Class 9 Chapter 1 Number System

RD Sharma Solutions for Class 9 Maths Chapter 1-Number System

Class 9: Maths Chapter 1 solutions. Complete Class 9 Maths Chapter 1 Notes.

RD Sharma Solutions for Class 9 Maths Chapter 1-Number System

RD Sharma 9th Maths Chapter 1, Class 9 Maths Chapter 1 solutions
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-1-number-sy stem/

ClndCareer

Exercise 1.1

Question 1: Is zero a rational number? Can you write it in the form p / q, where p and q are integers and $q \neq 0$?

Solution:

Yes, zero is a rational number.
It can be written in p / q form provided that $\mathrm{q} \neq 0$.
For Example: 0/1 or $0 / 3$ or $0 / 4$ etc.
Question 2: Find five rational numbers between 1 and 2.

Solution:

We know, one rational number between two numbers m and $n=(m+n) / 2$
To find: 5 rational numbers between 1 and 2
Step 1: Rational number between 1 and 2
$=(1+2) / 2$
$=3 / 2$
Step 2: Rational number between 1 and 3/2
$=(1+3 / 2) / 2$
$=5 / 4$
Step 3: Rational number between 1 and 5/4
$=(1+5 / 4) / 2$
$=9 / 8$
Step 4: Rational number between $3 / 2$ and 2
$=1 / 2[(3 / 2)+2)]$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-1-number-sy stem/

ClndCareer

$=7 / 4$
Step 5: Rational number between 7/4 and 2
$=1 / 2[7 / 4+2]$
$=15 / 8$
Arrange all the results: $1<9 / 8<5 / 4<3 / 2<7 / 4<15 / 8<2$
Therefore required integers are, $9 / 8,5 / 4,3 / 2,7 / 4,15 / 8$
Question 3: Find six rational numbers between 3 and 4.

Solution:

Steps to find n rational numbers between any two numbers:
Step 1: Multiply and divide both the numbers by $\mathrm{n}+1$.
In this example, we have to find 6 rational numbers between 3 and 4 . Here $n=6$
Multiply 3 and 4 by 7
$3 \times 7 / 7=21 / 7$ and
$4 \times 7 / 7=28 / 7$
Step 2: Choose 6 numbers between 21/7 and 28/7
$3=21 / 7<22 / 7<23 / 7<24 / 7<25 / 7<26 / 7<27 / 7<28 / 7=4$
Therefore, 6 rational numbers between 3 and 4 are
22/7, 23/7, 24/7, 25/7, 26/7, 27/7
Question 4: Find five rational numbers between $3 / 5$ and $4 / 5$.

Solution:

Steps to find n rational numbers between any two numbers:
Step 1: Multiply and divide both the numbers by $\mathrm{n}+1$.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-1-number-sy stem/

ClndCareer

In this example, we have to find 5 rational numbers between $3 / 5$ and $4 / 5$. Here $n=5$
Multiply $3 / 5$ and $4 / 5$ by 6
$3 / 5 \times 6 / 6=18 / 30$ and
$4 / 5 \times 6 / 6=24 / 30$
Step 2: Choose 5 numbers between 18/30 and 24/30
$3 / 5=18 / 30<19 / 30<20 / 30<21 / 30<22 / 30<23 / 30<24 / 30=4 / 5$
Therefore, 5 rational numbers between $3 / 5$ and $4 / 5$ are
19/30, 20/30, 21/30, 22/30, 23/30
Question 5: Are the following statements true or false? Give reason for your answer.
(i) Every whole number is a natural number.
(ii) Every integer is a rational number.
(iii) Every rational number is an integer.
(iv) Every natural number is a whole number,
(v) Every integer is a whole number.
(vi) Every rational number is a whole number.

Solution:
(i) False.

Reason: As 0 is not a natural number.
(ii) True.
(iii) False.

