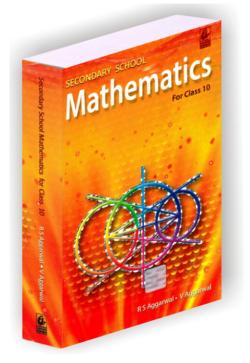
RS Aggarwal Solutions for Class 10 Maths Chapter 13–Trigonometric Identities

Class 10 -Chapter 13 Trigonometric Identities



For any clarifications or questions you can write to info@indcareer.com

Postal Address

IndCareer.com, 52, Shilpa Nagar, Somalwada Nagpur - 440015 Maharashtra, India

WhatsApp: +91 9561 204 888, **Website:** https://www.indcareer.com https://www.indcareer.com/schools/rs-aggarwal-solutions-for-class-10-maths-chapter-13-trigono metric-identities/

RS Aggarwal Solutions for Class 10 Maths Chapter 13–Trigonometric Identities

Class 10: Maths Chapter 13 solutions. Complete Class 10 Maths Chapter 13 Notes.

RS Aggarwal Solutions for Class 10 Maths Chapter 13–Trigonometric Identities

RS Aggarwal 10th Maths Chapter 13, Class 10 Maths Chapter 13 solutions

Ex 8a

Question 1.

Solution:

CIndCareer

(i)
$$LHS = (1 - \cos^2 \theta) \csc^2 \theta$$

 $= \sin^2 \theta \times \csc^2 \theta \left[\because (1 - \cos^2 \theta) = \sin^2 \theta \right]$
 $= \sin^2 \theta \times \frac{1}{\sin^2 \theta} = 1 = RHS$
 $\therefore LHS = RHS$
(ii) $LHS = (1 + \cot^2 \theta) \sin^2 \theta$
 $= \csc^2 \theta \times \sin^2 \theta \left[\because (1 + \cot^2 \theta) = \csc^2 \theta \right]$
 $= \frac{1}{\sin^2 \theta} \times \sin^2 \theta = 1 = RHS$
 $\therefore LHS = RHS$

Question 2.

Solution:

©IndCareer

(i) LHS = $(\sec^2 \theta - 1) \cot^2 \theta$ $[\because (\sec^2 \theta - 1) = \tan^2 \theta]$ $= \tan^2 \theta \times \cot^2 \theta$ $= \tan^2 \theta \times \frac{1}{\tan^2 \theta} = 1 = \text{RHS}$: LHS = RHS $(ii) LHS = (\sec^2 \theta - 1) (\cos ec^2 \theta - 1)$ $= \tan^{2} \theta \times \cot^{2} \theta \left[\begin{array}{c} \because \left(\sec^{2} \theta - 1 \right) = \tan^{2} \theta \\ \\ \text{and} \left(\cos \sec^{2} \theta - 1 \right) = \cot^{2} \theta \end{array} \right]$ $= \tan^2 \Theta \times \frac{1}{\tan^2 \Theta} = 1 = \text{RHS}$: LHS = RHS (iii) $(1 - \cos^2 \theta) \sec^2 \theta$ $= \sin^2 \theta \times \sec^2 \theta \quad \left[\because (1 - \cos^2 \theta) = \sin^2 \theta \right]$ $=\sin^2\theta \times \frac{1}{\cos^2\theta} = \frac{\sin^2\theta}{\cos^2\theta}$ $= \tan^2 \theta = RHS$

: LHS = RHS

Question 3.

Solution:

@IndCareer

(i)
LHS =
$$\sin^2 \theta + \frac{1}{1 + \tan^2 \theta} \left[\because (1 + \tan^2 \theta) = \sec^2 \theta \right]$$

= $\sin^2 \theta + \frac{1}{\sec^2 \theta}$
= $\sin^2 \theta + \cos^2 \theta = 1 = \text{RHS}$
 \therefore LHS = RHS
LHS = $\frac{1}{(1 + \tan^2 \theta)} + \frac{1}{(1 + \cot^2 \theta)}$
= $\frac{1}{\sec^2 \theta} + \frac{1}{\csc^2 \theta} \left[\because (1 + \tan^2 \theta) = \sec^2 \theta \right]$
= $\cos^2 \theta + \sin^2 \theta = 1 = \text{RHS}$
 \therefore LHS = RHS

Question 4.

Solution:

(i)

$$= (1 - \cos^2 \theta) (1 + \cot^2 \theta)$$

= $\sin^2 \theta \times \csc^2 \theta$
 $\left[\because (1 - \cos^2 \theta) = \sin^2 \theta$
and $(1 + \cot^2 \theta) = \csc^2 \theta \right]$
= $\sin^2 \theta \times \frac{1}{\sin^2 \theta} = 1 = \text{RHS}$

(ii)

$$= \left(\cos e c \,\theta + \frac{\cos \theta}{\sin \theta} \right) (\cos e c \,\theta - \cot \theta)$$
$$= \left(\cos e c \,\theta + \cot \theta \right) (\cos e c \,\theta - \cot \theta)$$
$$= \left(\cos e c^2 \theta - \cot^2 \theta \right) = 1 = \text{RHS}$$

Question 5.

Solution:

(i)
L.H.S. =
$$\cot^2 \theta - \frac{1}{\sin^2 \theta}$$

= $\cot^2 \theta - \csc^2 \theta$
= -1 (since $1 + \cot^2 \theta = \csc^2 \theta \Rightarrow \cot^2 \theta - \csc^2 \theta = -1$)
= R.H.S.

(ii)

L.H.S. =
$$\tan^2 \theta - \frac{1}{\cos^2 \theta}$$

= $\tan^2 \theta - \sec^2 \theta$
= -1 (since $1 + \tan^2 \theta = \sec^2 \theta \Rightarrow \tan^2 \theta - \sec^2 \theta = -1$)
= R.H.S.

(iii)
L.H.S. =
$$\cos^2 \theta + \frac{1}{(1 + \cot^2 \theta)}$$

= $\cos^2 \theta + \frac{1}{\csc^2 \theta}$
= $\cos^2 \theta + \sin^2 \theta$
= 1
= R.H.S.

Question 6.

Solution:

©IndCareer

L.H.S. =
$$\frac{1}{(1 + \sin \theta)} + \frac{1}{(1 - \sin \theta)}$$

= $\frac{(1 - \sin \theta) + (1 + \sin \theta)}{(1 + \sin \theta)(1 - \sin \theta)}$
= $\frac{2}{1 - \sin^2 \theta}$
= $\frac{2}{\cos^2 \theta}$
= $2 \sec^2 \theta$
= R.H.S.

Question 7.

Solution:

@IndCareer

(ii) LHS =
$$\sin \theta (1 + \tan \theta) + \cos \theta (1 + \cot \theta)$$

$$(i) LHS = \sec \theta (1 - \sin \theta) (\sec \theta + \tan \theta) = \left(\sin \theta + \frac{\sin^2 \theta}{\cos \theta} \right) + \cos \theta \left(1 + \frac{\cos \theta}{\sin \theta} \right)$$
$$= \left[\sec \theta - \frac{\sin \theta}{\cos \theta} \right] \times (\sec \theta + \tan \theta) = \left(\frac{\sin \theta \cos \theta + \sin^2 \theta}{\cos \theta} \right) + \left(\cos \theta + \frac{\cos^2 \theta}{\sin \theta} \right)$$
$$= (\sec \theta - \tan \theta) (\sec \theta + \tan \theta) = \left(\frac{\sin \theta \cos \theta + \sin^2 \theta}{\cos \theta} \right) + \left(\frac{\cos \theta \sin \theta + \cos^2 \theta}{\sin \theta} \right)$$
$$= \left(\sec^2 \theta - \tan^2 \theta \right) = 1 = RHS = \frac{\sin \theta \cos \theta}{\cos \theta} + \frac{\sin^2 \theta}{\cos \theta} + \frac{\cos \theta \sin \theta}{\sin \theta} + \frac{\cos^2 \theta}{\sin \theta}$$
$$= \frac{\sin \theta \cos \theta}{\cos \theta} + \frac{\cos \theta \sin \theta}{\sin \theta} + \frac{\sin^2 \theta}{\cos \theta} + \frac{\cos^2 \theta}{\cos \theta} + \frac{\sin^2 \theta}{\cos \theta} + \frac{\sin^$$

$$= \sin\theta\cos\theta \left(\frac{\sin\theta + \cos\theta}{\cos\theta\sin\theta}\right) + \frac{\sin^3\theta + \cos^3\theta}{\cos\theta\sin\theta}$$

$$= \sin\theta\cos\theta \left(\frac{\sin\theta + \cos\theta}{\cos\theta\sin\theta}\right)$$

$$+ \frac{(\sin\theta + \cos\theta)(\sin^2\theta - \sin\theta\cos\theta + \cos^2\theta)}{(\cos\theta\sin\theta)}$$

$$\left[\because a^3 + b^3 = (a+b)(a^2 - ab + b^2)\right]$$

$$= (\sin\theta + \cos\theta) \left[\frac{\sin\theta\cos\theta}{\cos\theta\sin\theta} + \frac{(1 - \sin\theta\cos\theta)}{\cos\theta\sin\theta}\right]$$

$$= (\sin\theta + \cos\theta) \left[\frac{\sin\cos\theta + 1 - \sin\theta\cos\theta}{\cos\theta\sin\theta}\right]$$

$$= (\sin\theta + \cos\theta) \left[\frac{1}{\cos\theta\sin\theta}\right]$$

$$= (\sin\theta + \cos\theta) \left[\frac{1}{\cos\theta\sin\theta} + \frac{\cos\theta}{\cos\theta\sin\theta}\right]$$

Question 8.

Solution:

CIndCareer

(i) LHS =
$$1 + \frac{\cot^2 \theta}{(1 + \cos ec\theta)}$$

= $1 + \frac{\csc^2 \theta - 1}{(1 + \csc ed)}$
= $\frac{1 + \csc \theta + \csc^2 \theta - 1^2}{(1 + \csc \theta)}$
= $\frac{(1 + \csc \theta) + (\csc \theta + 1)(\csc \theta - 1)}{(1 + \csc \theta)}$
= $\frac{(1 + \csc \theta)(1 + (\csc \theta - 1))}{(1 + \csc \theta)}$
= $1 + \csc \theta - 1$
= $\csc \theta = RHS$
LHS = $1 + \frac{\tan^2 \theta}{(1 + \sec \theta)} = \frac{1 + \sec \theta + \tan^2 \theta}{(1 + \sec \theta)}$
(ii)

$$= \frac{\sec^2 \theta + \sec\theta}{(1 + \sec\theta)} \quad \left[\because (1 + \tan^2 \theta) = \sec^2 \theta \right]$$
$$= \frac{\sec\theta(1 + \sec\theta)}{(1 + \sec\theta)} = \sec\theta = \text{RHS}$$

Question 9.

