } \theta}{\text { side opposite to angle } \theta}$Or $\cot \theta=\frac{\text { base }}{\text { perpendicular }}$$\cot B=\frac{12}{5} \Rightarrow \frac{B}{P}=\frac{12}{5} \Rightarrow \frac{A B}{B C}=\frac{12}{5}$Let,Side adjacent to angle B =AB = 12kSide opposite to angle B =BC = 5kwhere, k is any positive integerFirstly we have to find the value of AC.So, we can find the value of AC with the help of Pythagoras theorem⇒ (AB)2 + (BC)2 = (AC)2⇒ (12k)2 + (5k)2 = (AC)2⇒ (AC)2 = 144 k2 +25 k2⇒ (AC)2 = 169 k2⇒ AC =√169 k2⇒ AC =±13kBut side AC can’t be negative. So, AC = 13k
- 241 Now, we will find the sin θ$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Side opposite to angle B = BC = 5kand Hypotenuse = AC = 13kSo, $\sin \mathrm{B}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{5 \mathrm{k}}{13 \mathrm{k}}=\frac{5}{13}$Now, we know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Side adjacent to angle B = AB =12kHypotenuse = AC =13kSo, $\cos \mathrm{B}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{12 \mathrm{k}}{13 \mathrm{k}}=\frac{12}{13}$$\tan \mathrm{B}=\frac{\mathrm{P}}{\mathrm{B}}=\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{5}{12}$$\sec \mathrm{B}=\frac{1}{\cos \mathrm{B}}=\frac{1}{\frac{12}{13}}=\frac{13}{12}$
- 242 Now, LHS = tan2B – sin2 B
- 243 $=\left(\frac{5}{12}\right)^{2}-\left(\frac{5}{13}\right)^{2}$
- 244 $=\frac{25}{144}-\frac{25}{169}$
- 245 $=\frac{4225-3600}{144 \times 169}$
- 246 $=\frac{625}{144 \times 169}$
- 247 $=\frac{625}{24336}$
- 248 Now, RHS = sin4 B sec2 B
- 249 $=\left(\frac{5}{13}\right)^{4}\left(\frac{13}{12}\right)^{2}$
- 250 $=\left(\frac{5}{13}\right)^{2}\left(\frac{5}{13}\right)^{2}\left(\frac{13}{12}\right)^{2}$
- 251 $=\frac{625}{144 \times 169}$
- 252 $=\frac{625}{24336}$
- 253 Now, LHS = RHSHence Proved
- 254 Question 44
- 255 If $\cos \theta=\frac{\mathrm{q}}{\sqrt{\mathrm{p}^{2}+\mathrm{q}^{2}}}$, prove that $\left(\frac{\sqrt{\mathrm{p}^{2}+\mathrm{q}^{2}}}{\mathrm{p}}+\frac{\mathrm{q}}{\mathrm{p}}\right)^{2}= \frac{\sqrt{\mathrm{p}^{2}+\mathrm{q}^{2}}+\mathrm{q}}{\sqrt{\mathrm{p}^{2}+\mathrm{q}^{2}-\mathrm{q}}}$Sol :Given: $\cos \theta=\frac{q}{\sqrt{p^{2}+q^{2}}}$Now, squaring both the sides, we get
- 256 $=\cos ^{2} \theta=\frac{\mathrm{q}^{2}}{\mathrm{p}^{2}+\mathrm{q}^{2}}$
- 257 $\Rightarrow \mathrm{p}^{2}+\mathrm{q}^{2}=\frac{\mathrm{q}^{2}}{\cos ^{2} \theta}$
