Class 9 Chapter 8 Lines and Angles

RD Sharma Solutions for Class 9 Maths Chapter 8-Lines and Angles

Class 9: Maths Chapter 8 solutions. Complete Class 9 Maths Chapter 8 Notes.

RD Sharma Solutions for Class 9 Maths Chapter 8-Lines and Angles

RD Sharma 9th Maths Chapter 8, Class 9 Maths Chapter 8 solutions
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

ClindCareer

Exercise 8.1

Question 1: Write the complement of each of the following angles:
(i) 20^{0}
(ii) 35^{0}
(iii) 90^{0}
(iv) 77^{0}
(v) 30^{0}

Solution:

(i) The sum of an angle and its complement $=90^{\circ}$

Therefore, the complement of $20^{\circ}=90^{\circ}-20^{\circ}=70^{\circ}$
(ii) The sum of an angle and its complement $=90^{\circ}$

Therefore, the complement of $35^{\circ}=90^{\circ}-35^{\circ}=55$
(iii) The sum of an angle and its complement $=90^{\circ}$

Therefore, the complement of $90^{\circ}=90^{\circ}-90^{\circ}=0^{\circ}$
(iv) The sum of an angle and its complement $=90^{\circ}$

Therefore, the complement of $77^{\circ}=90^{\circ}-77^{\circ}=13^{\circ}$
(v) The sum of an angle and its complement $=90^{\circ}$

Therefore, the complement of $30^{\circ}=90^{\circ}-30^{\circ}=60^{\circ}$
Question 2 : Write the supplement of each of the following angles:
(i) 54^{0}
(ii) 132^{0}
(iii) 138^{0}
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

ClindCareer

Solution:

(i) The sum of an angle and its supplement $=180^{\circ}$.

Therefore supplement of angle $54^{\circ}=180^{\circ}-54^{\circ}=126^{\circ}$
(ii) The sum of an angle and its supplement $=180^{\circ}$.

Therefore supplement of angle $132^{\circ}=180^{\circ}-132^{\circ}=48^{\circ}$
(iii) The sum of an angle and its supplement $=180^{\circ}$.

Therefore supplement of angle $138^{\circ}=180^{\circ}-138^{\circ}=42^{\circ}$
Question 3: If an angle is $\mathbf{2 8}^{\circ}$ less than its complement, find its measure?

Solution:

Let the measure of any angle is ' a ' degrees
Thus, its complement will be $(90-a)^{0}$
So, the required angle $=$ Complement of $a-28$
$a=(90-a)-28$
$2 a=62$
$a=31$

Hence, the angle measured is 31°.
Question 4 : If an angle is 30° more than one half of its complement, find the measure of the angle?

Solution:

Let an angle measured by ‘ a ' in degrees
Thus, its complement will be $(90-a)^{0}$
Required Angle $=30^{\circ}+$ complement $/ 2$
$a=30^{0}+(90-a)^{0} / 2$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/
$a+a / 2=30^{0}+45^{0}$
$3 a / 2=75^{0}$
$a=50^{\circ}$
Therefore, the measure of required angle is 50°.
Question 5 : Two supplementary angles are in the ratio $4: 5$. Find the angles?

Solution:

Two supplementary angles are in the ratio 4:5.
Let us say, the angles are $4 a$ and $5 a$ (in degrees)
Since angle are supplementary angles;
Which implies, $4 a+5 a=180^{\circ}$
$9 a=180^{\circ}$
$\mathrm{a}=20^{\circ}$
Therefore, $4 \mathrm{a}=4(20)=80^{\circ}$ and
$5(a)=5(20)=100^{\circ}$
Hence, required angles are 80° and 100°.
Question 6 : Two supplementary angles differ by 48°. Find the angles?
Solution: Given: Two supplementary angles differ by 48°.
Consider a^{0} be one angle then its supplementary angle will be equal to $(180-a)^{0}$
According to the question;
$(180-a)-x=48$
$(180-48)=2 a$
$132=2 a$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/
$132 / 2=a$
Or $\mathrm{a}=66^{\circ}$
Therefore, $180-\mathrm{a}=114^{\circ}$
Hence, the two angles are 66° and 114°.
Question 7: An angle is equal to $\mathbf{8}$ times its complement. Determine its measure?
Solution: Given: Required angle $=8$ times of its complement
Consider a^{0} be one angle then its complementary angle will be equal to $(90-a)^{0}$
According to the question;
$\mathrm{a}=8$ times of its complement
$a=8(90-a)$
$a=720-8 a$
$a+8 a=720$
$9 a=720$
$\mathrm{a}=80$
Therefore, the required angle is 80°.

