Class 8 Chapter 7 Factorization

RD Sharma Solutions for Class 8 Maths Chapter 7-Factorization

Class 8: Maths Chapter 7 solutions. Complete Class 8 Maths Chapter 7 Notes.

RD Sharma Solutions for Class 8 Maths Chapter 7-Factorization

RD Sharma 8th Maths Chapter 7, Class 8 Maths Chapter 7 solutions

ClindCareer

EXERCISE 7.1 PAGE NO: 7.3

Find the greatest common factor (GCF/HCF) of the following polynomials: (1-14)

1. $2 x^{2}$ and $12 x^{2}$

Solution:

We know that the numerical coefficients of given numerical are 2 and 12
The greatest common factor of 2 and 12 is 2
The common literals appearing in given monomial is x
The smallest power of x in two monomials is 2
The monomial of common literals with smallest power is x^{2}
\therefore The greatest common factor $=2 x^{2}$
2. $6 x^{3} y$ and $18 x^{2} y^{3}$

Solution:

We know that the numerical coefficients of given numerical are 6 and18
The greatest common factor of 6 and 18 is 6
Common literals appearing in given numerical are x and y
Smallest power of x in three monomial is 2
Smallest power of y in three monomial is 1
Monomial of common literals with smallest power is $x^{2} y$
\therefore The greatest common factor $=6 x^{2} y$
3. $7 x, 21 x^{2}$ and $14 x^{2}$

Solution:

We know that the numerical coefficients of given numerical are 7, 21 and 14
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

Greatest common factor of 7, 21 and 14 is 7
Common literals appearing in given numerical are x and y
Smallest power of x in three monomials is 1
Smallest power of y in three monomials is 0
Monomials of common literals with smallest power is x
\therefore The greatest common factor $=7 x$

4. $42 x^{2} y z$ and $63 x^{3} y^{2} z^{3}$

Solution:

We know that the numerical coefficients of given numerical are 42 and 63 .
Greatest common factor of 42,63 is 21.
Common literals appearing in given numerical are x, y and z
Smallest power of x in two monomials is 2
Smallest power of y in two monomials is 1
Smallest power of z in two monomials is 1
Monomials of common literals with smallest power is $x^{2} y z$
\therefore The greatest common factor $=21 x^{2} y z$

5. $12 a x^{2}, 6 a^{2} x^{3}$ and $2 a^{3} x^{5}$

Solution:

We know that the numerical coefficients of given numerical are 12, 6 and 2
Greatest common factor of 12,6 and 2 is 2.
Common literals appearing in given numerical are a and x
Smallest power of x in three monomials is 2
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

Smallest power of a in three monomials is 1
Monomials of common literals with smallest power is ax^{2}
\therefore The greatest common factor $=2 a^{2}$
6. $9 x^{2}, 15 x^{2} y^{3}, 6 x y^{2}$ and $21 x^{2} y^{2}$

Solution:

We know that the numerical coefficients of given numerical are $9,15,16$ and 21
Greatest common factor of $9,15,16$ and 21 is 3 .
Common literals appearing in given numerical are x and y
Smallest power of x in four monomials is 1
Smallest power of y in four monomials is 0
Monomials of common literals with smallest power is x
\therefore The greatest common factor $=3 x$
7. $4 a^{2} b^{3},-12 a^{3} b, 18 a^{4} b^{3}$

Solution:

We know that the numerical coefficients of given numerical are 4, -12 and 18 .
Greatest common factor of $4,-12$ and 18 is 2 .
Common literals appearing in given numerical are a and b
Smallest power of a in three monomials is 2
Smallest power of b in three monomials is 1
Monomials of common literals with smallest power is $a^{2} b$
\therefore The greatest common factor $=2 a^{2} b$
8. $6 x^{2} y^{2}, 9 x y^{3}, 3 x^{3} y^{2}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

Solution:

We know that the numerical coefficients of given numerical are 6, 9 and 3
Greatest common factor of 6,9 and 3 is 3 .
Common literals appearing in given numerical are x and y
Smallest power of x in three monomials is 1
Smallest power of y in three monomials is 2
Monomials of common literals with smallest power is xy^{2}
\therefore The greatest common factor $=3 x^{2}$
9. $a^{2} b^{3}, a^{3} b^{2}$

Solution:

We know that the numerical coefficients of given numerical are 0
Common literals appearing in given numerical are a and b
Smallest power of a in two monomials $=2$
Smallest power of b in two monomials $=2$
Monomials of common literals with smallest power is $a^{2} b^{2}$
\therefore The greatest common factor $=\mathrm{a}^{2} \mathrm{~b}^{2}$
10. $36 a^{2} b^{2} c^{4}, 54 a^{5} c^{2}, 90 a^{4} b^{2} c^{2}$