Solution:

$$LHS = \frac{(1 + \tan^2 \theta) \cot \theta}{\cos ec^2 \theta} = \frac{\sec^2 \theta \cot \theta}{\cos ec^2 \theta}$$
$$\left[\because (1 + \tan^2 \theta) = \sec^2 \theta \right]$$
$$= \frac{1}{\cos^2 \theta} \times \frac{\cos \theta}{\sin \theta} \times \sin^2 \theta = \frac{\sin \theta}{\cos \theta}$$
$$= \tan \theta = RHS$$

LHS = RHS

Question 10.

Solution:

$$\frac{\tan^2 \theta}{\left(1 + \tan^2 \theta\right)} + \frac{\cot^2 \theta}{\left(1 + \cot^2 \theta\right)}$$

$$LHS = \frac{\tan^2 \theta}{\sec^2 \theta} + \frac{\cot^2 \theta}{\csc^2 \theta}$$

$$\left[\because \left(1 + \tan^2 \theta\right) = \sec^2 \theta \text{ and } \left(1 + \cot^2 \theta\right) = \csc^2 \theta \right]$$

$$= \frac{\sin^2 \theta}{\frac{\cos^2 \theta}{\cos^2 \theta}} + \frac{\frac{\cos^2 \theta}{\sin^2 \theta}}{\frac{1}{\sin^2 \theta}}$$

$$= \sin^2 \theta + \cos^2 \theta = 1 = RHS$$
Hence, LHS = RHS

Question 11.

Solution:

$$LHS = \frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta}$$
$$= \frac{\sin\theta(1-\cos\theta)}{(1+\cos\theta)(1-\cos\theta)} + \frac{1+\cos\theta}{\sin\theta}$$
$$= \frac{\sin\theta(1-\cos\theta)}{1-\cos^2\theta} + \frac{1+\cos\theta}{\sin\theta}$$
$$= \frac{\sin\theta(1-\cos\theta)}{\sin^2\theta} + \frac{1+\cos\theta}{\sin\theta} = \frac{(1-\cos\theta)}{\sin\theta} + \frac{1+\cos\theta}{\sin\theta}$$
$$= \frac{1-\cos\theta+1+\cos\theta}{\sin\theta} = \frac{2}{\sin\theta} = 2\cos ec\theta = RHS$$

Question 12.

Solution:

$LHS = \frac{\tan\theta}{1 - \cot\theta} + \frac{\cot\theta}{1 - \tan\theta}$ $= \frac{\frac{\sin\theta}{\cos\theta}}{1 - \frac{\cos\theta}{\sin\theta}} + \frac{\frac{\cos\theta}{\sin\theta}}{1 - \frac{\sin\theta}{\cos\theta}}$
$\left[\because \tan \theta = \frac{\sin \theta}{\cos \theta}, \cot \theta = \frac{\cos \theta}{\sin \theta} \right]$
$= \frac{\sin^2 \theta}{\cos \theta (\sin \theta - \cos \theta)} + \frac{\cos^2 \theta}{\sin \theta (\cos \theta - \sin \theta)}$ $= \frac{\sin^2 \theta}{\cos \theta (\sin \theta - \cos \theta)} - \frac{\cos^2 \theta}{\sin \theta (\sin \theta - \cos \theta)}$ $= \frac{\sin^3 \theta - \cos^3 \theta}{\sin \theta \cos \theta (\sin \theta - \cos \theta)}$
$=\frac{(\sin\theta - \cos\theta)(\sin\theta - \cos\theta)}{(\sin\theta - \cos\theta)(\sin^2\theta + \cos^2\theta + \sin\theta\cos\theta)}$
$\left[\because a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2}) \right]$ $= \frac{1 + \sin\theta\cos\theta}{\sin\theta\cos\theta}$ $= \frac{1}{\sin\theta\cos\theta} + 1 = 1 + \sec\theta\csc\theta = RHS$

Question 13.

Solution:

@IndCareer

$$\begin{aligned} & \frac{\cos^2 \theta}{(1 - \tan \theta)} + \frac{\sin^3 \theta}{(\sin \theta - \cos \theta)} \\ & \frac{\cos^2 \theta}{(1 - \frac{\sin \theta}{\cos \theta})} + \frac{\sin^3 \theta}{(\sin \theta - \cos \theta)} \\ & = \frac{\cos^3 \theta}{(\cos \theta - \sin \theta)} + \frac{\sin^3 \theta}{(\sin \theta - \cos \theta)} \\ & = \frac{\cos^3 \theta}{(\cos \theta - \sin \theta)} - \frac{\sin^3 \theta}{\cos \theta - \sin \theta} \\ & = \frac{\cos^3 \theta - \sin^3 \theta}{(\cos \theta - \sin \theta)} \\ & = \frac{(\cos \theta - \sin \theta)(\cos^2 \theta + \cos \theta \sin \theta + \sin^2 \theta)}{(\cos \theta - \sin \theta)} \\ & = \frac{(\cos \theta - \sin \theta)(\cos^2 \theta + \cos \theta \sin \theta + \sin^2 \theta)}{(\cos \theta - \sin \theta)} \\ & = (1 + \cos \theta \sin \theta) = \text{RHS} \end{aligned}$$

Question 14.

Solution:

$$LHS = \frac{\cos\theta}{(1 - \tan\theta)} - \frac{\sin^2\theta}{(\cos\theta - \sin\theta)}$$
$$= \frac{\cos\theta}{\left(1 - \frac{\sin\theta}{\cos\theta}\right)} - \frac{\sin^2\theta}{(\cos\theta - \sin\theta)}$$
$$= \frac{\cos^2\theta}{(\cos\theta - \sin\theta)} - \frac{\sin^2\theta}{(\cos\theta - \sin\theta)} = \frac{\cos^2\theta - \sin^2\theta}{(\cos\theta - \sin\theta)}$$
$$= \frac{(\cos\theta - \sin\theta)(\cos\theta + \sin\theta)}{(\cos\theta - \sin\theta)} = (\cos\theta + \sin\theta) = RHS$$

: LHS = RHS

CIndCareer

Question 15.

Solution:

LHS =
$$(1 + \tan^2 \theta)(1 + \cot^2 \theta)$$

= $\sec^2 \theta \cos \sec^2 \theta$
= $\frac{1}{\sin^2 \theta \cos^2 \theta} = \frac{1}{\sin^2 \theta (1 - \sin^2 \theta)}$
= $\frac{1}{\sin^2 \theta - \sin^4 \theta} = \text{RHS}$

Question 16.

Solution:

$$\frac{\tan\theta}{\left(1+\tan^2\theta\right)^2} + \frac{\cot\theta}{\left(1+\cot^2\theta\right)^2}$$
$$= \frac{\tan\theta}{\left(\sec^2\theta\right)^2} + \frac{\cot\theta}{\left(\csc^2\theta\right)^2}$$
$$= \frac{\sin\theta}{\cos\theta} \times \frac{1}{\sec^4\theta} + \frac{\cos\theta}{\sin\theta} \times \frac{1}{\csc^4\theta}$$
$$= \frac{\sin\theta}{\cos\theta} \times \cos^4\theta + \frac{\cos\theta}{\sin\theta} \times \sin^4\theta$$
$$= \sin\theta\cos^3\theta + \cos\theta\sin^3\theta$$
$$= \sin\theta\cos\theta\left(\cos^2\theta + \sin^2\theta\right)$$
$$= \sin\theta\cos\theta = RHS$$
LHS = RHS

Question 17.

Solution:

(i)To prove $\sin^6 \theta + \cos^6 \theta = 1 - 3\sin^2 \theta \cos^2 \theta$ We know, $a^3 + b^3 = (a + b)^3 - 3ab(a + b)$ put $a = sin^2 \theta$, $b = cos^2 \theta$ $\therefore \sin^{6} \theta + \cos^{6} \theta = \left(\sin^{2} \theta + \cos^{2} \theta\right)^{3} - 3\sin^{2} \theta \cos^{2} \theta \times \left(\sin^{2} \theta + \cos^{2} \theta\right)$ = $1 - 3\sin^2\theta\cos^2\theta$ = RHS Therefore, LHS = RHS (ii)LHS = $\sin^2 \theta + \cos^4 \theta = 1 - \cos^2 \theta + \cos^4 \theta$ $= 1 - \cos^2 \theta \left(1 - \cos^2 \theta \right)$ $= 1 - \cos^2 \theta \sin^2 \theta$ RHS = $\cos^2 \theta + \sin^4 \theta = 1 - \sin^2 \theta + \sin^4 \theta$ $= 1 - \sin^2 \theta (1 - \sin^2 \theta) = (1 - \sin^2 \theta \cos^2 \theta)$ Therefore, LHS = RHS (iii) $\cos ec^4 \theta - \cos ec^2 \theta$ $LHS = \cos ec^2 \theta (\cos ec^2 \theta - 1)$ $=(1+\cot^2\theta)\cot^2\theta$ $= \cot^2 \theta + \cot^4 \theta = RHS$ Therefore, LHS = RHS

Question 18.

Solution:

$$LHS = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$$

$$=\frac{1-\frac{\sin^2\theta}{\cos^2\theta}}{1+\frac{\sin^2\theta}{\cos^2\theta}}$$

$$= \frac{\left(\frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta}\right)}{\left(\frac{\cos^2 \theta + \sin^2 \theta}{\cos^2}\right)} = \frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta + \sin^2 \theta}$$
$$= \frac{\left(\cos^2 \theta - \sin^2 \theta\right)}{1} = \left(\cos^2 \theta - \sin^2 \theta\right) = \text{RHS}$$

: LHS = RHS

Question 19.

Solution:

©IndCareer

$LHS = \frac{\tan \theta}{(\sec \theta - 1)} + \frac{\tan \theta}{(\sec \theta + 1)}$
$=\frac{\frac{\sin\theta}{\cos\theta}}{\left(\frac{1}{\cos\theta}-1\right)}+\frac{\frac{\sin\theta}{\cos\theta}}{\left(\frac{1}{\cos\theta}+1\right)}$
$= \frac{\frac{\sin \theta}{\cos \theta}}{\left(\frac{1-\cos \theta}{\cos \theta}\right)} + \frac{\frac{\sin \theta}{\cos \theta}}{\left(\frac{1+\cos \theta}{\cos \theta}\right)}$ $= \frac{\sin \theta}{\sin \theta} = \frac{\sin \theta}{\sin \theta}$
$= \frac{\sin\theta}{1 - \cos\theta} + \frac{\sin\theta}{1 + \cos\theta}$
$\sin \theta (1 + \cos \theta) + \sin \theta (1 - \cos \theta)$
= 1 - cos ² θ
$= \frac{\sin \theta + \sin \theta \cos \theta + \sin \theta - \sin \theta \cos e c \theta}{2}$
sin ² θ
$= \frac{2\sin\theta}{\sin^2\theta} = \frac{2}{\sin\theta} = 2\cos ec\theta = RHS$

CIndCareer

: LHS = RHS

$$\begin{aligned} \text{(ii)}_{\text{LHS}} &= \frac{\cot\theta}{(\cos e c \, \theta + 1)} + \frac{(\cos e c \, \theta + 1)}{\cot\theta} \\ &= \frac{\left(\frac{\cos\theta}{\sin\theta}\right)}{\left(\frac{1}{\sin\theta} + 1\right)} + \frac{\left(\frac{1}{\sin\theta} + 1\right)}{\left(\frac{\cos\theta}{\sin\theta}\right)} \\ &= \frac{\left(\frac{\cos\theta}{\sin\theta}\right)}{\left(\frac{1+\sin\theta}{\sin\theta}\right)} + \frac{\left(\frac{1+\sin\theta}{\sin\theta}\right)}{\left(\frac{\cos\theta}{\sin\theta}\right)} \\ &= \frac{\cos\theta}{1+\sin\theta} + \frac{\left(1+\sin\theta\right)}{\cos\theta} = \frac{\cos^2\theta + \left(1+\sin\theta\right)^2}{\cos\theta\left(1+\sin\theta\right)} \\ &= \frac{\cos^2\theta + 1 + \sin^2\theta + 2\sin\theta}{\cos\theta\left(1+\sin\theta\right)} \\ &= \frac{1+1+2\sin\theta}{\cos\theta\left(1+\sin\theta\right)} = \frac{2(1+\sin\theta)}{\cos\theta\left(1+\sin\theta\right)} = \frac{2}{\cos\theta} = 2\sec\theta = \text{RHS} \end{aligned}$$

Question 20.