- 258 $\Rightarrow \mathrm{p}^{2}=\frac{\mathrm{q}^{2}}{\cos ^{2} \theta}-\mathrm{q}^{2}$
- 259 $\Rightarrow \mathrm{p}^{2}=\frac{\mathrm{q}^{2}-\mathrm{q}^{2} \cos ^{2} \theta}{\cos ^{2} \theta}$
- 260 $\Rightarrow \mathrm{p}^{2}=\frac{\mathrm{q}^{2}\left(1-\cos ^{2} \theta\right)}{\cos ^{2} \theta}$
- 261 $\Rightarrow \mathrm{p}^{2}=\frac{\mathrm{q}^{2} \sin ^{2} \theta}{\cos ^{2} \theta}$
- 262 ⇒ p2 = q2 tan2θ …(1)
- 263 Now, solving LHS $=\left(\frac{\sqrt{\mathrm{p}^{2}+\mathrm{q}^{2}}}{\mathrm{p}}+\frac{\mathrm{q}}{\mathrm{p}}\right)^{2}$Putting the value of p2 in the above equation, we get
- 264 $=\left(\frac{\sqrt{q^{2} \tan ^{2} \theta+q^{2}}}{p}+\frac{q}{p}\right)^{2}$
- 265 $\Rightarrow\left(\frac{\sqrt{q^{2}\left(\tan ^{2} \theta+1\right)}}{p}+\frac{q}{p}\right)^{2}$
- 266 $\Rightarrow\left(\frac{\sqrt{\mathrm{q}^{2} \sec ^{2} \theta}}{\mathrm{p}}+\frac{\mathrm{q}}{\mathrm{p}}\right)^{2}$ [∵ 1+ tan2 θ = sec2 θ]
- 267 $\Rightarrow\left(\frac{\mathrm{q} \sec \theta}{\mathrm{p}}+\frac{\mathrm{q}}{\mathrm{p}}\right)^{2}$
- 268 $\Rightarrow \frac{\mathrm{q}^{2}(\sec \theta+1)^{2}}{\mathrm{p}^{2}}$
- 269 $\Rightarrow \frac{\mathrm{q}^{2}(\sec \theta+1)^{2}}{\mathrm{q}^{2} \tan ^{2} \theta}$ (from Eq. (1))
- 270 $\Rightarrow \frac{(\sec \theta+1)^{2}}{\left(\sec ^{2} \theta-1\right)}$
- 271 $\Rightarrow \frac{(\sec \theta+1)(\sec \theta+1)}{(\sec \theta-1)(\sec \theta+1)}$ [∵(a + b) (a – b) = (a2 – b2)]
- 272 $\Rightarrow \frac{\sec \theta+1}{\sec \theta-1}$
- 273 Now, we solve the RHS
- 274 $=\frac{\sqrt{\mathrm{p}^{2}+\mathrm{q}^{2}}+\mathrm{q}}{\sqrt{\mathrm{p}^{2}+\mathrm{q}^{2}}-\mathrm{q}}$
- 275 $=\frac{\sqrt{\mathrm{q}^{2} \tan ^{2} \theta+\mathrm{q}^{2}}+\mathrm{q}}{\sqrt{\mathrm{q}^{2} \tan ^{2} \theta+\mathrm{q}^{2}}-\mathrm{q}}$
- 276 $=\frac{\sqrt{\mathrm{q}^{2}\left(\tan ^{2} \theta+1\right)}+\mathrm{q}}{\sqrt{\mathrm{q}^{2}\left(\tan ^{2} \theta+1\right)}-\mathrm{q}}$
- 277 $=\frac{\sqrt{\mathrm{q}^{2} \sec ^{2}}+\mathrm{q}}{\sqrt{\mathrm{q}^{2} \sec ^{2} \theta}-\mathrm{q}}$ [∵ 1+ tan2 θ = sec2 θ]
- 278 $=\frac{\operatorname{qsec} \theta+q}{\operatorname{qsec} \theta-q}$
- 279 $\Rightarrow \frac{\sec \theta+1}{\sec \theta-1}$
- 280 ∴ LHS = RHSHence ProvedQuestion 45 In the given figure, BC = 15 cm and sin B = 4/5, show that $\tan ^{2} \mathrm{B}-\frac{1}{\cos ^{2} \mathrm{B}}=-1$