Reason: Numbers such as $1 / 2,3 / 2,5 / 3$ are rational numbers but not integers.
(iv) True.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-1-number-sy stem/

ClndCareer

(v) False.

Reason: Negative numbers are not whole numbers.
(vi) False.

Reason: Proper fractions are not whole numbers

Exercise 1.2

Question 1: Express the following rational numbers as decimals.
(i) $\mathbf{4 2 / 1 0 0}$ (ii) $\mathbf{3 2 7 / 5 0 0}$ (iii) $\mathbf{1 5 / 4}$

Solution:

	(ii) By long division method	(iii) By long division method
	$500) \overline{327.000}(0.654$	$4) \overline{15.00}(3.75$
(i) By long division method	3000	12
$100) \overline{42}(0.42$	$\overline{2700}$	$\overline{30}$
400	2500	28
$\overline{200}$	$\overline{2000}$	$\overline{20}$
200	2000	20
$\overline{0}$	$\overline{0}$	$\overline{0}$
Therefore, $\frac{42}{100}=0.42$	Therefore, $\frac{327}{500}=0.654$	Therefore, $\frac{15}{4}=3.75$

Question 2: Express the following rational numbers as decimals.
(i) $\mathbf{2 / 3}$ (ii) $\mathbf{- 4 / 9}$ (iii) $\mathbf{- 2 / 1 5}$ (iv) -22/13 (v) 437/999 (vi) 33/26

Solution:

(i) Divide $2 / 3$ using long division:
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-1-number-sy stem/

ClndCareer

0.66666
$3 \longdiv { 2 . 0 0 0 0 0 }$
$\underline{0}$
20
18
20
18
20
18
20
18
20
$\frac{18}{2}$
$\frac{2}{3}=0.666 \ldots=0 . \overline{6}$
(ii) Divide using long division: -4/9

ClndCareer

9) $\overline{4.000}(0.444$

3600
$\overline{4000}$
3600
$\overline{4000}$
3600
$\overline{400}$

$$
-\frac{4}{9}=-0.4444 \ldots=-0 . \overline{4}
$$

(iii) Divide using long division: $-2 / 15$

$$
\begin{aligned}
& \frac{0.133}{15)} \\
& \frac{15}{2.0000} \\
& \frac{45}{50} \\
& \frac{45}{6} \\
& -\frac{2}{15}=-0.133=-0.1 \overline{3}
\end{aligned}
$$

(iv) Divide using long division: -22/13
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-1-number-sy stem/

ClndCareer

```
    1.69230769
13)}\overline{22.000
    13
    90
    78
    120
    117
    30
        26
        40
        39
        100
            91
            90
            78
        120
        117
        \overline{3}
-\frac{22}{13}=-1.6923076923\ldots= -1.692307
```

(v) Divide using long division: 437/999

ClndCareer

> 999) $\overline{437.0000}(0.43743$
> 3996
> $\overline{3740}$
> 2997
> $\overline{7430}$
> 6993
> $\overline{4370}$
> 3996
> $\overline{3740}$
> 2997
> $\overline{743}$
> $\frac{437}{999}=0.43743 \ldots=0 . \overline{437}$
(vi) Divide using long division: 33/26
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-1-number-sy stem/

```
    1.2692307692
26\longdiv{33.000000000}
    26
    70
    5 2
    180
    156
    240
    234
    60
        52
            80
            78
            200
            182
                180
                156
        \frac{33}{26}=1.269230769\ldots=1. }\overline{2692307
```

Question 3: Look at several examples of rational numbers in the form $p / q(q \neq 0)$, where p and q are integers with no common factors other than 1 and having terminating decimal representations. Can you guess what property q must satisfy?

Solution:

The decimal representation will be terminating, if the denominators have factors 2 or 5 or both. Therefore, p / q is a terminating decimal, when prime factorization of q must have only powers of 2 or 5 or both.