Solution:

We know that the numerical coefficients of given numerical are 36,54 and 90
Greatest common factor of 36,54 and 90 is 18.
Common literals appearing in given numerical are a, b and c
Smallest power of a in three monomials is 2
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

Smallest power of b in three monomials is 0
Smallest power of c in three monomials is 2
Monomials of common literals with smallest power is $a^{2} c^{2}$
\therefore The greatest common factor $=18 a^{2} c^{2}$
11. $x^{3},-y x^{2}$

Solution:

We know that the numerical coefficients of given numerical are 0
Common literals appearing in given numerical are x and y
Smallest power of x in two monomials is 2
Smallest power of y in two monomials is 0
Monomials of common literals with smallest power is x^{2}
\therefore The greatest common factor $=\mathrm{x}^{2}$
12. 15a ${ }^{3},-45 a^{2},-150 a$

Solution:

We know that the numerical coefficients of given numerical are 15, -45 and 150
Greatest common factor of $15,-45$ and 150 is 15.
Common literals appearing in given numerical is a
Smallest power of a in three monomials is 1
Monomials of common literals with smallest power is a
\therefore The greatest common factor $=15 a$
13. $2 x^{3} y^{2}, 10 x^{2} y^{3}, 14 x y$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

We know that the numerical coefficients of given numerical are 2, 10 and 14 .
Greatest common factor of 2,10 and 14 is 2 .
Common literals appearing in given numerical are x and y
Smallest power of x in three monomials is 1
Smallest power of y in three monomials is 1
Monomials of common literals with smallest power is $x y$
\therefore The greatest common factor $=2 x y$
14. $14 x^{3} y^{5}, 10 x^{5} y^{3}, 2 x^{2} y^{2}$

Solution:

We know that the numerical coefficients of given numerical are 14, 10 and 2.
Greatest common factor of 14,10 and 2 is 2.
Common literals appearing in given numerical are x and y
Smallest power of x in three monomials is 2
Smallest power of y in three monomials is 2
Monomials of common literals with smallest power is $x^{2} y^{2}$
\therefore The greatest common factor $=2 x^{2} y^{2}$
Find the greatest common factor of the terms in each of the following expressions:
15. $5 a^{4}+10 a^{3}-15 a^{2}$

Solution:

The greatest common factor of the three terms is $5 a^{2}$
16. $2 x y z+3 x^{2} y+4 y^{2}$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

The greatest common factor of the three terms is y

17. $3 a^{2} b^{2}+4 b^{2} c^{2}+12 a^{2} b^{2} c^{2}$

Solution:

The greatest common factor of the three terms is b^{2}.

EXERCISE 7.2 PAGE NO: 7.5

Factorize the following:

1. $3 x-9$

Solution:

The greatest common factor in the given two terms is 3
$3 x-9$
$3(x-3)$
2. $5 x-15 x^{2}$

Solution:

The greatest common factor in the given two terms is $5 x$
$5 x-15 x^{2}$
$5 x(1-3 x)$
3. $20 a^{12} b^{2}-15 a^{8} b^{4}$

Solution:

Greatest common factor in the given two terms is $5 a^{8} b^{2}$
$20 a^{12} b^{2}-15 a^{8} b^{4}$
$5 a^{8} b^{2}\left(4 a^{4}-3 b^{2}\right)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

4. $72 x^{6} y^{7}-96 x^{7} y^{6}$

Solution:

Greatest common factor in the given two terms is $24 x^{6} y^{6}$
$72 x^{6} y^{7}-96 x^{7} y^{6}$
$24 x^{6} y^{6}(3 y-4 x)$
5. $20 x^{3}-40 x^{2}+80 x$

Solution:

Greatest common factor in the given three terms is $20 x$
$20 x^{3}-40 x^{2}+80 x$
$20 x\left(x^{2}-2 x+4\right)$
6. $2 x^{3} y^{2}-4 x^{2} y^{3}+8 x y^{4}$

Solution:

Greatest common factor in the given three terms is $2 \mathrm{xy}^{2}$
$2 x^{3} y^{2}-4 x^{2} y^{3}+8 x y^{4}$
$2 x y^{2}\left(x^{2}-2 x y+4 y^{2}\right)$
7. $10 m^{3} n^{2}+15 m^{4} n-20 m^{2} n^{3}$