- 281
- 282 Sol :Given: BC =15cm and $\sin B=\frac{4}{5}$We know that,$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$Or $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$$\sin \mathrm{B}=\frac{4}{5} \Rightarrow \frac{\mathrm{P}}{\mathrm{H}}=\frac{4}{5} \Rightarrow \frac{\mathrm{AC}}{\mathrm{AB}}=\frac{4}{5}$Let,Side opposite to angle B = 4kand Hypotenuse = 5kwhere, k is any positive integerSo, by Pythagoras theorem, we can find the third side of a triangle⇒ (AC)2 + (BC)2 = (AB)2⇒ (4k)2 + (BC)2 = (5)2⇒ 16k2 + (BC)2 = 25k2⇒ (BC)2 = 25 k2 –16 k2⇒ (BC)2 = 9 k2⇒ BC =√9 k2⇒ BC =±3kBut side BC can’t be negative. So, BC = 3kNow, we have to find the value of cos B and tan B
- 283 We know that,$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$Side adjacent to angle B = BC =3kHypotenuse = AB =5kSo, $\cos B=\frac{3 k}{5 k}=\frac{3}{5}$Now, tan BWe know that,$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$side opposite to angle B = AC =4kSide adjacent to angle B = BC =3kSo, $\tan \mathrm{B}=\frac{4 \mathrm{k}}{3 \mathrm{k}}=\frac{4}{3}$
- 284 Now, $\tan ^{2} \mathrm{B}-\frac{1}{\cos ^{2} \mathrm{B}}$
- 285 $=\left(\frac{4}{3}\right)^{2}-\left(\frac{1}{\frac{3}{5}}\right)^{2}$
- 286 $=\frac{16}{9}-\frac{25}{9}$
- 287 $=\frac{-9}{9}$
- 288 = –1 = RHSHence Proved
- 289 Question 46
- 290 In the given figure, find 3 tan θ – 2 sin α + 4 cos α.
- 291
- 292 Sol :First of all, we find the value of RSIn right angled ∆RQS, we have(RQ)2 + (QS)2 = (RS)2⇒ (8)2 + (6)2 = (RS)2⇒ 64 + 36 = (RS)2⇒ RS =√100⇒ RS =±10 [taking positive square root, since side cannot be negative]⇒ RS =10
- 293 $\therefore \sin \alpha=\frac{P}{H}=\frac{8}{10}=\frac{4}{5}$
- 294 $\cos \alpha=\frac{B}{H}=\frac{6}{10}=\frac{3}{5}$
- 295 Now, we find the value of QPIn right angled ∆RQP(RQ)2 + (QP)2 = (RP)2⇒ (8)2 + (QP)2 = (17)2⇒ 64 + (QP)2 = 289⇒ (QP)2 =289–64⇒ (QP)2 =225⇒ QP =√225⇒ QP =±15 [taking positive square root, since side cannot be negative]⇒ QP =15tan θ$=\frac{\mathrm{P}}{\mathrm{B}}=\frac{8}{15}$
- 296 Now, 3 tan θ – 2 sinα + 4cos α⇒ $3\left(\frac{8}{15}\right)-2\left(\frac{4}{5}\right)+4\left(\frac{3}{5}\right)$⇒ $\frac{24}{15}-\frac{8}{5}+\frac{12}{5}$⇒ $\frac{24-24+36}{15}$
- 297 ⇒$\frac{36}{15}$
- 298 ⇒$\frac{12}{5}$
- 299 Question 47
- 300 In the given figure ΔABC is right angled at B and BD is perpendicular to AC. Find (i) cos θ, (ii) cot α.