Solution:

@IndCareer

(i) LHS =

$$\frac{\sec \theta - 1}{\sec \theta + 1} = \frac{\left(\frac{1}{\cos \theta} - 1\right)}{\left(\frac{1}{\cos \theta} + 1\right)} = \frac{1 - \cos \theta}{1 + \cos \theta}$$

$$= \frac{\left(1 - \cos \theta\right)}{\left(1 + \cos \theta\right)} \times \frac{\left(1 + \cos \theta\right)}{\left(1 + \cos \theta\right)} = \frac{1 - \cos^2 \theta}{\left(1 + \cos \theta\right)^2}$$

$$= \frac{\sin^2 \theta}{\left(1 + \cos \theta\right)^2}$$
Hence, LHS = RHS
$$\therefore LHS = RHS$$
(ii)

$$LHS = \frac{\sec \theta - \tan \theta}{\sec \theta + \tan \theta} = \frac{\left(\frac{1}{\cos \theta} - \frac{\sin \theta}{\cos \theta}\right)}{\left(\frac{1}{\cos \theta} + \frac{\sin \theta}{\cos \theta}\right)}$$

$$= \frac{\left(1 - \sin \theta\right)}{\left(1 + \sin \theta\right)} = \frac{1 - \sin^2 \theta}{\left(1 + \sin \theta\right)^2}$$

$$= \frac{\sin^2 \theta}{\left(1 + \cos \theta\right)^2}$$

$$= \frac{\cos^2 \theta}{\left(1 + \sin \theta\right)^2} = RHS$$

Question 21.

Solution:

L.H.S. = $\sqrt{\frac{1 + \sin \theta}{1 - \sin \theta}}$	$L.H.S. = \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}}$
$= \sqrt{\frac{1 + \sin \theta}{1 - \sin \theta}} \times \frac{1 + \sin \theta}{1 + \sin \theta}$	$= \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \times \frac{1 - \cos \theta}{1 - \cos \theta}$
$= \sqrt{\frac{(1+\sin\theta)^2}{1-\sin^2\theta}}$	$= \sqrt{\frac{(1 - \cos \theta)^2}{1 - \cos^2 \theta}}$
$=\sqrt{\frac{(1+\sin\theta)^2}{\cos^2\theta}}$	$= \sqrt{\frac{(1 - \cos \theta)^2}{\sin^2 \theta}}$
$= \frac{1 + \sin \theta}{\cos \theta}$	$=\frac{1-\cos\theta}{\sin\theta}$
$= \frac{1}{\cos \theta} + \frac{\sin \theta}{\cos \theta}$	$= \frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta}$
= sec0+ tan0 = R.H.S.	= cosec 0- cot0 = R.H.S.
= R.H.S.	= R.H.S.
$L.H.S. = \sqrt{\frac{1+\cos\theta}{1-\cos\theta}} + \sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$	<u>s0</u> s0
•	$\frac{\overline{\theta}}{\overline{\theta}} + \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \times \frac{1 - \cos \theta}{1 - \cos \theta}$
$=\sqrt{\frac{(1+\cos\theta)^2}{1-\cos^2\theta}}+\sqrt{\frac{(1-\cos^2\theta)^2}{1-\cos^2\theta}}$	$(\cos\theta)^2$ $(\cos^2\theta)$
$= \sqrt{\frac{(1+\cos\theta)^2}{\sin^2\theta}} + \sqrt{\frac{(1-\cos\theta)^2}{\sin^2\theta}} + \sqrt{\frac{(1-\cos\theta)^2}{\sin^2\theta$	· cosθ)² sin² θ
$= \frac{1 + \cos \theta}{\sin \theta} + \frac{1 - \cos \theta}{\sin \theta}$	
$= \frac{1}{\sin\theta} + \frac{\cos\theta}{\sin\theta} + \frac{1}{\sin\theta}$	<u>cosθ</u> sinθ
$= \cos ec\theta + \cos ec\theta$	
= 2cosec θ	
= R.H.S.	

Question 22.

Solution:

$$LHS = \frac{\cos^{3} \theta + \sin^{3} \theta}{\cos \theta + \sin \theta} + \frac{\cos^{3} \theta - \sin^{3} \theta}{\cos \theta - \sin \theta}$$
$$= \frac{(\cos \theta + \sin \theta)(\cos^{2} \theta - \cos \theta \sin \theta + \sin^{2} \theta)}{\cos \theta + \sin \theta}$$
$$+ \frac{(\cos \theta - \sin \theta)(\cos^{2} \theta + \cos \theta \sin \theta + \sin^{2} \theta)}{\cos \theta - \sin \theta}$$
$$= \cos^{2} \theta - \cos \theta \times \sin \theta + \sin^{2} \theta + \cos^{2} \theta + \cos \theta \sin \theta + \sin^{2} \theta$$
$$= 2[\cos^{2} \theta + \sin^{2} \theta] = 2$$

: LHS = RHS

Question 23.

Solution:

$$LHS = \frac{\sin\theta}{\cot\theta + \csce\theta} - \frac{\sin\theta}{\cot\theta - \csce\theta}$$
$$= \frac{\sin\theta}{\csce\theta + \cot\theta} + \frac{\sin\theta}{\csce\theta - \cot\theta}$$
$$= \frac{\sin\theta(\csce\theta - \cot\theta) + \sin\theta(\csce\theta + \cot\theta)}{\csce^2\theta - \cot^2\theta}$$
$$= \sin\theta(\csce\theta - \cot\theta) + \sin\theta(\csce\theta + \cot\theta)$$
$$\left[\because 1 + \cot^2\theta = \csce^2\theta \text{ and } \csce^2\theta - \cot^2\theta = 1\right]$$
$$= 2\sin\theta\csce^2\theta = 2\sin\theta \times \frac{1}{\sin\theta} = 2 = RHS$$

: LHS = RHS

Question 24.

Solution:

$$(i) LHS = \frac{\sin \theta - \cos \theta}{\sin \theta + \cos \theta} + \frac{\sin \theta + \cos \theta}{\sin \theta - \cos \theta}$$

$$= \frac{(\sin \theta - \cos \theta)^{2} + (\sin \theta + \cos \theta)^{2}}{(\sin \theta + \cos \theta)(\sin \theta - \cos \theta)}$$

$$= \frac{\sin^{2} \theta + \cos^{2} \theta - 2\sin \theta \cos \theta + \sin^{2} \theta + \cos^{2} \theta + 2\sin \theta \cos \theta}{\sin^{2} \theta - \cos^{2} \theta}$$

$$= \frac{1+1}{\sin^{2} \theta - (1 - \sin^{2} \theta)} = \frac{2}{(2\sin^{2} \theta - 1)} = RHS$$

$$(ii) \frac{\sin \theta + \cos \theta}{\sin \theta - \cos \theta} + \frac{\sin \theta - \cos \theta}{\sin \theta + \cos \theta}$$

$$LHS = \frac{(\sin \theta + \cos \theta)^{2} + (\sin \theta - \cos \theta)^{2}}{\sin^{2} \theta - \cos^{2} \theta}$$

$$= \frac{\sin^{2} \theta + \cos^{2} \theta + 2\cos \theta \sin \theta + \sin^{2} \theta + \cos^{2} \theta - 2\cos \theta \sin \theta}{1 - \cos^{2} \theta - \cos^{2} \theta}$$

$$= \frac{1+1}{1 - 2\cos^{2} \theta} = \frac{2}{(1 - 2\cos^{2} \theta)} = RHS$$

$$\therefore LHS = RHS$$

Question 25.

Solution:

$$LHS = \frac{1 + \cos \theta - \sin^2 \theta}{\sin \theta (1 + \cos \theta)} = \frac{1 + \cos \theta - (1 - \cos^2 \theta)}{\sin \theta (1 + \cos \theta)}$$
$$= \frac{1 + \cos \theta - 1 + \cos^2 \theta}{\sin \theta (1 + \cos \theta)}$$
$$= \frac{\cos \theta (1 + \cos \theta)}{\sin \theta (1 + \cos \theta)} = \frac{\cos \theta}{\sin \theta} = \cot \theta = RHS$$

: LHS = RHS

Question 26.

Solution:

(i)

$$LHS = \frac{(\cos ec\theta + \cot \theta)}{(\cos ec\theta - \cot \theta)} \times \frac{(\cos ec\theta + \cot \theta)}{(\cos ec\theta + \cot \theta)}$$

$$= \frac{(\cos ec\theta + \cot \theta)^{2}}{(\cos ec^{2}\theta - \cot^{2}\theta)} = (\cos ec\theta + \cot \theta)^{2}$$
Further,

$$(\cos ec\theta + \cot \theta)^{2} = \cos ec^{2}\theta + \cot^{2}\theta + 2 \cos ec\theta \cot \theta$$

$$= 1 + \cot^{2}\theta + \cot^{2}\theta + 2 \csc ec\theta \cot \theta$$

$$= 1 + 2 \cot^{2}\theta + 2 \csc ec\theta \cot \theta$$

$$\therefore LHS = RHS$$
(ii) LHS = $\frac{(\sec \theta + \tan \theta)}{(\sec \theta - \tan \theta)} \times \frac{(\sec \theta + \tan \theta)}{(\sec \theta + \tan \theta)}$

$$= \frac{(\sec \theta + \tan \theta)^{2}}{(\sec^{2}\theta - \tan^{2}\theta)} = (\sec \theta + \tan \theta)^{2}$$
Further,

$$(\sec \theta + \tan \theta)^{2} = \sec^{2} \theta + \tan^{2} \theta + 2 \sec \theta \tan \theta$$
$$= 1 + \tan^{2} \theta + \tan^{2} \theta + 2 \sec \theta \tan \theta$$
$$= 1 + 2 \tan^{2} \theta + 2 \sec \theta \tan \theta = RHS$$
$$\therefore LHS = RHS$$

EIndCareer

Question 27.