Exercise 8.2

Question 1: In the below Fig. OA and OB are opposite rays:
(i) If $x=25^{\circ}$, what is the value of y ?
(ii) If $y=35^{\circ}$, what is the value of x ?

Solution:

(i) Given: $x=25$

From figure: $\angle A O C$ and $\angle B O C$ form a linear pair
Which implies, $\angle \mathrm{AOC}+\angle \mathrm{BOC}=180^{\circ}$
From the figure, $\angle A O C=2 y+5$ and $\angle B O C=3 x$
$\angle \mathrm{AOC}+\angle \mathrm{BOC}=180^{\circ}$
$(2 y+5)+3 x=180$
$(2 y+5)+3(25)=180$
$2 y+5+75=180$
$2 y+80=180$
$2 y=100$
$y=100 / 2=50$
Therefore, $\mathrm{y}=50^{\circ}$
(ii) Given: $y=35^{\circ}$

From figure: $\angle \mathrm{AOC}+\angle \mathrm{BOC}=180^{\circ}$ (Linear pair angles)
$(2 y+5)+3 x=180$
$(2(35)+5)+3 x=180$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

ClindCareer

$75+3 x=180$
$3 x=105$
$x=35$
Therefore, $x=35^{\circ}$
Question 2: In the below figure, write all pairs of adjacent angles and all the linear pairs.

Solution: From figure, pairs of adjacent angles are :
$(\angle \mathrm{AOC}, \angle \mathrm{COB}) ;(\angle \mathrm{AOD}, \angle \mathrm{BOD}) ;(\angle \mathrm{AOD}, \angle \mathrm{COD}) ;(\angle \mathrm{BOC}, \angle \mathrm{COD})$
And Linear pair of angles are ($\angle \mathrm{AOD}, \angle \mathrm{BOD}$) and ($\angle \mathrm{AOC}, \angle \mathrm{BOC})$. $\mathrm{As} \angle \mathrm{AOD}+\angle \mathrm{BOD}=$ 180° and $\angle \mathrm{AOC}+\angle \mathrm{BOC}=180^{\circ}$.]

Question 3 : In the given figure, find x. Further find $\angle B O C, \angle C O D$ and $\angle A O D$.

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

ClndCareer

From figure, $\angle A O D$ and $\angle B O D$ form a linear pair,
Therefore, $\angle \mathrm{AOD}+\angle \mathrm{BOD}=180^{\circ}$
Also, $\angle \mathrm{AOD}+\angle \mathrm{BOC}+\angle \mathrm{COD}=180^{\circ}$
Given: $\angle \mathrm{AOD}=(\mathrm{x}+10)^{0}, \angle \mathrm{COD}=\mathrm{x}^{0}$ and $\angle \mathrm{BOC}=(\mathrm{x}+20)^{0}$
$(x+10)+x+(x+20)=180$
$3 x+30=180$
$3 x=180-30$
$x=150 / 3$
$x=50^{\circ}$
Now,
$\angle \mathrm{AOD}=(\mathrm{x}+10)=50+10=60$
$\angle C O D=x=50$
$\angle B O C=(x+20)=50+20=70$
Hence, $\angle \mathrm{AOD}=60^{\circ}, \angle \mathrm{COD}=50^{\circ}$ and $\angle \mathrm{BOC}=70^{\circ}$
Question 4: In figure, rays $O A, O B, O C, O D$ and $O E$ have the common end point 0 . Show that $\angle \mathrm{AOB}+\angle \mathrm{BOC}+\angle \mathrm{COD}+\angle \mathrm{DOE}+\angle \mathrm{EOA}=360^{\circ}$.

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

ClndCareer

Solution:

Given: Rays $\mathrm{OA}, \mathrm{OB}, \mathrm{OC}, \mathrm{OD}$ and OE have the common endpoint O .
Draw an opposite ray OX to ray OA, which make a straight line AX.