- 301
- 302 Sol :Firstly, we find the value of ACIn right angled ∆ABC(AB)2 + (BC)2 = (AC)2⇒ (12)2 + (5)2 = (AC)2⇒ 144+25 =(AC)2⇒ (AC)2 =169⇒ AC =√169⇒ AC =±13⇒ AC =13 [taking positive square root since, side cannot be negative](i) $\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}=\frac{12}{13}$(ii) $\cot \alpha=\frac{\text { Base }}{\text { Perpendicular }}=\frac{12}{5}$
- 303 Question 48
- 304 If 5 sin2 θ + cos2 θ = 2, find the value of sin θ.Sol :Given: 5 sin2 θ + cos2 θ = 2⇒ 5 sin2 θ + (1– sin2 θ) = 2 [∵ sin2 θ + cos2 θ = 1]⇒ 5 sin2 θ + 1 – sin2 θ = 2⇒ 4 sin2 θ = 2 – 1⇒ 4 sin2 θ = 1
- 305 $\Rightarrow \quad \sin ^{2} \theta=\frac{1}{4}$
- 306 $\Rightarrow \quad \sin \theta=\sqrt{\frac{1}{4}}$
- 307 $\Rightarrow \quad \sin \theta=\pm \frac{1}{2}$
- 308 Question 49
- 309 If 7 sin2 θ + 3 cos2 θ =4, find the value of tan θ.Sol :Given : 7 sin2 θ + 3 cos2 θ =4⇒ 7 sin2 θ + 3(1– sin2 θ) = 4 [∵ sin2 θ + cos2 θ = 1]⇒ 7 sin2 θ + 3 –3 sin2 θ = 4⇒ 4 sin2 θ = 4 – 3⇒ 4 sin2 θ = 1
- 310 $\Rightarrow \sin ^{2} \theta=\frac{1}{4}$
- 311 $\Rightarrow \sin \theta=\sqrt{\frac{1}{4}}$
- 312 $\Rightarrow \sin \theta=\pm \frac{1}{2}$
- 313 Put the value of $\sin ^{2} \theta=\frac{1}{4}$ in given equation, we get
- 314 $\Rightarrow 7\left(\frac{1}{2}\right)^{2}+3 \cos ^{2} \theta=4$
- 315 $\Rightarrow \frac{7}{4}+3 \cos ^{2} \theta=4$
- 316 $\Rightarrow 3 \cos ^{2} \theta=4-\frac{7}{4}$
- 317 $\Rightarrow 3 \cos ^{2} \theta=\frac{16-7}{4}$
- 318 $\Rightarrow 3 \cos ^{2} \theta=\frac{9}{4}$
- 319 $\Rightarrow \cos ^{2} \theta=\frac{3}{4}$
- 320 $\Rightarrow \cos \theta=\sqrt{\frac{3}{4}}$
- 321 $\Rightarrow \cos \theta=\pm \frac{\sqrt{3}}{2}$
- 322 Now, we know that tan θ $=\frac{\sin \theta}{\cos \theta}$
- 323 $\Rightarrow \tan \theta=\frac{\left(\pm \frac{1}{2}\right)}{\left(\pm \frac{\sqrt{3}}{2}\right)}$
- 324 $\Rightarrow \tan \theta=\pm \frac{1}{\sqrt{3}}$
- 325 Question 50
- 326 If 4 cos θ + 3 sin θ = 5, find the value of tan θ.Sol :Given : 4 cos θ+ 3 sin θ = 5Squaring both the sides, we get⇒ (4 cos θ+ 3 sin θ)2 = 25⇒ 16 cos2 θ + 9 sin2 θ + 2(4cos θ)(3sin θ)= 25 [∵ (a + b)2 =a2 +b2 +2ab]⇒ 16 cos2 θ + 9 sin2 θ + 24 cosθ sinθ = 25Divide by cos2 θ, we get$\Rightarrow \frac{16 \cos ^{2} \theta}{\cos ^{2} \theta}+\frac{9 \sin ^{2} \theta}{\cos ^{2} \theta}+\frac{24 \cos \theta \sin \theta}{\cos ^{2} \theta}=\frac{25}{\cos ^{2} \theta}$⇒ 16 + 9tan2 θ + 24 tanθ = 25sec2 θ⇒ 16 + 9tan2 θ + 24 tanθ = 25(1 + tan2 θ) [∵ 1+ tan2θ = sec2 θ]⇒ 16 + 9tan2 θ + 24 tanθ = 25+ 25 tan2 θ⇒ 16tan2 θ – 24tanθ + 9 = 0⇒ 16tan2 θ – 12 tanθ – 12 tanθ +9 = 0⇒ 4tanθ (4tan θ – 3) – 3(4tan θ – 3) = 0⇒ (4tan θ – 3)2 = 0$\Rightarrow \tan \theta=\frac{3}{4}$
- 327 Question 51
- 328 If 7 sin A + 24 cos A = 25, find the value of tan A.Sol :Given : 7 sin A + 24 cos A = 25Squaring both the sides, we get⇒ (7 sin A + 24 cos A)2 = 625⇒ 49 sin2 A +576 cos2 A + 2(7sin A) (24cos A) = 625 [∵ (a + b)2 =a2 +b2 +2ab]⇒ 49 sin2 A +576 cos2 A + 336 cosA sinA = 625