Solution:

(i)

$$LHS = \frac{1 + \cos \theta + \sin \theta}{1 + \cos \theta - \sin \theta}$$

On dividing the numerator and denominator of LHS by cose, We get

LHS =
$$\frac{\sec\theta + 1 + \tan\theta}{\sec\theta + 1 - \tan\theta}$$

= $\frac{(\sec\theta + \tan\theta) + (\sec^2\theta - \tan^2\theta)}{1 + \sec\theta - \tan\theta}$
writing1 = $(\sec^2\theta - \tan^2\theta)$
= $\frac{(\sec\theta + \tan\theta) + (\sec\theta + \tan\theta)(\sec\theta - \tan\theta)}{(1 + \sec\theta - \tan\theta)}$
= $\frac{(\sec\theta + \tan\theta)(1 + \sec\theta - \tan\theta)}{(1 + \sec\theta - \tan\theta)}$
= $(\sec\theta + \tan\theta) = (\frac{1}{\cos\theta} + \frac{\sin\theta}{\cos\theta})$
= $(\frac{1 + \sin\theta}{\cos\theta}) = RHS$
∴ LHS = RHS

(ii)

CIndCareer

 $LHS = \frac{\sin \theta + 1 - \cos \theta}{\cos \theta - 1 + \sin \theta}$

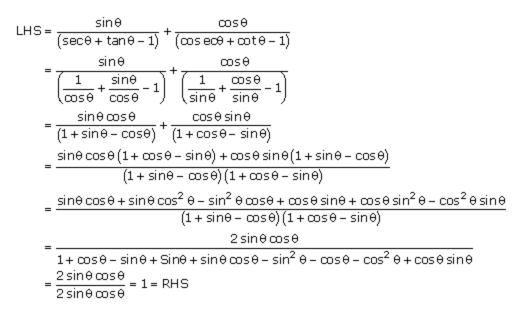
On dividing the numerator and denominator of LHS by cose, We get

$$LHS = \frac{\tan \theta + \sec \theta - 1}{1 - \sec \theta + \tan \theta}$$

= $\frac{(\tan \theta + \sec \theta) - (\sec^2 \theta - \tan^2 \theta)}{(1 - \sec \theta + \tan \theta)}$
(writing $1 = \sec^2 \theta - \tan^2 \theta$)
= $\frac{(\tan \theta + \sec \theta) - (\sec \theta + \tan \theta)(\sec \theta - \tan \theta)}{(1 - \sec \theta + \tan \theta)}$
= $\frac{(\tan \theta + \sec \theta)(1 - \sec \theta + \tan \theta)}{(1 - \sec \theta + \tan \theta)}$
= $\tan \theta + \sec \theta = \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta} = \frac{\sin \theta + 1}{\cos \theta} = RHS$
 $\therefore LHS = RHS$

Question 28.

Solution:



: LHS = RHS

Question 29.

Solution:

$$LHS = \frac{\sin \theta + \cos \theta}{\sin \theta - \cos \theta} + \frac{\sin \theta - \cos \theta}{\sin \theta + \cos \theta}$$
$$= \frac{(\sin \theta + \cos \theta)^{2} + (\sin \theta - \cos \theta)^{2}}{(\sin \theta - \cos \theta)(\sin \theta + \cos \theta)}$$
$$= \frac{(\sin^{2} \theta + \cos^{2} \theta + 2\sin \theta \cos \theta) + (\sin^{2} \theta + \cos^{2} - 2\sin \theta \cos \theta)}{\sin^{2} \theta - \cos^{2} \theta}$$
$$= \frac{(1 + 2\sin \theta \cos \theta) + (1 - 2\sin \theta \cos \theta)}{\sin^{2} \theta - \cos^{2} \theta} [\because \sin^{2} \theta + \cos^{2} \theta = 1]$$
$$= \frac{2}{\sin^{2} \theta - \cos^{2} \theta}$$
$$Also, \frac{2}{\sin^{2} \theta - \cos^{2} \theta} = \frac{2}{\sin^{2} \theta - (1 - \sin^{2} \theta)} = \frac{2}{2\sin^{2} \theta - 1} = RHS$$
$$\therefore RHS = LHS$$

Question 30.

Solution:

$$LHS = \frac{\cos\theta \cos ec\theta - \sin\theta \sec c\theta}{\cos\theta + \sin\theta}$$
$$= \frac{\cos\theta \times \frac{1}{\sin\theta} - \sin\theta \times \frac{1}{\cos\theta}}{\cos\theta + \sin\theta} = \frac{\frac{\cos\theta}{\sin\theta} - \frac{\sin\theta}{\cos\theta}}{(\cos\theta + \sin\theta)}$$
$$= \frac{\cos^2\theta - \sin^2\theta}{\sin\theta\cos\theta(\cos\theta + \sin\theta)}$$
$$= \frac{(\cos\theta + \sin\theta)(\cos\theta - \sin\theta)}{\sin\theta\cos\theta(\cos\theta + \sin\theta)}$$
$$= \frac{\cos\theta}{\sin\theta\cos\theta} - \frac{\sin\theta}{\sin\theta\cos\theta}$$
$$= \cosec\theta - \sec\theta = RHS$$
$$\therefore LHS = RHS$$

Question 31.

Solution:

LHS = (1 + tan θ + cotθ)(sinθ - cosθ)
=
$$\left(1 + \frac{sinθ}{cosθ} + \frac{cosθ}{sinθ}\right)(sinθ - cosθ)$$

= $\left(\frac{cosθsinθ + sin^2 θ + cos^2 θ}{cosθsinθ}\right)(sinθ - cosθ)$
= $\frac{(cosθsinθ + 1)}{cosθsinθ}(sinθ - cosθ)$
RHS = $\left(\frac{secθ}{cosec^2\theta} - \frac{cosecθ}{sec^2\theta}\right) = \left(\frac{\frac{1}{cos\theta}}{\frac{1}{sin^2\theta}} - \frac{\frac{1}{sin\theta}}{\frac{1}{cos^2\theta}}\right)$
= $\left(\frac{sin^2 θ}{cos θ} - \frac{cos^2 θ}{sin\theta}\right) = \frac{sin^3 θ - cos^3 θ}{cosθsin θ}$
= $\frac{(sin\theta - cos\theta)(sin^2 θ + cos^2 θ + cos\theta sin\theta)}{cos\theta sin \theta}$
= $\frac{(sin\theta - cos\theta)(sin^2 θ + cos^2 θ + cos\theta sin\theta)}{cos\theta sin \theta}$
= $\frac{(sin\theta - cos\theta)(1 + cos\theta sin\theta)}{cos\theta sin \theta}$

Question 32.

Solution:

EIndCareer

$$LH.S. = \frac{\cot^2 \theta(\sec \theta - 1)}{(1 + \sin \theta)} + \frac{\sec^2 \theta(\sin \theta - 1)}{(1 + \sec \theta)}$$
$$= \frac{\cot^2 \theta(\sec \theta - 1)(1 + \sec \theta) + \sec^2 \theta(\sin \theta - 1)(1 + \sin \theta)}{(1 + \sin \theta)(1 + \sec \theta)}$$
$$= \frac{\cot^2 \theta(\sec^2 \theta - 1) + \sec^2 \theta(\sin^2 \theta - 1)}{(1 + \sin \theta)(1 + \sec \theta)}$$
$$= \frac{\cot^2 \theta \tan^2 \theta + \sec^2 \theta(-\cos^2 \theta)}{(1 + \sin \theta)(1 + \sec \theta)}$$
$$= \frac{\cot^2 \theta \tan^2 \theta - \sec^2 \theta \cos^2 \theta}{(1 + \sin \theta)(1 + \sec \theta)}$$
$$= \frac{\cot^2 \theta x}{(1 + \sin \theta)(1 + \sec \theta)}$$
$$= \frac{\cot^2 \theta x}{(1 + \sin \theta)(1 + \sec \theta)}$$
$$= \frac{1 - 1}{(1 + \sin \theta)(1 + \sec \theta)}$$
$$= 0$$
$$= R.H.S.$$

Question 33.

Solution:

CIndCareer

LHS =
$$\left[\frac{1}{(\sec^2 \theta - \cos^2 \theta)} + \frac{1}{(\csc^2 \theta - \sin^2 \theta)}\right] \times \sin^2 \theta \cos^2 \theta$$

= $\left[\frac{1}{(\cos^2 \theta - \cos^2 \theta)} + \frac{1}{(\sin^2 \theta - \sin^2 \theta)} + \frac{1}{(\cos^2 \theta - \sin^2 \theta)}\right] \times \sin^2 \theta \cos^2 \theta$
= $\left[\frac{\sin^2 \theta \cos^2 \theta \times \cos^2 \theta}{(1 - \cos^2 \theta)} + \frac{\sin^2 \theta \cos^2 \theta \sin^2 \theta}{1 - \sin^4 \theta}\right]$
= $\left[\frac{\sin^2 \theta \times \cos^4 \theta}{(1 + \cos^2 \theta)(1 - \cos^2 \theta)} + \frac{\sin^4 \theta \cos^2 \theta}{(1 - \sin^2 \theta)(1 + \sin^2 \theta)}\right]$
= $\left[\frac{\cos^4 \theta}{(1 + \cos^2 \theta)} + \frac{\sin^4 \theta}{1 + \sin^2 \theta}\right]$
= $\frac{\cos^4 \theta + \cos^4 \theta \sin^2 \theta + \sin^4 \theta + \sin^4 \theta \cos^2 \theta}{(1 + \cos^2 \theta)(1 + \sin^2 \theta)}$
= $\frac{\cos^4 \theta + \sin^4 \theta + \cos^2 \theta \sin^2 \theta (\cos^2 \theta + \sin^2 \theta)}{1 + \sin^2 \theta + \cos^2 \theta \sin^2 \theta}$
= $\frac{(\cos^2 \theta + \sin^2 \theta)^2 - 2 \cos^2 \theta \sin^2 \theta + \cos^2 \theta \sin^2 \theta}{2 + \cos^2 \theta \sin^2 \theta}$
= $\frac{(\cos^2 \theta + \sin^2 \theta)^2 - 2 \cos^2 \theta \sin^2 \theta + \cos^2 \theta \sin^2 \theta}{2 + \cos^2 \theta \sin^2 \theta}$
= $\frac{1 - \cos^2 \theta \sin^2 \theta}{2 + \cos^2 \theta \sin^2 \theta} = RHS$
∴ LHS = RHS

Question 34.