Exercise 1.3

Question 1: Express each of the following decimals in the form p / q :
(i) 0.39
(ii) 0.750
(iii) 2.15
(iv) 7.010
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-1-number-sy stem/

ClndCareer

(v) 9.90
(vi) 1.0001

Solution:

(i)
$0.39=39 / 100$
(ii)
$0.750=750 / 1000=3 / 4$
(iii)
$2.15=215 / 100=43 / 20$
(iv)
$7.010=7010 / 1000=701 / 100$
(v)
$9.90=990 / 100=99 / 10$
(vi)
$1.0001=10001 / 10000$
Question 2: Express each of the following decimals in the form p / q :
(i) $0 . \overline{4}$
(ii) $0 . \overline{37}$
(iii) $0 . \overline{54}$
(iv) $0 . \overline{621}$
(v) $125 . \overline{3}$
(vi) $4 . \overline{7}$
(vii) $0.4 \overline{7}$

Solution:

(i) Let $\mathrm{x}=0 . \overline{4}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-1-number-sy stem/
or $x=0 . \overline{4}=0.444$.
Multiplying both sides by 10
$10 x=4.444$
Subtract (1) by (2), we get
$10 x-x=4.444 \ldots-0.444 \ldots$
$9 x=4$
$x=4 / 9$
$\Rightarrow 0 . \overline{4}=4.9$
(ii) Let $\mathrm{x}=0.3737$.

Multiplying both sides by 100
$100 x=37.37$.
Subtract (1) from (2), we get
$100 x-x=37.37 \ldots-0.3737 \ldots$
$100 x-x=37$
$99 x=37$
$x=37 / 99$
(iii) Let $x=0.5454 \ldots$

Multiplying both sides by 100
$100 x=54.5454$
Subtract (1) from (2), we get
$100 x-x=54.5454 \ldots-0.5454 \ldots$
$99 x=54$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-1-number-sy stem/
$x=54 / 99$
(iv) Let $x=0.621621 \ldots$ (1)

Multiplying both sides by 1000
$1000 x=621.621621 \ldots .(2)$
Subtract (1) from (2), we get
$1000 x-x=621.621621 \ldots-0.621621 \ldots$.
$999 x=621$
$x=621 / 999$
or $x=23 / 37$
(v) Let $x=125.3333 \ldots$ (1)

Multiplying both sides by 10
$10 x=1253.3333$.
Subtract (1) from (2), we get
$10 x-x=1253.3333 \ldots-125.3333 \ldots$.
$9 x=1128$
or $x=1128 / 9$
or $x=376 / 3$
(vi) Let $\mathrm{x}=4.7777 \ldots$

Multiplying both sides by 10
$10 x=47.7777 \ldots(2)$
Subtract (1) from (2), we get
$10 x-x=47.7777 \ldots-4.7777 \ldots$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-1-number-sy stem/
$9 x=43$
$x=43 / 9$
(vii) Let $x=0.47777 \ldots$

Multiplying both sides by 10
$10 x=4.7777(1)$
Multiplying both sides by 100
$100 x=47.7777$
Subtract (1) from (2), we get
$100 x-10 x=47.7777 \ldots-4.7777 \ldots$
$90 x=43$
$x=43 / 90$

Exercise 1.4

Question 1: Define an irrational number.

Solution:

A number which cannot be expressed in the form of p / q, where p and q are integers and $q \neq 0$. It is non-terminating or non-repeating decimal.

Question 2: Explain, how irrational numbers differ from rational numbers?

Solution:

An irrational number is a real number which can be written as a decimal but not as a fraction i.e. it cannot be expressed as a ratio of integers.