- 329 Divide by cos2 θ, we get$\Rightarrow \frac{49 \sin ^{2} \mathrm{A}}{\cos ^{2} \mathrm{A}}+\frac{576 \cos ^{2} \mathrm{A}}{\cos ^{2} \mathrm{A}}+\frac{336 \cos \mathrm{A} \sin \mathrm{A}}{\cos ^{2} \mathrm{A}}=\frac{625}{\cos ^{2} \mathrm{A}}$
- 330 ⇒ 49tan2 A +576+ 336 tanA = 625sec2 A⇒ 49tan2 A +576+ 336 tanA = 625(1 + tan2 A) [∵ 1+ tan2θ = sec2 θ]⇒ 49tan2 A +576+ 336 tanθA = 625+625 tan2 A⇒ 576tan2 A – 336tanA + 49 = 0⇒ 576tan2 A – 168 tanA – 168 tanA +49 = 0⇒ 24tanθ (24tan A – 7) – 7(24tan A – 7) = 0⇒ (24tan A – 7)2 = 0$\Rightarrow \tan \mathrm{A}=\frac{7}{24}$
- 331 Question 52
- 332 If 9 sin θ + 40 cos θ= 41, find the value of cos θ and cosec θSol :Given: 9 sin θ + 40 cos θ= 41⇒ 9sinθ = 41 – 40 cosθ …(i)Squaring both sides, we get⇒ 81sin2 θ = 1681+1600 cos2 θ – 2(41) (40cos θ) [∵ (a – b)2 =a2 +b2 –2ab]⇒ 81 (1– cos2 θ) =1681+1600 cos2 θ – 3280cosθ⇒ 81 – 81cos2 θ = 1681 +1600cos2 θ – 3280 cosθ⇒ 1681cos2 θ –3280cos θ +1600 = 0⇒ (41)2 cos2 θ – 2(41) (40cos θ) + (40)2 = 0⇒ (41cos θ – 40 )2 = 0$\Rightarrow \cos \theta=\frac{40}{41}$Now, putting the value of cos θ in Eq. (i), we get
- 333 $\Rightarrow 9 \sin \theta=41-40\left(\frac{40}{41}\right)$
- 334 $\Rightarrow 9 \sin \theta=\left(\frac{1681-1600}{41}\right)$
- 335 $\Rightarrow \sin \theta=\left(\frac{81}{41 \times 9}\right)$
- 336 $\Rightarrow \frac{1}{\operatorname{cosec} \theta}=\left(\frac{9}{41}\right)$
- 337 $\Rightarrow \operatorname{cosec} \theta=\frac{41}{9}$
- 338 Question 53
- 339 If tan A + sec A = 3, find the value of sin A.Sol :tan A + sec A = 3⇒ tanA = 3 – secASquaring both the sides, we get⇒ tan2 A =(3 – secA)2⇒ tan2 A = 9 + sec2A – 6sec A⇒ sec2 A – 1 = 9 + sec2A – 6sec A [∵ 1+ tan2 A = sec2 A]⇒ –1 – 9 = –6secA⇒ – 10 = –6sec A$\Rightarrow \sec A=\frac{10}{6}$$\Rightarrow \frac{1}{\cos A}=\frac{5}{3}\left[\because \sec A=\frac{1}{\cos A}\right]$$\Rightarrow \cos A=\frac{3}{5}$
- 340 Now, tan A + sec A = 3$\Rightarrow \frac{\sin A}{\cos A}+\frac{1}{\cos A}=3\left[\because \tan A=\frac{\sin A}{\cos A}\right]$$\Rightarrow \frac{\sin A}{\cos A}=\frac{3 \cos A-1}{\cos A}$⇒ sin A = 3cosA – 1
- 341 $\Rightarrow \sin A=3\left(\frac{3}{5}\right)-1$
- 342 $\Rightarrow \sin A=\left(\frac{9-5}{5}\right)$
- 343 $\Rightarrow \sin A=\left(\frac{4}{5}\right)$
- 344 Question 54
- 345 If cosec A + cot A = 5, find the value of cos A.Sol :cosec A + cot A = 5⇒ cotA = 5 – cosecASquaring both the sides, we get⇒ cot2 A =(5 – cosecA)2⇒ cot2 A = 25 + cosec2A – 10cosec A⇒ cosec2 A – 1 = 25 + cosec2A – 10cosec A [∵ 1+ cot2 A = cosec2 A]⇒ –1 – 25 = –10cosecA⇒ – 26 = –10cosec A$\Rightarrow \operatorname{cosec} A=\frac{26}{10}$$\Rightarrow \frac{1}{\sin A}=\frac{13}{5}\left[\because \operatorname{cosec} A=\frac{1}{\sin A}\right]$$\Rightarrow \sin \mathrm{A}=\frac{5}{13}$
- 346 Now, cosec A + cot A = 5$\Rightarrow \frac{1}{\sin A}+\frac{\cos A}{\sin A}=5\left[\because \cot A=\frac{\cos A}{\sin A}\right]$$\Rightarrow \frac{13}{5}+\frac{\cos A}{\frac{5}{13}}=5$