From figure:
$\angle \mathrm{AOB}$ and $\angle \mathrm{BOX}$ are linear pair angles, therefore,
$\angle A O B+\angle B O X=180^{\circ}$
Or, $\angle \mathrm{AOB}+\angle \mathrm{BOC}+\angle \mathrm{COX}=180^{\circ}$
Also,
$\angle A O E$ and $\angle E O X$ are linear pair angles, therefore,
$\angle A O E+\angle E O X=180^{\circ}$
Or, $\angle \mathrm{AOE}+\angle \mathrm{DOE}+\angle \mathrm{DOX}=180^{\circ}$
By adding equations, (1) and (2), we get;
$\angle \mathrm{AOB}+\angle \mathrm{BOC}+\angle \mathrm{COF}+\angle \mathrm{AOE}+\angle \mathrm{DOE}+\angle \mathrm{DOX}=180^{\circ}+180^{\circ}$
$\angle \mathrm{AOB}+\angle \mathrm{BOC}+\angle \mathrm{COD}+\angle \mathrm{DOE}+\angle \mathrm{EOA}=360^{\circ}$
Hence Proved.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

ClindCareer

Question 5 : In figure, $\angle A O C$ and $\angle B O C$ form a linear pair. If $\mathbf{a} \mathbf{- 2 b}=\mathbf{3} \mathbf{0}^{\circ}$, find \mathbf{a} and b ?

Solution:

Given: $\angle A O C$ and $\angle B O C$ form a linear pair.
$=>a+b=180^{\circ}$
$a-2 b=30^{\circ}$
On subtracting equation (2) from (1), we get
$a+b-a+2 b=180-30$
$3 b=150$
$b=150 / 3$
$b=50^{\circ}$
Since, $a-2 b=30^{\circ}$
$a-2(50)=30$
$a=30+100$
$a=130^{\circ}$
Therefore, the values of a and b are 130° and 50° respectively.
Question 6: How many pairs of adjacent angles are formed when two lines intersect at a point?
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

ClndCareer

Solution: Four pairs of adjacent angles are formed when two lines intersect each other at a single point.

For example, Let two lines $A B$ and $C D$ intersect at point O.

The 4 pair of adjacent angles are :
($\angle \mathrm{AOD}, \angle \mathrm{DOB}),(\angle \mathrm{DOB}, \angle \mathrm{BOC}),(\angle \mathrm{COA}, \angle \mathrm{AOD})$ and $(\angle \mathrm{BOC}, \angle \mathrm{COA})$.
Question 7: How many pairs of adjacent angles, in all, can you name in figure given?

Solution: Number of Pairs of adjacent angles, from the figure, are :
$\angle E O C$ and $\angle D O C$
$\angle E O D$ and $\angle D O B$
$\angle D O C$ and $\angle C O B$
$\angle E O D$ and $\angle D O A$
$\angle D O C$ and $\angle C O A$
$\angle B O C$ and $\angle B O A$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

ClndCareer

$\angle B O A$ and $\angle B O D$
$\angle B O A$ and $\angle B O E$
$\angle E O C$ and $\angle C O A$
$\angle E O C$ and $\angle C O B$
Hence, there are 10 pairs of adjacent angles.
Question 8: In figure, determine the value of x.

Solution:

The sum of all the angles around a point O is equal to 360°.
Therefore,
$3 x+3 x+150+x=360^{\circ}$
$7 x=360^{\circ}-150^{\circ}$
$7 x=210^{0}$
$x=210 / 7$
$x=30^{0}$
Hence, the value of x is 30°.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

ClndCareer

Question 9: In figure, AOC is a line, find \mathbf{x}.