Solution:

EIndCareer

$$LHS = \frac{\sin A - \sin B}{\cos A + \cos B} + \frac{\cos A - \cos B}{\sin A + \sin B}$$

= $\frac{(\sin A + \sin B)(\sin A - \sin B) + (\cos A + \cos B)(\cos A - \cos B)}{(\cos A + \cos B)(\sin A + \sin B)}$
= $\frac{\sin^2 A - \sin^2 B + \cos^2 A - \cos^2 B}{(\cos A + \cos B)(\sin A + \sin B)}$
= $\frac{(\sin^2 A + \cos^2 A) - (\sin^2 A + \cos^2 B)}{(\cos A + \cos B)(\sin A + \sin B)}$
= $\frac{1 - 1}{(\cos A + \cos B)(\sin A + \sin B)} = 0 = RHS$
 $\therefore LHS = RHS$

Question 35.

Solution:

$$LHS = \frac{\tan A + \tan B}{\cot A + \cot B}$$

$$= \frac{\frac{\sin A}{\cos A} + \frac{\sin B}{\cos B}}{\frac{\cos A}{\sin A} + \frac{\cos B}{\sin B}} = \frac{\frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B}}{\frac{\cos A \sin B + \cos B \sin A}{\sin A \sin B}}$$

$$= \frac{(\sin A \cos B + \sin B \cos A) \times \sin A \sin B}{\cos A \cos B \times (\cos A \sin B + \cos B \sin A)}$$

$$= \frac{\sin A \sin B}{\cos A \cos B} = \tan A \tan B = RHS$$

$$\therefore LHS = RHS$$

Question 36.

Solution:

(i)

EIndCareer

 $\cos^{2}\theta + \cos\theta = 1$ Taking $\theta = 45^{\circ}$, we have L.H.S. = $\cos^{2} 45^{\circ} + \cos 45^{\circ}$ $(1)^{2} = 1$

$$= \left(\frac{1}{\sqrt{2}}\right)^{2} + \frac{1}{\sqrt{2}}$$
$$= \frac{1}{2} + \frac{1}{\sqrt{2}}$$
$$= \frac{\sqrt{2} + 1}{2\sqrt{2}}$$
$$\neq 1$$
$$\neq \text{R.H.S.}$$

(ii)

 $sin^{2} \theta + sin \theta = 2$ Taking $\theta = 45^{\circ}$, we have L.H.S. = $sin^{2} 45^{\circ} + sin 45^{\circ}$ $= \left(\frac{1}{\sqrt{2}}\right)^{2} + \frac{1}{\sqrt{2}}$ $= \frac{1}{2} + \frac{1}{\sqrt{2}}$ $= \frac{\sqrt{2} + 1}{2\sqrt{2}}$ $\neq 2$ $\neq R.H.S.$

(iii)

tan² θ + sin θ = cos² θ
Taking θ = 45°, we have
L.H.S. = tan² 45° + sin 45° = (1)² +
$$\frac{1}{\sqrt{2}}$$
 = 1 + $\frac{1}{\sqrt{2}}$ = $\frac{\sqrt{2} + 1}{\sqrt{2}}$
R.H.S. = cos² 45 = $\left(\frac{1}{\sqrt{2}}\right)^2$ = $\frac{1}{2}$
⇒ L.H.S. ≠ R.H.S.

Question 37.

Solution:

$$L.H.S. = (\sin \theta - 2\sin^3 \theta)$$
$$= \sin \theta (1 - 2\sin^2 \theta)$$
$$= \sin \theta (1 - 2\sin^2 \theta)$$

R.H.S. =
$$(2\cos^3\theta - \cos\theta)\tan\theta$$

= $\cos\theta(2\cos^2\theta - 1)\frac{\sin\theta}{\cos\theta}$
= $[2(1 - \sin^2\theta) - 1]\sin\theta$
= $(2 - 2\sin^2\theta - 1)\sin\theta$
= $(1 - 2\sin^2\theta)\sin\theta$

$$\Rightarrow L.H.S. = R.H.S.$$

:: $(\sin \theta - 2\sin^3 \theta) = (2\cos^3 \theta - \cos \theta) \tan \theta$

Ex 8b

Question 1.

Solution:

$$m = a\cos\theta + b\sin\theta \text{ and } n = a\sin\theta - b\cos\theta$$

$$\therefore LHS = m^{2} + n^{2} = (a\cos\theta + b\sin\theta)^{2} + (a\sin\theta - b\cos\theta)^{2}$$

$$= (a^{2}\cos^{2}\theta + b^{2}\sin^{2}\theta + 2ab\cos\theta\sin\theta)$$

$$+ (a^{2}\sin^{2}\theta + b^{2}\cos^{2}\theta - 2ab\sin\theta\cos\theta)$$

$$= a^{2}(\cos^{2}\theta + \sin^{2}\theta) + b^{2}(\sin^{2}\theta + \cos^{2}\theta)$$

$$= a^{2} + b^{2} = RHS$$

: LHS = RHS

Question 2.

Solution:

$$\begin{aligned} x &= a \sec \theta + b \tan \theta, \text{ and } y &= a \tan \theta + b \sec \theta \\ LHS &= \left(x^2 - y^2\right) = \left(a \sec \theta + b \tan \theta\right)^2 - \left(a \tan \theta + b \sec \theta\right)^2 \\ &= \left(a^2 \sec^2 \theta + b^2 \tan^2 \theta + 2ab \sec \theta \tan \theta\right) \\ &- \left(a^2 \tan^2 \theta + b^2 \sec^2 \theta + 2ab \tan \theta \sec \theta\right) \\ &= a^2 \left(\sec^2 \theta - \tan^2 \theta\right) - b^2 \left(\sec^2 \theta - \tan^2 \theta\right) \\ &= a^2 - b^2 = RHS \\ LHS &= RHS \end{aligned}$$

Question 3.

Solution:

$$\begin{pmatrix} \frac{x}{a}\sin\theta - \frac{y}{b}\cos\theta \end{pmatrix} = 1 \text{ and } \begin{pmatrix} \frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta \end{pmatrix} = 1 \text{Now, } \begin{pmatrix} \frac{x}{a}\sin\theta - \frac{y}{b}\cos\theta \end{pmatrix} = 1 (\text{Squaring both sides, we get}) \frac{x^2}{a^2}\sin^2\theta + \frac{y^2}{b^2}\cos^2\theta - \frac{2xy}{ab}\sin\theta\cos\theta = 1 - - - - - (1) \begin{pmatrix} \frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta \end{pmatrix} = 1 (\text{Squaring both sides, we get}) \frac{x^2}{a^2}\cos^2\theta + \frac{y^2}{b^2}\sin^2\theta + \frac{2xy}{ab}\sin\theta\cos\theta = 1 - - - - - (2) \text{Adding (1) & (2), we get} \frac{x^2}{a^2}\left(\sin^2\theta + \cos^2\theta\right) + \frac{y^2}{b^2}\left(\sin^2\theta + \cos^2\theta\right) = 2 \frac{x^2}{a} + \frac{y^2}{b} = 2(\text{proved})$$

Question 4.

Solution:

```
(\sec\theta + \tan\theta) = m, (\sec\theta - \tan\theta) = n

LHS = mn = (\sec\theta + \tan\theta)(\sec\theta - \tan\theta)

= \sec^2 \theta - \tan^2 \theta = 1 = RHS

\therefore LHS = RHS
```

Question 5.

Solution:

```
\begin{aligned} (\cos \sec \theta + \cot \theta) &= m, \ (\cos \sec \theta - \cot \theta) &= n \\ LHS &= mn = (\cos \sec \theta + \cot \theta) \times (\cos \sec \theta - \cot \theta) \\ &= \cos \sec^2 \theta - \cot^2 \theta = 1 = RHS \\ \therefore LHS &= RHS \end{aligned}
```

Question 6.

Solution:

EIndCareer

$$x = a\cos^{3}\theta, y = b\sin^{3}\theta$$

$$LHS = \left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{b}\right)^{\frac{2}{3}} = \left(\frac{a\cos^{3}\theta}{a}\right)^{\frac{2}{3}} + \left(\frac{b\sin^{3}\theta}{b}\right)^{\frac{2}{3}}$$

$$= \left(\cos^{3}\theta\right)^{\frac{2}{3}} + \left(\sin^{3}\theta\right)^{\frac{2}{3}} = \left(\cos\theta\right)^{3\times\frac{2}{3}} + \left(\sin\theta\right)^{3\times\frac{2}{3}}$$

$$= \cos^{2}\theta + \sin^{2}\theta = 1 = RHS$$

LHS = RHS

Question 7.

Solution:

$$\begin{aligned} (\tan\theta + \sin\theta) &= m \quad \text{and} \ (\tan\theta - \sin\theta) = n \\ \text{LHS} &= \left(m^2 - n^2\right)^2 \\ &= \left[\left(\tan\theta + \sin\theta\right)^2 - \left(\tan\theta - \sin\theta\right)^2 \right]^2 \\ &= \left[4\tan\theta\sin\theta \right]^2 \quad \left[\because (a+b)^2 - (a-b)^2 = 4ab \right] \\ &= 16\tan^2\theta\sin^2\theta \quad ----(1) \\ \text{RHS} &= 16\text{mn} = 16\left(\tan\theta + \sin\theta\right)(\tan\theta - \sin\theta) \\ &= 16\left(\tan^2\theta - \sin^2\theta\right) = 16\left(\frac{\sin^2\theta}{\cos^2\theta} - \sin^2\theta\right) \\ &= 16\left(\frac{\sin^2\theta - \sin^2\theta\cos^2\theta}{\cos^2\theta}\right) \\ &= 16\left(\frac{\sin^2\theta (1 - \cos^2\theta)}{\cos^2\theta} \quad \left[\because 1 - \cos^2\theta = \sin^2\theta \right] \\ &= 16\frac{\sin^2\theta}{\cos^2\theta} \times \sin^2\theta \\ \text{RHS} &= 16\tan^2\sin^2\theta - ----(2) \\ &\therefore \text{ LHS} = \text{RHS} \end{aligned}$$

Question 8.

Solution:

CIndCareer

 $\begin{aligned} (\cot \theta + \tan \theta) &= m \text{ and } (\sec \theta - \cos \theta) = n \\ \Rightarrow \left(\frac{1}{\tan \theta} + \tan \theta\right) &= m \text{ and } \left(\frac{1}{\cos \theta} - \cos \theta\right) = n \\ \Rightarrow \left(\frac{1 + \tan^2 \theta}{\tan \theta}\right) &= m \text{ and } \frac{\left(1 - \cos^2 \theta\right)}{\cos \theta} = n \\ \Rightarrow \left(\frac{\sec^2 \theta}{\tan \theta}\right) &= m \text{ and } \frac{\sin^2 \theta}{\cos \theta} = n \\ \Rightarrow \frac{1}{\cos^2 \theta \times \frac{\sin \theta}{\cos \theta}} &= m \text{ and } \frac{\sin^2 \theta}{\cos \theta} = n \\ \Rightarrow \frac{1}{\cos^2 \theta \times \frac{\sin \theta}{\cos \theta}} &= m \text{ and } \frac{\sin^2 \theta}{\cos \theta} = n \\ \therefore \left(m^2 n\right)^2 - \left(mn^2\right)^2 = \left[\frac{1}{\cos^2 \theta \sin^2 \theta} \times \frac{\sin^2 \theta}{\cos^2 \theta}\right]^2 \\ &\quad - \left[\frac{1}{\cos^2 \theta \sin^2 \theta} \times \frac{\sin^2 \theta}{\cos^2 \theta}\right]^2 \\ &\quad = \left(\frac{1}{\cos^3 \theta}\right)^2 - \left(\frac{\sin^3 \theta}{\cos^2 \theta}\right)^2 = \frac{1}{\cos^2 \theta} - \frac{\sin^2 \theta}{\cos^2 \theta} \\ &\quad = \sec^2 \theta - \tan^2 \theta = 1 \quad \left[\because \sec^2 \theta = 1 + \tan^2 \theta\right] \\ \text{Hence}_r \left(m^2 n\right)^2 = (mn^2)^2 = 1 \end{aligned}$

Question 9.