- 347 $\Rightarrow \frac{13}{5}+\frac{13 \cos A}{5}=5$
- 348 $\Rightarrow \frac{13 \cos A}{5}=5-\frac{13}{5}$
- 349 $\Rightarrow \frac{13 \cos A}{5}=\frac{25-13}{5}$
- 350 $\Rightarrow \cos A=\frac{12}{13}$
- 351 Question 55
- 352 If tan θ + sec θ = x, show that $\sin \theta=\frac{x^{2}-1}{x^{2}+1}$Sol :tan θ+ sec θ = x⇒ tan θ = x – sec θSquaring both sides, we get⇒ tan2 θ =(x – secθ)2⇒ tan2 θ = x2 + sec2θ – 2xsec θ⇒ sec2 θ – 1 = x2 + sec2θ – 2xsec θ [∵ 1+ tan2 A = sec2 A]⇒ –1 – x2 = –2xsecθ$\Rightarrow \sec \theta=\frac{1+x^{2}}{2 x}$Now,tan θ = x – sec θ$\Rightarrow \frac{\sin \theta}{\cos \theta}=x-\sec \theta$$\Rightarrow \sin \theta\left(\frac{1+x^{2}}{2 x}\right)=x-\left(\frac{1+x^{2}}{2 x}\right)$$\Rightarrow \sin \theta\left(\frac{1+\mathrm{x}^{2}}{2 \mathrm{x}}\right)=\left(\frac{2 \mathrm{x}^{2}-1+\mathrm{x}^{2}}{2 \mathrm{x}}\right)$$\Rightarrow \sin \theta\left(\frac{1+x^{2}}{2 x}\right)=\left(\frac{x^{2}-1}{2 x}\right)$$\Rightarrow \sin \theta=\frac{x^{2}-1}{x^{2}+1}$ = RHSHence Proved
- 353 Question 56
- 354 If cos θ +sin θ=1, prove that cos θ – sin θ = ± 1Sol :Using the formula,(a+b)2 + (a – b)2 = 2(a2+b2)⇒ (cos θ +sin θ)2 + (cos θ – sin θ)2 = 2(cos2θ + sin2 θ)⇒ 1 + (cos θ – sin θ)2 = 2(1)⇒ (cos θ – sin θ)2 = 2 –1⇒ (cos θ – sin θ)2 = 1⇒ (cos θ – sin θ) =√1⇒ (cos θ – sin θ) = ±1
Question 1
From the given figure, find the value of the following:

(i) sin C
(ii) sin A
(iii) cos C
(iv) cos A
(v) tan C
(vi) tan A
Sol :
(i) Sin C
We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
So, here θ = C
Side opposite to ∠C = AB = 3
Hypotenuse = AC = 5
So, $\sin C=\frac{A B}{A C}=\frac{3}{5}$
(ii) Sin A
So, here θ = A
The side opposite to ∠A = BC = 4
Hypotenuse = AC = 5
So, $\sin A=\frac{B C}{A C}=\frac{4}{5}$
(iii) Cos C
We know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
So, here θ = C
Side adjacent to ∠C = BC = 4
Hypotenuse = AC = 5
So, $\cos C=\frac{B C}{A C}=\frac{4}{5}$
(iv) Cos A
Here, θ = A
Side adjacent to ∠A = AB = 3
Hypotenuse = AC = 5
So, $\cos A=\frac{A B}{A C}=\frac{3}{5}$
(v) tan C
We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
So, here θ = C
Side opposite to ∠C = AB = 3
Side adjacent to ∠C = BC = 4
So, $\tan C=\frac{A B}{B C}=\frac{3}{4}$
(vi) tan A
here θ = A
Side opposite to ∠A = BC = 4
Side adjacent to ∠A = AB = 3
So, $\tan A=\frac{A B}{B C}=\frac{4}{3}$
Question 2
From the given figure, find the value of :
(i) tan θ
(ii) cos θ

Sol :
(i) tan θ
We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Side opposite to θ = AB = 4
Side adjacent to θ = BC = 3
So, $\tan \theta=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{4}{3}$
(ii) cos θ
We know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
Side adjacent to θ = BC = 3
Hypotenuse = AC = 5
So, $\cos \theta=\frac{B C}{A C}=\frac{3}{5}$
Question 3
From the given figure, find the value of
(i) sin θ
(ii) tan θ
(iii) tan A – cot C

Sol :
(i) sin θ
We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
Side opposite to θ = BC = ?