It cannot be expressed as terminating or repeating decimal.
For example, $\sqrt{ } 2$ is an irrational number
A rational number is a real number which can be written as a fraction and as a decimal i.e. it can be expressed as a ratio of integers.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-1-number-sy stem/

ClndCareer

It can be expressed as terminating or repeating decimal.
For examples: 0.10 and $5 / 3$ are rational numbers
Question 3: Examine, whether the following numbers are rational or irrational:
(i) $\sqrt{7}$
(ii) $\sqrt{ } 4$
(iii) $2+\sqrt{ } 3$
(iv) $\sqrt{ } 3+\sqrt{ } 2$
(v) $\sqrt{ } 3+\sqrt{ } 5$
(vi) $(\sqrt{2}-2)^{2}$
(vii) $(2-\sqrt{ } 2)(2+\sqrt{ } 2)$
(viii) $(\sqrt{ } 3+\sqrt{2})^{2}$
(ix) $\sqrt{ } 5-2$
(x) $\sqrt{23}$
(xi) $\sqrt{ } 225$
(xii) 0.3796
(xiii) 7.478478
(xiv) 1.101001000100001......

Solution:

(i) $\sqrt{ } 7$

Not a perfect square root, so it is an irrational number.
(ii) $\sqrt{ } 4$

A perfect square root of 2.
We can express 2 in the form of $2 / 1$, so it is a rational number.
(iii) $2+\sqrt{ } 3$

Here, 2 is a rational number but $\sqrt{ } 3$ is an irrational number
Therefore, the sum of a rational and irrational number is an irrational number.
(iv) $\sqrt{ } 3+\sqrt{ } 2$
$\sqrt{3}$ is not a perfect square thus an irrational number.
$\sqrt{ } 2$ is not a perfect square, thus an irrational number.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-1-number-sy stem/

Clnd Career

Therefore, sum of $\sqrt{ } 2$ and $\sqrt{ } 3$ gives an irrational number.
(v) $\sqrt{ } 3+\sqrt{ } 5$
$\sqrt{3}$ is not a perfect square and hence, it is an irrational number
Similarly, $\sqrt{ } 5$ is not a perfect square and also an irrational number.
Since, sum of two irrational number, is an irrational number, therefore $\sqrt{ } 3+\sqrt{ } 5$ is an irrational number.
(vi) $(\sqrt{ } 2-2)^{2}$
$(\sqrt{ } 2-2)^{2}=2+4-4 \sqrt{ } 2$
$=6-4 \sqrt{ } 2$
Here, 6 is a rational number but $4 \sqrt{ } 2$ is an irrational number.
Since, the sum of a rational and an irrational number is an irrational number, therefore, $(\sqrt{ } 2-2) 2$ is an irrational number.
(vii) $(2-\sqrt{ } 2)(2+\sqrt{ } 2)$

We can write the given expression as;
$(2-\sqrt{ } 2)(2+\sqrt{ } 2)=\left((2)^{2}-(\sqrt{ } 2)^{2}\right)\left[\right.$ Since, $\left.(a+b)(a-b)=a^{2}-b^{2}\right]$
$=4-2=2$ or $2 / 1$
Since, 2 is a rational number, therefore, $(2-\sqrt{ } 2)(2+\sqrt{ } 2)$ is a rational number.
(viii) $(\sqrt{ } 3+\sqrt{ } 2)^{2}$

We can write the given expression as;
$(\sqrt{ } 3+\sqrt{ } 2)^{2}=(\sqrt{ } 3)^{2}+(\sqrt{ } 2)^{2}+2 \sqrt{ } 3 \times \sqrt{ } 2$
$=3+2+2 \sqrt{ } 6$
$=5+2 \sqrt{ } 6$ [using identity, $\left.(a+b)^{2}=a^{2}+2 a b+b^{2}\right]$
Since, the sum of a rational number and an irrational number is an irrational number, therefore, $(\sqrt{3}+\sqrt{ } 2)^{2}$ is an irrational number. https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-1-number-sy stem/

ClindCareer

(ix) $\sqrt{5}-2$
$\sqrt{ } 5$ is an irrational number whereas 2 is a rational number.
The difference of an irrational number and a rational number is an irrational number.
Therefore, $\sqrt{ } 5-2$ is an irrational number.
(x) $\sqrt{ } 23$

Since, $\sqrt{ } 23=4.795831352331 \ldots$
As decimal expansion of this number is non-terminating and non-recurring therefore, it is an irrational number.
(xi) $\sqrt{ } 225$
$\sqrt{ } 225=15$ or $15 / 1$
$\sqrt{ } 225$ is rational number as it can be represented in the form of p / q and q not equal to zero.
(xii) 0.3796

As the decimal expansion of the given number is terminating, therefore, it is a rational number.
(xiii) 7.478478......