Solution:

$$\cos \sec \theta - \sin \theta = a^{3}$$

$$\Rightarrow a^{3} = \frac{1}{\sin \theta} - \sin \theta = \frac{1 - \sin^{2} \theta}{\sin \theta} = \frac{\cos^{2} \theta}{\sin \theta}$$

$$\Rightarrow a = \frac{\cos^{\frac{2}{3}}}{\sin^{\frac{1}{3}}}$$

$$\sec \theta - \cos \theta = b^{3}$$

$$\Rightarrow b^{3} = \frac{1}{\cos \theta} - \cos \theta = \frac{1 - \cos^{2} \theta}{\cos \theta} = \frac{\sin^{2} \theta}{\cos \theta}$$

$$\Rightarrow b = \frac{\sin^{\frac{2}{3}}}{\cos^{\frac{1}{3}}}$$

$$\therefore L.H.S. = a^{2}b^{2}(a^{2} + b^{2})$$

$$= = 1.$$

Question 10.

Solution:

```
\begin{array}{l} (2\sin\theta + 3\cos\theta)^2 + (3\sin\theta - 2\cos\theta) \\ = 4\sin^2\theta + 9\cos^2\theta + 12\sin\theta\cos\theta + 9\sin^2\theta + 4\cos^2\theta - 12\sin\theta\cos\theta \\ = 13\sin^2\theta + 12\cos^2\theta \\ = 13(\sin^2\theta + \cos^2\theta) \\ = 13 \end{array}
```

```
Now,

(2\sin\theta + 3\cos\theta)^{2} + (3\sin\theta - 2\cos\theta) = 13
\Rightarrow (2)^{2} + (3\sin\theta - 2\cos\theta)^{2} = 13
\Rightarrow 4 + (3\sin\theta - 2\cos\theta)^{2} = 13
\Rightarrow (3\sin\theta - 2\cos\theta)^{2} = 9
\Rightarrow 3\sin\theta - 2\cos\theta = \pm 3.
```

Question 11.

Solution:

@IndCareer

$$\sin \theta + \cos \theta = \sqrt{2} \cos \theta$$

$$\Rightarrow 1 + \cot \theta = \sqrt{2} \cot \theta \qquad \dots \text{(Dividing both sides by sin }\theta\text{)}$$

$$\Rightarrow (\sqrt{2} - 1) \cot \theta = 1$$

$$\Rightarrow \cot \theta = \frac{1}{\sqrt{2} - 1}$$

$$\Rightarrow \cot \theta = \frac{1}{\sqrt{2} - 1} \times \frac{\sqrt{2} + 1}{\sqrt{2} + 1}$$

$$\Rightarrow \cot \theta = \frac{\sqrt{2} + 1}{(\sqrt{2})^2 - 1^2}$$

$$\Rightarrow \cot \theta = \frac{\sqrt{2} + 1}{2 - 1}$$

$$\Rightarrow \cot \theta = \frac{\sqrt{2} + 1}{2 - 1}$$

Question 12.

Solution:

$$\cos \theta + \sin \theta = \sqrt{2} \sin \theta$$

$$\Rightarrow (\cos \theta + \sin \theta)^2 = (\sqrt{2} \sin \theta)^2$$

$$\Rightarrow \cos^2 \theta + \sin^2 \theta + 2\sin \theta \cos \theta = 2\sin^2 \theta$$

$$\Rightarrow \sin^2 \theta - 2\sin \theta \cos \theta = \cos^2 \theta$$

$$\Rightarrow \sin^2 \theta - 2\sin \theta \cos \theta + \cos^2 \theta = \cos^2 \theta + \cos^2 \theta$$

$$\Rightarrow (\sin \theta - \cos \theta)^2 = 2\cos^2 \theta$$

$$\Rightarrow \sin \theta - \cos \theta = \sqrt{2} \cos \theta$$

Question 13.

Solution:

©IndCareer

```
Given, \sec\theta + \tan\theta = p
                                                                      Given, \sec\theta + \tan\theta = p
\Rightarrow tan \theta = p - sec \theta ....(i)
                                                                      \Rightarrow sec \theta = p - \tan \theta ....(i)
Now.
                                                                      Now.
\sec^2 \theta - \tan^2 \theta = 1
                                                                      \sec^2 \theta - \tan^2 \theta = 1
\Rightarrow (\sec \theta + \tan \theta)(\sec \theta - \tan \theta) = 1 \Rightarrow (\sec \theta + \tan \theta)(\sec \theta - \tan \theta) = 1
\Rightarrow p(\sec \theta - \tan \theta) = 1
                                                                      \Rightarrow p(\sec \theta - \tan \theta) = 1
\Rightarrow \sec \theta - \tan \theta = \frac{1}{p} \qquad \dots (ii) \Rightarrow \sec \theta - \tan \theta = \frac{1}{p}
                                                                                                               ....(iii)
From (i) and (ii),
                                                                      From (i) and (ii),
\sec \theta - p + \sec \theta = \frac{1}{p}
                                                                     p - \tan \theta - \tan \theta = \frac{1}{p}
\Rightarrow 2\sec\theta - p = \frac{1}{p}
                                                                     \Rightarrow p - 2 tan \theta = \frac{1}{p}
\Rightarrow 2\sec\theta = p + \frac{1}{p}
                                                                     \Rightarrow 2 \tan \theta = p - \frac{1}{p}
                                                                     \Rightarrow \tan \theta = \frac{1}{2} \left( p - \frac{1}{p} \right)
\Rightarrow \sec \theta = \frac{1}{2} \left( p + \frac{1}{p} \right)
```


EIndCareer

```
Given, \sec\theta + \tan\theta = p
  \Rightarrow sec \theta = p - tan \theta ....(i)
  \Rightarrow tan \theta = p - sec \theta ....(ii)
 Now.
  \sec^2 \theta - \tan^2 \theta = 1
  \Rightarrow (sec \theta + tan \theta)(sec \theta - tan \theta) = 1
  \Rightarrow p(sec\theta - tan \theta) = 1
 \Rightarrow sec \theta - tan \theta = \frac{1}{p}
                                                       ....(iii)
 From (i) and (iii),
 p - \tan \theta - \tan \theta = \frac{1}{p}
 \Rightarrow p - 2 tan \theta = \frac{1}{p}
 \Rightarrow 2 \tan \theta = p - \frac{1}{p}
 \Rightarrow \tan \theta = \frac{1}{2} \left( p - \frac{1}{p} \right)
 From (ii) and (iii),
 \sec\theta - p + \sec\theta = \frac{1}{p}
 \Rightarrow 2 \sec \theta - p = \frac{1}{p}
 \Rightarrow 2 \sec \theta = p + \frac{1}{p}
 \Rightarrow \sec \theta = \frac{1}{2} \left( p + \frac{1}{p} \right)
Now, \sin \theta = \frac{\tan \theta}{\sec \theta} = \frac{\frac{1}{2}\left(p - \frac{1}{p}\right)}{\frac{1}{2}\left(p + \frac{1}{p}\right)} = \frac{\left(\frac{p^2 - 1}{p}\right)}{\left(\frac{p^2 + 1}{p}\right)} = \frac{p^2 - 1}{p^2 + 1}
```

Question 14.

Solution:

@IndCareer

 $\begin{aligned} \tan A &= n \tan B \text{ and } \sin A = m \sin B \\ \Rightarrow \tan B &= \frac{1}{n} \tan A \text{ and } \sin B = \frac{1}{m} \sin A \\ \Rightarrow \cot B &= \frac{n}{\tan A} \text{ and } \cos ecB = \frac{m}{\sin A} \\ \therefore \cos ec^2 B - \cot^2 B &= 1 \\ \Rightarrow \frac{m^2}{\sin^2 A} - \frac{n^2}{\tan^2 A} &= 1 \\ \Rightarrow \frac{m^2}{\sin^2 A} - \frac{n^2 \cos^2 A}{\sin^2 A} &= 1 \Rightarrow \frac{m^2 - n^2 \cos^2 A}{\sin^2 A} &= 1 \\ \Rightarrow m^2 - n^2 \cos^2 A &= \sin^2 A \Rightarrow m^2 - n^2 \cos^2 A &= 1 - \cos^2 A \\ \Rightarrow m^2 - 1 &= n^2 \cos^2 A - \cos^2 A \\ \Rightarrow m^2 - 1 &= \cos^2 A \left(n^2 - 1\right) \\ \Rightarrow \cos^2 A &= \frac{\left(m^2 - 1\right)}{\left(n^2 - 1\right)} \end{aligned}$

Question 15.

Solution:

$$m = (\cos \theta - \sin \theta) \text{ and } n = (\cos \theta + \sin \theta)$$
L.H.S. = $\sqrt{\frac{m}{n}} + \sqrt{\frac{n}{m}} = \frac{m + n}{\sqrt{mn}}$
Now,
 $m + n = (\cos \theta - \sin \theta) + (\cos \theta + \sin \theta) = 2\cos \theta$
 $mn = (\cos \theta - \sin \theta)(\cos \theta + \sin \theta) = \cos^2 \theta - \sin^2 \theta$
 \therefore L.H.S. = $\frac{m + n}{\sqrt{mn}}$
 $= \frac{2\cos \theta}{\sqrt{\cos^2 \theta - \sin^2 \theta}}$
 $= \frac{2\cos \theta}{\sqrt{\cos^2 \theta - \sin^2 \theta}}$
 $= \frac{2\cos^2 \theta}{\sqrt{\cos^2 \theta - \sin^2 \theta}}$
 $= \frac{2}{\sqrt{1 - \tan^2 \theta}}$
 $= R.H.S.$

Ex 8c

Question 1.

Solution:

$$(1 - \sin^2 \theta) \sec^2 \theta$$

= $\cos^2 \theta \times \frac{1}{\cos^2 \theta}$
= 1

Question 2.

Solution:

$$(1 - \cos^2 \theta) \csc^2 \theta$$

= $\sin^2 \theta \times \frac{1}{\sin^2 \theta}$
= 1

EIndCareer

Question 3.

Solution:

$$(1 + \tan^2 \theta) \cos^2 \theta$$
$$= \sec^2 \theta \times \frac{1}{\sec^2 \theta}$$
$$= 1$$

Question 4.