Hypotenuse = AC = 13
Firstly we have to find the value of BC.
So, we can find the value of BC with the help of Pythagoras theorem.
According to Pythagoras theorem,
(Hypotenuse)2 = (Base)2 + (Perpendicular)2
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (12)2 + (BC)2 = (13)2
⇒ 144 + (BC)2 = 169
⇒ (BC)2 = 169–144
⇒ (BC)2 = 25
⇒ BC =√25
⇒ BC =±5
But side BC can’t be negative. So, BC = 5
Now, BC = 5 and AC = 13
So, $\sin \theta=\frac{B C}{A C}=\frac{5}{13}$
(ii) tan θ
We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
Side opposite to θ = BC = 5
Side adjacent to θ = AB = 12
So, $\tan \theta=\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{5}{12}$
(iii) tan A – cot C
We know that,
$\tan \theta=\frac{\text { side opposite to angle } \theta}{\text { side adjacent to angle } \theta}$
and
$\cot \theta=\frac{\text { side adjacent to angle } \theta}{\text { side opposite to angle } \theta}$
tan A
Here, θ = A
Side opposite to ∠A = BC = 5
Side adjacent to ∠A = AB = 12
So, $\tan \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{5}{12}$
Cot C
Here, θ = C
Side adjacent to ∠C = BC = 5
Side opposite to ∠C = AB = 12
So, $\cot C=\frac{B C}{A B}=\frac{5}{12}$
So, $\tan A-\cot C=\frac{5}{12}-\frac{5}{12}=0$
Question 4 A
In ∆ABC, right angled at B, AB = 24 cm, BC = 7 cm. Determine
a. sin A, cos A
b. sin C, cos C
Sol :

(i)
(a) sin A
We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
So, here θ = A
Side opposite to ∠A = BC = 7
Hypotenuse = AC = ?
Firstly we have to find the value of AC.
So, we can find the value of AC with the help of Pythagoras theorem.
According to Pythagoras theorem,
(Hypotenuse)2 = (Base)2 + (Perpendicular)2
⇒ (AB)2 + (BC)2 = (AC)2
⇒ (24)2 + (7)2 = (AC)2
⇒ 576 + 49 = (AC)2
⇒ (AC)2 = 625
⇒ AC =√625
⇒ AC =±25
But side AC can’t be negative. So, AC = 25cm
Now, BC = 7 and AC = 25
So, $\sin A=\frac{B C}{A C}=\frac{7}{25}$
Cos A
We know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
So, here θ = A
Side adjacent to ∠A = AB = 24
Hypotenuse = AC = 25
So,$\cos A=\frac{A B}{A C}=\frac{24}{25}$
(b) sin C
We know that,
$\sin \theta=\frac{\text { side opposite to angle } \theta}{\text { hypotenuse }}$
So, here θ = C
The side opposite to ∠C = AB = 24
Hypotenuse = AC = 25
So, $\sin C=\frac{A B}{A C}=\frac{24}{25}$
Cos C
We know that,
$\cos \theta=\frac{\text { side adjacent to angle } \theta}{\text { hypotenuse }}$
So, here θ = C
Side adjacent to ∠C = BC = 7
Hypotenuse = AC = 25
So, $\cos C=\frac{B C}{A C}=\frac{7}{25}$