As the decimal expansion of this number is non-terminating recurring decimal, therefore, it is a rational number.
(xiv) 1.101001000100001......

As the decimal expansion of given number is non-terminating and non-recurring, therefore, it is an irrational number

Question 4: Identify the following as rational or irrational numbers. Give the decimal representation of rational numbers:

(i) $\sqrt{ } 4$
(ii) $3 \sqrt{18}$
(iii) $\sqrt{ } 1.44$
(iv) $\sqrt{\frac{9}{27}}$
(v) $-\sqrt{ } 64$
(vi) $\sqrt{ } 100$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-1-number-sy stem/

ClndCareer

Solution:

(i) $\sqrt{ } 4$
$\sqrt{ } 4=2$, which can be written in the form of a / b. Therefore, it is a rational number.
Its decimal representation is 2.0.
(ii) $3 \sqrt{ } 18$
$3 \sqrt{ } 18=9 \sqrt{ } 2$
Since, the product of a rational and an irrational number is an irrational number.
Therefore, $3 \sqrt{ } 18$ is an irrational.
Or $3 \times \sqrt{ } 18$ is an irrational number.
(iii) $\sqrt{ } 1.44$
$\sqrt{ } 1.44=1.2$
Since, every terminating decimal is a rational number, Therefore, $\sqrt{ } 1.44$ is a rational number.
And, its decimal representation is 1.2 .
(iv) $\sqrt{ } 9 / 27$
$\sqrt{ } 9 / 27=1 / \sqrt{ } 3$

Since, we know, quotient of a rational and an irrational number is irrational numbers, therefore, $\sqrt{9} / 27$ is an irrational number.
(v) $-\sqrt{ } 64$
$-\sqrt{ } 64=-8$ or $-8 / 1$

Therefore, $-\sqrt{ } 64$ is a rational number.
Its decimal representation is -8.0.
(vi) $\sqrt{ } 100$
$\sqrt{100}=10$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-1-number-sy stem/

ClndCareer

Since, 10 can be expressed in the form of a / b, such as $10 / 1$,
Therefore, $\sqrt{ } 100$ is a rational number.
And it's decimal representation is 10.0 .
Question 5: In the following equation, find which variables x, y, z etc. represent rational or irrational numbers:
(i) $\mathrm{x}^{2}=5$
(ii) $\mathrm{y}^{2}=9$
(iii) $z^{2}=0.04$
(iv) $\mathrm{u}^{2}=17 / 4$
(v) $\mathrm{v}^{2}=3$
(vi) $\mathrm{w}^{2}=27$
(vii) $\mathrm{t}^{2}=0.4$

Solution:

(i) $x^{2}=5$

Taking square root both the sides,
$x=\sqrt{ } 5$
$\sqrt{ } 5$ is not a perfect square root, so it is an irrational number.
(ii) $\mathrm{y}^{2}=9$
$y^{2}=9$
or $y=3$
3 can be expressed in the form of a / b, such as $3 / 1$, so it a rational number.
(iii) $z^{2}=0.04$
$z^{2}=0.04$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-1-number-sy stem/

ClndCareer

Taking square root both the sides, we get
$z=0.2$
0.2 can be expressed in the form of a / b such as $2 / 10$, so it is a rational number.
(iv) $u^{2}=17 / 4$