Solution:

From the figure, $\angle A O B$ and $\angle B O C$ are linear pairs,
$\angle A O B+\angle B O C=180^{\circ}$
$70+2 x=180$
$2 x=180-70$
$2 x=110$
$x=110 / 2$
$x=55$
Therefore, the value of x is 55°.
Question 10: In figure, POS is a line, find x .
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

ClndCareer

Solution:

From figure, $\angle P O Q$ and $\angle \mathrm{QOS}$ are linear pairs.
Therefore,
$\angle \mathrm{POQ}+\angle \mathrm{QOS}=180^{\circ}$
$\angle \mathrm{POQ}+\angle \mathrm{QOR}+\angle \mathrm{SOR}=180^{\circ}$
$60^{\circ}+4 x+40^{\circ}=180^{\circ}$
$4 x=180^{\circ}-100^{0}$
$4 x=80^{\circ}$
$x=20^{\circ}$
Hence, the value of x is 20°.

Exercise 8.3

Question 1: In figure, lines I_{1}, and I_{2} intersect at O, forming angles as shown in the figure. If $x=45$. Find the values of y, z and u.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

Solution:

Given: $x=45^{\circ}$
Since vertically opposite angles are equal, therefore $z=x=45^{\circ}$
z and u are angles that are a linear pair, therefore, $z+u=180^{\circ}$
Solve, $z+u=180^{\circ}$, for u
$u=180^{\circ}-z$
$u=180^{\circ}-45$
$u=135^{\circ}$
Again, x and y angles are a linear pair.
$x+y=180^{\circ}$
$y=180^{\circ}-x$
$y=180^{\circ}-45^{\circ}$
$y=135^{\circ}$
Hence, remaining angles are $y=135^{\circ}, u=135^{\circ}$ and $z=45^{\circ}$.
Question 2 : In figure, three coplanar lines intersect at a point 0 , forming angles as shown in the figure. Find the values of x, y, z and u.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

Solution:

($\angle \mathrm{BOD}, \mathrm{z})$; ($\angle \mathrm{DOF}, \mathrm{y}$) are pair of vertically opposite angles.
So, $\angle \mathrm{BOD}=\mathrm{z}=90^{\circ}$
\angle DOF $=y=50^{\circ}$ [Vertically opposite angles are equal.]
Now, $x+y+z=180$ [Linear pair] [AB is a straight line]
$x+y+z=180$
$x+50+90=180$
$x=180-140$
$x=40$
Hence values of x, y, z and u are $40^{\circ}, 50^{\circ}, 90^{\circ}$ and 40° respectively.
Question 3 : In figure, find the values of x, y and z.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

ClndCareer

Solution:

From figure,
$y=25^{0}$ [Vertically opposite angles are equal]
Now $\angle \mathrm{x}+\angle \mathrm{y}=180^{\circ}$ [Linear pair of angles]
$x=180-25$
$x=155$
Also, $z=x=155$ [Vertically opposite angles]
Answer: $y=25^{\circ}$ and $z=155^{\circ}$
Question 4 : In figure, find the value of x.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

Solution:

$\angle \mathrm{AOE}=\angle \mathrm{BOF}=5 \mathrm{x}$ [Vertically opposite angles]
$\angle \mathrm{COA}+\angle \mathrm{AOE}+\angle \mathrm{EOD}=180^{\circ}$ [Linear pair]
$3 x+5 x+2 x=180$
$10 x=180$
$x=180 / 10$
$x=18$
The value of $x=18^{\circ}$
Question 5 : Prove that bisectors of a pair of vertically opposite angles are in the same straight line.

Solution:

ClindCareer

Lines $A B$ and $C D$ intersect at point O, such that
$\angle A O C=\angle B O D$ (vertically angles) \ldots (1)
Also OP is the bisector of AOC and OQ is the bisector of BOD
To Prove: $P O Q$ is a straight line.
OP is the bisector of $\angle \mathrm{AOC}$:
$\angle A O P=\angle C O P$
OQ is the bisector of $\angle \mathrm{BOD}$:
$\angle B O Q=\angle Q O D$
Now,
Sum of the angles around a point is 360°.

$$
\begin{aligned}
& \angle \mathrm{AOC}+\angle \mathrm{BOD}+\angle \mathrm{AOP}+\angle \mathrm{COP}+\angle \mathrm{BOQ}+\angle \mathrm{QOD}=360^{\circ} \\
& \angle \mathrm{BOQ}+\angle \mathrm{QOD}+\angle \mathrm{DOA}+\angle \mathrm{AOP}+\angle \mathrm{POC}+\angle \mathrm{COB}=360^{\circ} \\
& 2 \angle \mathrm{QOD}+2 \angle \mathrm{DOA}+2 \angle \mathrm{AOP}=360^{\circ}(\text { Using (1), (2) and (3)) } \\
& \angle \mathrm{QOD}+\angle \mathrm{DOA}+\angle \mathrm{AOP}=180^{\circ} \\
& \mathrm{POQ}=180^{\circ}
\end{aligned}
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

Clnd Career

Which shows that, the bisectors of pair of vertically opposite angles are on the same straight line.