Solution:

$$(1 + \cot^2 \theta) \sin^2 \theta$$
$$= \cos ec^2 \theta \times \frac{1}{\csc^2 \theta}$$
$$= 1$$

Question 5.

Solution:

$$\sin^{2}\theta + \frac{1}{1 + \tan^{2}\theta}$$
$$= \sin^{2}\theta + \frac{1}{\sec^{2}\theta}$$
$$= \sin^{2}\theta + \frac{1}{\frac{1}{\cos^{2}\theta}}$$
$$= \sin^{2}\theta + \cos^{2}\theta$$
$$= 1$$

Question 6.

Solution:

$$\cot^{2}\theta + \frac{1}{\sin^{2}\theta}$$

$$= \frac{\cos^{2}\theta}{\sin^{2}\theta} - \frac{1}{\sin^{2}\theta}$$

$$= \frac{\cos^{2}\theta - 1}{\sin^{2}\theta}$$

$$= \frac{-\sin^{2}\theta}{\sin^{2}\theta} \qquad \dots (\sin^{2}\theta + \cos^{2}\theta = 1)$$

$$= -1$$

Question 7.

Solution:

 $sin \theta cos (90^{\circ} - \theta) + cos \theta sin (90^{\circ} - \theta)$ = sin \theta x sin \theta + cos \theta x cos \theta = sin^{2} \theta + cos^{2} \theta = 1

Question 8.

Solution:

 $\csc^2(90^\circ - \theta) - \tan^2 \theta$ = $\sec^2\theta - \tan^2 \theta$ = 1

Question 9.

Solution:

$$\sec^{2} \theta(1 + \sin \theta)(1 - \sin \theta)$$

= $\sec^{2} \theta(1 - \sin^{2} \theta)$
= $\sec^{2} \theta x \cos^{2} \theta$
= $\frac{1}{\cos^{2} \theta} x \cos^{2} \theta$
= 1

Question 10.

Solution:

```
\csc^{2} \theta(1 + \cos \theta)(1 - \cos \theta)= \csc^{2} \theta(1 - \cos^{2} \theta)= \csc^{2} \theta \times \sin^{2} \theta= \frac{1}{\sin^{2} \theta} \times \sin^{2} \theta= 1
```

Question 11.

Solution:

$$sin^{2} \theta \cos^{2} \theta (1 + tan^{2} \theta) (1 + \cot^{2} \theta)$$

= $sin^{2} \theta x \cos^{2} \theta x \sec^{2} \theta x \csc^{2} \theta$
= $sin^{2} \theta x \cos^{2} \theta x \frac{1}{\cos^{2} \theta} x \frac{1}{\sin^{2} \theta}$
= 1

Question 12.

Solution:

 $(1 + \tan^2 \theta)(1 + \sin \theta)(1 - \sin \theta)$ = $\sec^2 \theta(1 - \sin^2 \theta)$ = $\sec^2 \theta \times \cos^2 \theta$ = $\frac{1}{\cos^2 \theta} \times \cos^2 \theta$ = 1

Question 13.

Solution:

EIndCareer

 $3\cot^2\theta - 3\csc^2\theta$ $= 3(\cot^2\theta - \cos ec^2\theta)$ $= 3 \times (-1)$ = -3

Question 14.

Solution:

$$4\tan^2 \theta - \frac{4}{\cos^2 \theta}$$
$$= 4\frac{\sin^2 \theta}{\cos^2 \theta} - \frac{4}{\cos^2 \theta}$$
$$= \frac{4\sin^2 \theta - 4}{\cos^2 \theta}$$
$$= \frac{4(\sin^2 \theta - 1)}{\cos^2 \theta}$$
$$= \frac{4 \times (-\cos^2 \theta)}{\cos^2 \theta}$$
$$= -4$$

Question 15.

Solution:

$$\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - \cos \sec^2 \theta}$$

= $\frac{-1}{-1}$ (1 + $\tan^2 \theta$ = $\sec^2 \theta$ and 1 + $\cot^2 \theta$ = $\csc^2 \theta$)
= 1

Question 16.

Solution:

©IndCareer

$$\sin \theta = \frac{1}{2} \Rightarrow \sin^2 \theta = \frac{1}{4}$$

$$\therefore 3 \cot^2 \theta + 3 = \frac{3 \cos^2 \theta}{\sin^2 \theta} + 3$$
$$= \frac{3 \cos^2 \theta + 3 \sin^2 \theta}{\sin^2 \theta}$$
$$= \frac{3(\cos^2 \theta + \sin^2 \theta)}{\sin^2 \theta}$$
$$= \frac{3 \times 1}{\frac{1}{4}}$$
$$= 3 \times 4$$
$$= 12$$

Question 17.

Solution:

$$\cos \theta = \frac{2}{3} \Rightarrow \cos^2 \theta = \frac{4}{9}$$

$$\therefore 4 + 4 \tan^2 \theta = 4(1 + \tan^2 \theta)$$

$$= 4\left(1 + \frac{\sin^2 \theta}{\cos^2 \theta}\right)$$

$$= 4\left(\frac{\cos^2 \theta + \sin^2 \theta}{\cos^2 \theta}\right)$$

$$= 4 \times \frac{1}{\cos^2 \theta}$$

$$= 4 \times \frac{1}{\frac{4}{9}}$$

$$= 9$$

Question 18.

Solution:

CIndCareer

$$\cos\theta = \frac{7}{25} \Rightarrow \cos^2 \theta = \frac{49}{625}$$
$$\Rightarrow \sin^2 \theta = 1 - \sin^2 \theta = 1 - \frac{49}{625} = \frac{576}{625}$$
$$\Rightarrow \sin\theta = \frac{24}{25}$$
$$\tan\theta + \cot\theta$$
$$= \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}$$
$$= \frac{\sin^2 \theta + \cos^2 \theta}{\sin\theta \cos\theta}$$
$$= \frac{1}{\frac{24}{25} \times \frac{7}{25}}$$
$$= \frac{625}{168}$$

Question 19.

Solution:

$$\cos \theta = \frac{2}{3}$$
$$\Rightarrow \sec \theta = \frac{1}{\cos \theta} = \frac{3}{2}$$
$$\frac{\sec \theta - 1}{\sec \theta + 1} = \frac{\frac{3}{2} - 1}{\frac{3}{2} + 1} = \frac{\frac{3 - 2}{2}}{\frac{3 + 2}{2}} = \frac{1}{5}$$

Question 20.

Solution:

5tanθ = 4				
$\Rightarrow \tan \theta = \frac{4}{5}$				
	cosθ_ sinθ		1 _ 4	5-4
cos e – sin e _		<u>1-tan0</u>	<u> </u>	1
cos 0 + sin 0	cosθ_sinθ¯	1+tanθ	4	5+4 9
	ငတ္ခေ တြန္မ		175	5

Question 21.

Solution:

3cot θ = 4							
$\Rightarrow \cot \theta = \frac{4}{3}$							
$\frac{2\cos\theta + \sin\theta}{4\cos\theta - \sin\theta} =$	$\frac{\frac{2\cos\theta}{\sin\theta}}{\frac{4\cos\theta}{\sin\theta}}$	sine sine sine sine	$\frac{2\cot\theta+1}{4\cot\theta-1} =$	$=\frac{2\times\frac{4}{3}+1}{4\times\frac{4}{3}-1}=$	$=\frac{\frac{8}{3}+1}{\frac{16}{3}-1}=$	$\frac{\frac{8+3}{3}}{\frac{16-3}{3}} =$	<u>11</u> 13

Question 22.

Solution:

$$\cot \theta = \frac{1}{\sqrt{3}} \Rightarrow \cot^2 \theta = \frac{1}{3}$$
Now, 1 + $\cot^2 \theta = \csc^2 \theta$

$$\Rightarrow \csc^2 \theta = 1 + \frac{1}{3} = \frac{3+1}{3} = \frac{4}{3}$$

$$\Rightarrow \sin^2 \theta = \frac{1}{\csc^2 \theta} = \frac{3}{4}$$

$$\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta} = \frac{\sin^2 \theta}{2 - \sin^2 \theta} = \frac{\frac{3}{4}}{2 - \frac{3}{4}} = \frac{\frac{3}{4}}{\frac{8-3}{4}} = \frac{\frac{3}{4}}{\frac{5}{4}} = \frac{3}{5}$$

Question 23.

Solution:

 $\tan \theta = \frac{1}{\sqrt{5}} \Rightarrow \tan^2 \theta = \frac{1}{5}$ $\Rightarrow \sec^2 \theta = 1 + \tan^2 \theta = 1 + \frac{1}{5} = \frac{5+1}{5} = \frac{6}{5}$ $\cot \theta = \frac{1}{\tan \theta} = \frac{1}{\frac{1}{\sqrt{5}}} = \sqrt{5}$ $Now, \cos \sec^2 \theta = 1 + \cot^2 \theta = 1 + \left(\sqrt{5}\right)^2 = 1 + 5 = 6$ $\therefore \frac{\csc^2 \theta - \sec^2 \theta}{\csc^2 \theta + \sec^2 \theta} = \frac{6 - \frac{6}{5}}{6 + \frac{6}{5}} = \frac{\frac{30 - 6}{5}}{\frac{30 + 6}{5}} = \frac{24}{36} = \frac{2}{3}$

Question 24.

Solution:

Given, cot A =
$$\frac{4}{3}$$

A + B = 90°
 \Rightarrow A = 90° - B
 \Rightarrow cot A = cot(90° - B)
 \Rightarrow cot A = tan B
 \Rightarrow cot A = tan B = $\frac{4}{3}$

Question 25.

Solution:

Given,
$$\cos B = \frac{3}{5}$$

 $A + B = 90^{\circ}$
 $\Rightarrow B = 90^{\circ} - A$
 $\Rightarrow \cos B = \cos(90^{\circ} - A)$
 $\Rightarrow \cos B = \sin A$
 $\Rightarrow \cos B = \sin A = \frac{3}{5}$

Question 26.

Solution:

 $\sqrt{3} \sin \theta = \cos \theta$ $\Rightarrow \frac{\sin \theta}{\cos \theta} = \frac{1}{\sqrt{3}}$ $\Rightarrow \tan \theta = \frac{1}{\sqrt{3}}$ $\Rightarrow \tan \theta = \tan 30^{\circ}$ $\Rightarrow \theta = 30^{\circ}$

Question 27.

Solution:

tan 10° tan 20° tan 70° tan 80°
= tan 10° x tan 20° x tan (90° - 20°) x tan (90° - 10°)
= tan 10° x tan 20° x cot 20° x cot 10°
= (tan 10° cot 10°)(tan 20° cot 20°)
= 1 x 1
= 1

Question 28.

Solution:

```
tan 1° tan 2° .....tan 89°
= [tan 1° tan 89°][tan 2° tan 88°] ......[tan 44° tan 66°]tan 45°
= [tan 1° tan (90° - 1°)][tan 2° tan (90° - 2°)]....[tan 44° tan (90° - 44°)](1)
= [tan 1° cot 1°][tan 2° cot 2°]....[tan 44° cot 44°]
= 1 × 1 × ...... × 1
= 1
```

Question 29.