Taking square root both the sides, we get
$u=\sqrt{ } 17 / 2$
Since, quotient of an irrational and a rational number is irrational, therefore, u is an Irrational number.
(v) $v^{2}=3$

Taking square root both the sides, we get
$v=\sqrt{ } 3$
Since, $\sqrt{ } 3$ is not a perfect square root, so v is irrational number.
(vi) $w^{2}=27$

Taking square root both the sides, we get
$w=3 \sqrt{ } 3$
Since, the product of a rational and irrational is an irrational number. Therefore, w is an irrational number.
(vii) $\mathrm{t}^{2}=0.4$

Taking square root both the sides, we get
$t=\sqrt{ }(4 / 10)$
$t=2 / \sqrt{10}$
Since, quotient of a rational and an irrational number is irrational number. Therefore, t is an irrational number.

Exercise 1.5

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-1-number-sy stem/

ClndCareer

Question 1: Complete the following sentences:
(i) Every point on the number line corresponds to a \qquad number which many be either
\qquad or \qquad
(ii) The decimal form of an irrational number is neither \qquad nor \qquad
(iii) The decimal representation of a rational number is either \qquad or
(iv) Every real number is either ... number or ... number.

Solution:

(i) Every point on the number line corresponds to a real number which many be either rational or irrational.
(ii) The decimal form of an irrational number is neither terminating nor repeating.
(iii) The decimal representation of a rational number is either terminating or non-terminating recurring.
(iv) Every real number is either rational number or an irrational number.

Question 2: Represent $\sqrt{ } 6, \sqrt{ } 7$, $\sqrt{ } 8$ on the number line.

Solution:

Find the equivalent values of $\sqrt{ } 6, \sqrt{ } 7, \sqrt{ } 8$
$\sqrt{6}=2.449$
$\sqrt{7}=2.645$
$\sqrt{ } 8=2.828$
We can see that, all the given numbers lie between 2 and 3 .
Draw on number line:

ClindCareer

Question 3: Represent $\sqrt{ } 3.5, \sqrt{ } 9.4, \sqrt{ } 10.5$ and on the real number line.

Solution:

Represent $\sqrt{ } 3.5$ on number line

Step 1: Draw a line segment $A B=3.5$ units
Step 2: Produce B till point C, such that $B C=1$ unit
Step 3: Find the mid-point of AC, say O.
Step 4: Taking O as the centre draw a semi circle, passing through A and C.
Step 5: Draw a line passing through B perpendicular to $O B$, and cut semicircle at D.
Step 6: Consider B as a centre and $B D$ as radius draw an arc cutting $O C$ produced at E.

- Byjus.com

Now, from right triangle OBD,
$B D^{2}=O D^{2}-O B^{2}$
$=O C^{2}-(O C-B C)^{2}$
(As, OD = OC)
$B D^{2}=20 C \times B C-(B C)^{2}$
$=2 \times 2.25 \times 1-1$
$=3.5$
$\Rightarrow B D=\sqrt{ } 3.5$

Represent $\sqrt{ } 9.4$ on number line

Step 1: Draw a line segment $A B=9.4$ units
Follow step 2 to Step 6 mentioned above.

$B D^{2}=2 O C \times B C-(B C)^{2}$
$=2 \times 5.2 \times 1-1$
$=9.4$
$=>B D=\sqrt{ } 9.4$

Represent $\sqrt{ } 10.5$ on number line

Step 1: Draw a line segment $A B=10.5$ units
Follow step 2 to Step 6 mentioned above, we get

$$
\begin{aligned}
& {B D^{2}}^{2} 2 O C \times B C-(B C)^{2} \\
& =2 \times 5.75 \times 1-1 \\
& =10.5 \\
& =>B D=\sqrt{ } 10.5
\end{aligned}
$$

Question 4: Find whether the following statements are true or false:
(i) Every real number is either rational or irrational.
(ii) π is an irrational number.
(iii) Irrational numbers cannot be represented by points on the number line.