Hence Proved.
Question 6 : If two straight lines intersect each other, prove that the ray opposite to the bisector of one of the angles thus formed bisects the vertically opposite angle.

Solution: Given $A B$ and $C D$ are straight lines which intersect at O.
OP is the bisector of $\angle \mathrm{AOC}$.
To Prove : OQ is the bisector of $\angle B O D$
Proof:

$A B, C D$ and $P Q$ are straight lines which intersect in O.
Vertically opposite angles: $\angle \mathrm{AOP}=\angle \mathrm{BOQ}$
Vertically opposite angles: $\angle \mathrm{COP}=\angle \mathrm{DOQ}$
OP is the bisector of $\angle \mathrm{AOC}: \angle \mathrm{AOP}=\angle \mathrm{COP}$
Therefore, $\angle \mathrm{BOQ}=\angle \mathrm{DOQ}$
Hence, OQ is the bisector of $\angle \mathrm{BOD}$.

Exercise 8.4

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

ClndCareer

Question 1: In figure, $A B, C D$ and $\angle 1$ and $\angle 2$ are in the ratio 3 : 2. Determine all angles from 1 to 8.

Solution:

Let $\angle 1=3 x$ and $\angle 2=2 x$
From figure: $\angle 1$ and $\angle 2$ are linear pair of angles
Therefore, $\angle 1+\angle 2=180$
$3 x+2 x=180$
$5 x=180$
$x=180 / 5$
=> $x=36$
So, $\angle 1=3 \mathrm{x}=108^{\circ}$ and $\angle 2=2 \mathrm{x}=72^{\circ}$
As we know, vertically opposite angles are equal.
Pairs of vertically opposite angles are:
$(\angle 1=\angle 3) ;(\angle 2=\angle 4) ;(\angle 5, \angle 7)$ and $(\angle 6, \angle 8)$
$\angle 1=\angle 3=108^{\circ}$
$\angle 2=\angle 4=72^{\circ}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

ClindCareer

$\angle 5=\angle 7$
$\angle 6=\angle 8$
We also know, if a transversal intersects any parallel lines, then the corresponding angles are equal
$\angle 1=\angle 5=\angle 7=108^{\circ}$
$\angle 2=\angle 6=\angle 8=72^{\circ}$
Answer: $\angle 1=108^{\circ}, \angle 2=72^{\circ}, \angle 3=108^{\circ}, \angle 4=72^{\circ}, \angle 5=108^{\circ}, \angle 6=72^{\circ}, \angle 7=108^{\circ}$ and $\angle 8=72^{\circ}$

Question 2: In figure, I, m and n are parallel lines intersected by transversal p at X, Y and Z respectively. Find $\angle 1, \angle 2$ and $\angle 3$.

Solution: From figure:
$\angle \mathrm{Y}=120^{\circ}$ [Vertical opposite angles]
$\angle 3+\angle Y=180^{\circ}$ [Linear pair angles theorem]
$=>\angle 3=180-120$
$=>\angle 3=60^{\circ}$
Line I is parallel to line m,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

ClindCareer

$\angle 1=\angle 3$ [Corresponding angles]
$\angle 1=60^{\circ}$
Also, line m is parallel to line n,
$\angle 2=\angle \mathrm{Y}$ [Alternate interior angles are equal]
$\angle 2=120^{\circ}$
Answer: $\angle 1=60^{\circ}, \angle 2=120^{\circ}$ and $\angle 3=60^{\circ}$.
Question 3: In figure, $A B||C D|| E F$ and $G H|\mid K L$. Find $\angle H K L$.