Solution:

Since $\cos 90^\circ = 0$, $\cos 1^\circ \cos 2^\circ \cos 3^\circ \dots \cos 90^\circ \dots \cos 180^\circ = 0$

Question 30.

Solution:

Given,
$$\tan A = \frac{5}{12}$$

$$\therefore (\sin A + \cos A) \sec A$$

$$= (\sin A + \cos A) \times \frac{1}{\cos A}$$

$$= \frac{\sin A}{\cos A} + \frac{\cos A}{\cos A}$$

$$= \tan A + 1$$

$$= \frac{5}{12} + 1$$

$$= \frac{5 + 12}{12}$$

$$= \frac{17}{12}$$

Question 31.

Solution:

 $sin \theta = cos (\theta - 45^{\circ})$ $\Rightarrow cos (90^{\circ} - \theta) = cos(\theta - 45^{\circ})$ $\Rightarrow 90^{\circ} - \theta = \theta - 45^{\circ}$ $\Rightarrow 2\theta = 135^{\circ}$ $\Rightarrow \theta = 67.5^{\circ}$

Question 32.

Solution:

$$\frac{\sin 50^{\circ}}{\cos 40^{\circ}} + \frac{\csc 40^{\circ}}{\sec 50^{\circ}} - 4\cos 50^{\circ} \csc 40^{\circ}$$

$$= \frac{\sin (90^{\circ} - 40^{\circ})}{\cos 40^{\circ}} + \frac{\csc (90^{\circ} - 50^{\circ})}{\sec 50^{\circ}} - 4\cos 50^{\circ} \csc (90^{\circ} - 50^{\circ})$$

$$= \frac{\cos 40^{\circ}}{\cos 40^{\circ}} + \frac{\sec 50^{\circ}}{\sec 50^{\circ}} - 4\cos 50^{\circ} \sec 50^{\circ}$$

$$= 1 + 1 - 4\cos 50^{\circ} \times \frac{1}{\cos 50^{\circ}}$$

$$= 2 - 4 \times 1$$

$$= 2 - 4$$

Question 33.

Solution:

 $sin 48^{\circ} sec 42^{\circ} + cos 48^{\circ} cosec 42^{\circ}$ = sin 48^{\circ} sec (90^{\circ} - 48^{\circ}) + cos 48^{\circ} cosec (90^{\circ} - 48^{\circ}) = sin 48^{\circ} cos ec 48^{\circ} + cos 48^{\circ} sec 48^{\circ} = sin 48° x $\frac{1}{sin 48^{\circ}}$ + cos 48° x $\frac{1}{cos 48^{\circ}}$ = 1 + 1 = 2

Question 34.

Solution:

x = asin θ and y = bcos θ Now, $b^2x^2 + a^2y^2$ = $b^2(asin \theta)^2 + a^2(bcos \theta)^2$ = $a^2b^2sin^2\theta + a^2b^2cos^2\theta$ = $a^2b^2(sin^2\theta + cos^2\theta)$ = $a^2b^2 \times 1$ = a^2b^2

@IndCareer

Question 35.

Solution:

Given,
$$5x = \sec \theta$$
 and $\frac{5}{x} = \tan \theta$
We know that,
 $1 + \tan^2 \theta = \sec^2 \theta$
 $\Rightarrow 1 + \left(\frac{5}{x}\right)^2 = (5x)^2$
 $\Rightarrow 1 + \frac{25}{x^2} = 25x^2$
 $\Rightarrow 25x^2 - \frac{25}{x^2} = 1$
 $\Rightarrow 25\left(x^2 - \frac{1}{x^2}\right) = 1$
 $\Rightarrow 5\left(x^2 - \frac{1}{x^2}\right) = \frac{1}{5}$

Question 36.

Solution:

Given, cosec
$$\theta = 2x$$
 and $\cot \theta = \frac{2}{x}$
We know that
 $\csc^2 \theta - \cot^2 \theta = 1$
 $\Rightarrow (2x)^2 - \left(\frac{2}{x}\right)^2 = 1$
 $\Rightarrow 4x^2 - \frac{4}{x^2} = 1$
 $\Rightarrow 4\left(x^2 - \frac{1}{x^2}\right) = 1$
 $\Rightarrow 2x 2\left(x^2 - \frac{1}{x^2}\right) = 1$
 $\Rightarrow 2\left(x^2 - \frac{1}{x^2}\right) = 1$

Question 37.

Solution:

```
sec \theta + tan \theta = x ....(i)

Now, sec<sup>2</sup> \theta - tan<sup>2</sup> \theta = 1

\Rightarrow (sec \theta + tan \theta)(sec\theta - tan \theta) = 1

\Rightarrow x(sec\theta - tan \theta) = 1

\Rightarrow sec\theta - tan \theta = \frac{1}{x} ....(ii)

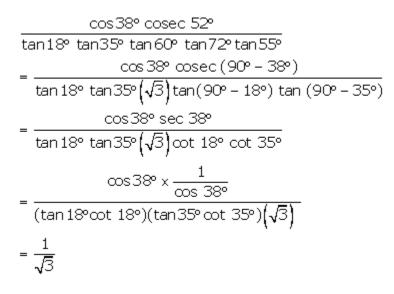
Adding (i) and (ii), we get

2 \sec \theta = x + \frac{1}{x}

\Rightarrow \sec \theta = \frac{1}{2} \left( x + \frac{1}{x} \right) = \frac{1}{2} \left( \frac{x^2 + 1}{x} \right) = \frac{x^2 + 1}{2x}
```

Question 38.

Solution:



Question 39.

Solution:

EIndCareer

$$\sin \theta = x$$

$$\Rightarrow \sin^{2} \theta = x^{2}$$

$$\Rightarrow \cos^{2} \theta = 1 - \sin^{2} \theta = 1 - x^{2}$$

$$\Rightarrow \cos \theta = \sqrt{1 - x^{2}}$$

Now, $\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{\sqrt{1 - x^{2}}}{x}$

Question 40.

Solution:

sec $\theta = x$ $\Rightarrow \frac{1}{\cos \theta} = x$ $\Rightarrow \cos \theta = \frac{1}{x}$ $\Rightarrow \cos^{2} \theta = \frac{1}{x^{2}}$ $\Rightarrow \sin^{2} \theta = 1 - \cos^{2} \theta = 1 - \frac{1}{x^{2}} = \frac{x^{2} - 1}{x}$ $\Rightarrow \sin \theta = \frac{\sqrt{x^{2} - 1}}{x}$ Now, $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sqrt{x^{2} - 1}}{\frac{1}{x}} = \sqrt{x^{2} - 1}$

RS Aggarwal Class 10 Solutions

- <u>Chapter 1–Real Numbers</u>
- <u>Chapter 2–Polynomials</u>
- <u>Chapter 3–Linear Equations</u> <u>In Two Variables</u>
- <u>Chapter 4–Quadratic</u> <u>Equations</u>
- <u>Chapter 5–Arithmetic</u> <u>Progression</u>
- <u>Chapter 6–Coordinate</u> <u>Geometry</u>
- <u>Chapter 7–Triangles</u>
- <u>Chapter 8–Circles</u>
- <u>Chapter 9–Constructions</u>
- <u>Chapter 10–Trigonometric</u> <u>Ratios</u>

- <u>Chapter 11–T Ratios Of</u> <u>Some Particular Angles</u>
- <u>Chapter 12–Trigonometric</u>
 <u>Ratios Of Some</u>
 <u>Complementary Angles</u>
- <u>Chapter 13–Trigonometric</u> <u>Identities</u>
- <u>Chapter 14–Height and</u> <u>Distance</u>
- <u>Chapter 15–Perimeter and</u> <u>Areas of Plane Figures</u>
- <u>Chapter 16–Areas of Circle,</u> <u>Sector and Segment</u>
- <u>Chapter 17–Volume and</u> <u>Surface Areas of Solids</u>
- <u>Chapter 18–Mean, Median,</u> <u>Mode of Grouped Data</u>
- <u>Chapter 19–Probability</u>

About RS Aggarwal Class 10 Book

Investing in an R.S. Aggarwal book will never be of waste since you can use the book to prepare for various competitive exams as well. RS Aggarwal is one of the most prominent books with an endless number of problems. R.S. Aggarwal's book very neatly explains every derivation, formula, and question in a very consolidated manner. It has tonnes of examples, practice questions, and solutions even for the NCERT questions.

He was born on January 2, 1946 in a village of Delhi. He graduated from Kirori Mal College, University of Delhi. After completing his M.Sc. in Mathematics in 1969, he joined N.A.S. College, Meerut, as a lecturer. In 1976, he was awarded a fellowship for 3 years and joined the University of Delhi for his Ph.D. Thereafter, he was promoted as a reader in N.A.S. College, Meerut. In 1999, he joined M.M.H. College, Ghaziabad, as a reader and took voluntary retirement in 2003. He has authored more than 75 titles ranging from Nursery to M. Sc. He has also written books for competitive examinations right from the clerical grade to the I.A.S. level.

Frequently Asked Questions (FAQs)

Why must I refer to the RS Aggarwal textbook?

RS Aggarwal is one of the most important reference books for high school grades and is recommended to every high school student. The book covers every single topic in detail. It goes in-depth and covers every single aspect of all the mathematics topics and covers both theory and problem-solving. The book is true of great help for every high school student. Solving a majority of the questions from the book can help a lot in understanding topics in detail and in a manner that is very simple to understand. Hence, as a high school student, you must definitely dwell your hands on RS Aggarwal!

Why should you refer to RS Aggarwal textbook solutions on Indcareer?

RS Aggarwal is a book that contains a few of the hardest questions of high school mathematics. Solving them and teaching students how to solve questions of such high difficulty is not the job of any neophyte. For solving such difficult questions and more importantly, teaching the problem-solving methodology to students, an expert teacher is mandatory!

Does IndCareer cover RS Aggarwal Textbook solutions for Class 6-12?

RS Aggarwal is available for grades 6 to 12 and hence our expert teachers have formulated detailed solutions for all the questions of each edition of the textbook. On our website, you'll be able to find solutions to the RS Aggarwal textbook right from Class 6 to Class 12. You can head to the website and download these solutions for free. All the solutions are available in PDF format and are free to download!

About IndCareer

IndCareer.com is a leading developer of online career guidance resources for the Indian marketplace. Established in 2007, IndCareer.com is currently used by over thousands of institutions across India, including schools, employment agencies, libraries, colleges and universities.

IndCareer.com is designed to assist you in making the right career decision - a decision that meets your unique interests and personality.

For any clarifications or questions you can write to info@indcareer.com

Postal Address

IndCareer.com 52, Shilpa Nagar, Somalwada Nagpur - 440015 Maharashtra, India

WhatsApp: +91 9561 204 888

Website: https://www.indcareer.com