Solution:
(i) True.
(ii) True.
(ii) False.

Exercise 1.6

Question 1: Visualise 2.665 on the number line, using successive magnification.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-1-number-sy stem/

ClindCareer

Solution:

2.665 is lies between 2 and 3 on the number line.

Divide selected segment into 10 equal parts and mark each point of division as 2.1, 2.2,,2.9, 2.10
2.665 is lies between 2.6 and 2.7

Divide line segment between 2.6 and 2.7 in 10 equal parts such as 2.661, 2.662, and so on.
Here we can see that 5th point will represent 2.665.

© Byjus.com

Question 2: Visualise the representation of 5.37 on the number line upto 5 decimal places, that is upto 5.37777 .
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-1-number-sy stem/

ClindCareer

Solution:

Clearly $5.3 \overline{7}$ is located between 5 and 6.
Again by successive magnification, and successively decrease $5.3 \overline{7}$ located between 5.3 and 5.4 .

For more clarity, divide 5.3 and 5.4 portion of the number line into 10 equal parts and we can see $5.3 \overline{7}$ lies between 5.37 and 5.38 .

To visualize 5.37 more accurately, divide line segment between 5.37 and 5.38 in ten equal parts.
5.37 lies between 5.377 and 5.378 .

Again divide above portion between 5.377 and 5.378 into 10 equal parts, which shows $5.3 \overline{7}$ is located closer to 5.3778 than to 5.3777

© Byjus.com
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-1-number-sy stem/

ClindCareer

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-9-maths-chapter-1-number-sy stem/

Chapterwise RD Sharma Solutions for Class 9 Maths :

- Chapter 1-Number System
- Chapter 2-Exponents of Real Numbers
- Chapter 3-Rationalisation
- Chapter 4-Algebraic Identities
- Chapter 5-Factorization of Algebraic Expressions
- Chapter 6-Factorization Of Polynomials
- Chapter 7-Introduction to Euclid's Geometry
- Chapter 8-Lines and Angles
- Chapter 9-Triangle and its Angles
- Chapter 10-Congruent Triangles
- Chapter 11-Coordinate Geometry
- Chapter 12-Heron's Formula
- Chapter 13-Linear Equations in Two Variables
- Chapter 14-Quadrilaterals
- Chapter 15-Area of

Parallelograms and Triangles

- Chapter 16-Circles
- Chapter 17-Construction
- Chapter 18-Surface Area and Volume of Cuboid and Cube
- Chapter 19-Surface Area and Volume of A Right Circular Cylinder
- Chapter 20-Surface Area and

Volume of A Right Circular Cone

- Chapter 21-Surface Area And

Volume Of Sphere

- Chapter 22-Tabular

Representation of Statistical Data

- Chapter 23-Graphical

Representation of Statistical Data

- Chapter 24-Measure of Central

Tendency

- Chapter 25-Probability

ClndCareer

About RD Sharma

RD Sharma isn't the kind of author you'd bump into at lit fests. But his bestselling books have helped many CBSE students lose their dread of maths. Sunday Times profiles the tutor turned internet star

He dreams of algorithms that would give most people nightmares. And, spends every waking hour thinking of ways to explain concepts like 'series solution of linear differential equations'. Meet Dr Ravi Dutt Sharma mathematics teacher and author of 25 reference books - whose name evokes as much awe as the subject he teaches. And though students have used his thick tomes for the last 31 years to ace the dreaded maths exam, it's only recently that a spoof video turned the tutor into a YouTube star.

R D Sharma had a good laugh but said he shared little with his on-screen persona except for the love for maths. "I like to spend all my time thinking and writing about maths problems. I find it relaxing," he says. When he is not writing books explaining mathematical concepts for classes 6 to 12 and engineering students, Sharma is busy dispensing his duty as vice-principal and head of department of science and humanities at Delhi government's Guru Nanak Dev Institute of Technology.