Solution:

Extend LK to meet line GF at point P.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

ClndCareer

From figure, CD || GF, so, alternate angles are equal.
$\angle \mathrm{CHG}=\angle \mathrm{HGP}=60^{\circ}$
$\angle \mathrm{HGP}=\angle \mathrm{KPF}=60^{\circ}$ [Corresponding angles of parallel lines are equal]
Hence, $\angle \mathrm{KPG}=180-60=120^{\circ}$
=> $\angle \mathrm{GPK}=\angle \mathrm{AKL}=120^{\circ}$ [Corresponding angles of parallel lines are equal]
$\angle \mathrm{AKH}=\angle \mathrm{KHD}=25^{\circ}$ [alternate angles of parallel lines]
Therefore, $\angle \mathrm{HKL}=\angle \mathrm{AKH}+\angle \mathrm{AKL}=25+120=145^{\circ}$
Question 4: In figure, show that $A B|\mid E F$.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

ClndCareer

Solution: Produce EF to intersect AC at point N.

From figure, $\angle \mathrm{BAC}=57^{\circ}$ and
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

ClindCareer

$\angle A C D=22^{\circ}+35^{\circ}=57^{\circ}$
Alternative angles of parallel lines are equal
=> BA || EF
Sum of Co-interior angles of parallel lines is 180°
EF || CD
$\angle \mathrm{DCE}+\angle \mathrm{CEF}=35+145=180^{\circ}$
From (1) and (2)
AB || $E F[$ Since, Lines parallel to the same line are parallel to each other]
Hence Proved.
Question 5 : In figure, if $A B|\mid C D$ and $C D| \mid E F$, find $\angle A C E$.

Solution:

Given: CD || EF
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

ClndCareer

$\angle \mathrm{FEC}+\angle \mathrm{ECD}=180^{\circ}$ [Sum of co-interior angles is supplementary to each other]
$=>\angle E C D=180^{\circ}-130^{\circ}=50^{\circ}$
Also, BA || CD
$=>\angle \mathrm{BAC}=\angle \mathrm{ACD}=70^{\circ}$ [Alternative angles of parallel lines are equal]
But, $\angle \mathrm{ACE}+\angle \mathrm{ECD}=70^{\circ}$
$\Rightarrow \angle A C E=70^{\circ}-50^{\circ}=20^{\circ}$
Question 6: In figure, $P Q|\mid A B$ and $P R| \mid B C$. If $\angle Q P R=102^{\circ}$, determine $\angle A B C$. Give reasons.

Solution: Extend line $A B$ to meet line $P R$ at point G.

Given: $P Q|\mid A B$,
$\angle \mathrm{QPR}=\angle \mathrm{BGR}=102^{\circ}$ [Corresponding angles of parallel lines are equal]
And PR || BC,
$\angle \mathrm{RGB}+\angle \mathrm{CBG}=180^{\circ}$ [Corresponding angles are supplementary]
$\angle \mathrm{CBG}=180^{\circ}-102^{\circ}=78^{\circ}$
Since, $\angle \mathrm{CBG}=\angle \mathrm{ABC}$
$=>\angle A B C=78^{\circ}$
Question 7 : In figure, state which lines are parallel and why?

ClndCareer

Solution:

We know, If a transversal intersects two lines such that a pair of alternate interior angles are equal, then the two lines are parallel

From figure:
$=>\angle E D C=\angle D C A=100^{\circ}$
Lines DE and AC are intersected by a transversal DC such that the pair of alternate angles are equal.

So, $D E \| A C$
Question 8: In figure, if I||m, $\mathrm{n}\left|\mid \mathrm{p}\right.$ and $\angle 1=85^{\circ}$, find $\angle 2$.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

Solution:

Given: $\angle 1=85^{\circ}$
As we know, when a line cuts the parallel lines, the pair of alternate interior angles are equal.
$=\angle 1=\angle 3=85^{\circ}$
Again, co-interior angles are supplementary, so
$\angle 2+\angle 3=180^{\circ}$
$\angle 2+55^{\circ}=180^{\circ}$
$\angle 2=180^{\circ}-85^{\circ}$
$\angle 2=95^{\circ}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

ClindCareer

Question 9 : If two straight lines are perpendicular to the same line, prove that they are parallel to each other.

Solution:

Let lines I and m are perpendicular to n , then
$\angle 1=\angle 2=90^{\circ}$

Since, lines I and m cut by a transversal line n and the corresponding angles are equal, which shows that, line I is parallel to line m.

Question 10: Prove that if the two arms of an angle are perpendicular to the two arms of another angle, then the angles are either equal or supplementary.

Solution: Let the angles be $\angle A C B$ and $\angle A B D$
Let $A C$ perpendicular to $A B$, and $C D$ is perpendicular to $B D$.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

ClindCareer

To Prove : $\angle \mathrm{ACD}=\angle \mathrm{ABD}$ OR $\angle \mathrm{ACD}+\angle \mathrm{ABD}=180^{\circ}$
Proof :
In a quadrilateral,
$\angle \mathrm{A}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{B}=360^{\circ}\left[\right.$ Sum of angles of quadrilateral is 360°]
$=>180^{\circ}+\angle C+\angle B=360^{\circ}$
$=>C \mathrm{C}+\angle \mathrm{B}=360^{\circ}-180^{\circ}$
Therefore, $\angle A C D+\angle A B D=180^{\circ}$
And $\angle A B D=\angle A C D=90^{\circ}$
Hence, angles are equal as well as supplementary.

Exercise VSAQs

Question 1: Define complementary angles.

Solution: When the sum of two angles is 90 degrees, then the angles are known as complementary angles.

Question 2: Define supplementary angles.
Solution: When the sum of two angles is 180°, then the angles are known as supplementary angles.

Question 3: Define adjacent angles.
Solution: Two angles are Adjacent when they have a common side and a common vertex.
Question 4: The complement of an acute angle is \qquad .

Solution: An acute angle
Question 5: The supplement of an acute angle is \qquad .

Solution: An obtuse angle
Question 6: The supplement of a right angle is \qquad .
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

ClndCareer

Solution: A right angle

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-8-lines-and-a ngles/

Chapterwise RD Sharma Solutions for Class 9 Maths :

- Chapter 1-Number System
- Chapter 2-Exponents of Real Numbers
- Chapter 3-Rationalisation
- Chapter 4-Algebraic Identities
- Chapter 5-Factorization of Algebraic Expressions
- Chapter 6-Factorization Of Polynomials
- Chapter 7-Introduction to Euclid's Geometry
- Chapter 8-Lines and Angles
- Chapter 9-Triangle and its Angles
- Chapter 10-Congruent Triangles
- Chapter 11-Coordinate Geometry
- Chapter 12-Heron's Formula
- Chapter 13-Linear Equations in Two Variables
- Chapter 14-Quadrilaterals
- Chapter 15-Area of

Parallelograms and Triangles

- Chapter 16-Circles
- Chapter 17-Construction
- Chapter 18-Surface Area and Volume of Cuboid and Cube
- Chapter 19-Surface Area and

Volume of A Right Circular

Cylinder

- Chapter 20-Surface Area and

Volume of A Right Circular Cone

- Chapter 21-Surface Area And

Volume Of Sphere

- Chapter 22-Tabular

Representation of Statistical Data

- Chapter 23-Graphical

Representation of Statistical Data

- Chapter 24-Measure of Central

Tendency

- Chapter 25-Probability

ClndCareer

About RD Sharma

RD Sharma isn't the kind of author you'd bump into at lit fests. But his bestselling books have helped many CBSE students lose their dread of maths. Sunday Times profiles the tutor turned internet star

He dreams of algorithms that would give most people nightmares. And, spends every waking hour thinking of ways to explain concepts like 'series solution of linear differential equations'. Meet Dr Ravi Dutt Sharma mathematics teacher and author of 25 reference books - whose name evokes as much awe as the subject he teaches. And though students have used his thick tomes for the last 31 years to ace the dreaded maths exam, it's only recently that a spoof video turned the tutor into a YouTube star.

R D Sharma had a good laugh but said he shared little with his on-screen persona except for the love for maths. "I like to spend all my time thinking and writing about maths problems. I find it relaxing," he says. When he is not writing books explaining mathematical concepts for classes 6 to 12 and engineering students, Sharma is busy dispensing his duty as vice-principal and head of department of science and humanities at Delhi government's Guru Nanak Dev Institute of Technology.