Solution:

Greatest common factor in the given three terms is $5 \mathrm{mn}^{2}$
$10 m^{3} n^{2}+15 m^{4} n-20 m^{2} n^{3}$
$5 m^{2} n\left(2 m n+3 m^{2}-4 n^{2}\right)$
8. $2 a^{4} b^{4}-3 a^{3} b^{5}+4 a^{2} b^{5}$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

Greatest common factor in the given three terms is $a^{2} b^{4}$
$2 a^{4} b^{4}-3 a^{3} b^{5}+4 a^{2} b^{5}$
$a^{2} b^{4}\left(2 a^{2}-3 a b+4 b\right)$
9. $28 a^{2}+14 a^{2} b^{2}-21 a^{4}$

Solution:

Greatest common factor in the given three terms is $7 \mathrm{a}^{2}$
$28 a^{2}+14 a^{2} b^{2}-21 a^{4}$
$7 a^{2}\left(4 a+2 b^{2}-3 a^{2}\right)$
10. $a^{4} b-3 a^{2} b^{2}-6 a b^{3}$

Solution:

Greatest common factor in the given three terms is ab
$a^{4} b-3 a^{2} b^{2}-6 a b^{3}$
$a b\left(a^{3}-3 a b-6 b^{2}\right)$
11. $2 I^{2} m n-3 I m^{2} n+4 I m n^{2}$

Solution:

Greatest common factor in the given three terms is Imn
$\left.2\right|^{2} m n-3 \mid m^{2} n+4 l m n^{2}$
Imn ($21-3 m+4 n$)
12. $x^{4} y^{2}-x^{2} y^{4}-x^{4} y^{4}$

Solution:

Greatest common factor in the given three terms is $x^{2} y^{2}$
$x^{4} y^{2}-x^{2} y^{4}-x^{4} y^{4}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
ClndCareer
$x^{2} y^{2}\left(x^{2}-y^{2}-x^{2} y^{2}\right)$
13. $9 x^{2} y+3 a x y$

Solution:

Greatest common factor in the given three terms is $3 x y$
$9 x^{2} y+3 a x y$
$3 x y(3 x+a)$
14. $16 m-4 m^{2}$

Solution:

Greatest common factor in the given two terms is 4 m
$16 m-4 m^{2}$
$4 m(4-m)$
15. $-4 a^{2}+4 a b-4 c a$

Solution:

Greatest common factor in the given three terms is -4 a
$-4 a^{2}+4 a b-4 c a$
$-4 a(a-b+c)$
16. $x^{2} y z+x y^{2} z+x y z^{2}$

Solution:

Greatest common factor in the given three terms is xyz
$x^{2} y z+x y^{2} z+x y z^{2}$
xyz ($x+y+z$)
17. $a x^{2} y+b x y^{2}+c x y z$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

Solution:

Greatest common factor in the given three terms is $x y$
$a x^{2} y+b x y^{2}+c x y z$
$x y(a x+b y+c z)$

EXERCISE 7.3 PAGE NO: 7.7

Factorize each of the following algebraic expressions:

1. $6 x(2 x-y)+7 y(2 x-y)$

Solution:

We have,
$6 x(2 x-y)+7 y(2 x-y)$
By taking $(2 x-y)$ as common we get,
$(6 x+7 y)(2 x-y)$
2. $2 r(y-x)+s(x-y)$

Solution:

We have,
$2 r(y-x)+s(x-y)$
By taking (-1) as common we get,
$-2 r(x-y)+s(x-y)$
By taking $(x-y)$ as common we get,
$(x-y)(-2 r+s)$
$(x-y)(s-2 r)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
3. $7 \mathrm{a}(2 \mathrm{x}-3)+3 \mathrm{~b}(2 \mathrm{x}-3)$

Solution:

We have,
$7 a(2 x-3)+3 b(2 x-3)$
By taking $(2 x-3)$ as common we get,
$(7 a+3 b)(2 x-3)$
4. $9 a(6 a-5 b)-12 a^{2}(6 a-5 b)$

Solution:

We have,
$9 a(6 a-5 b)-12 a^{2}(6 a-5 b)$
By taking $(6 a-5 b)$ as common we get,
$\left(9 a-12 a^{2}\right)(6 a-5 b)$
$3 a(3-4 a)(6 a-5 b)$
5. $5(x-2 y)^{2}+3(x-2 y)$

Solution:

We have,
$5(x-2 y)^{2}+3(x-2 y)$
By taking $(\mathrm{x}-2 \mathrm{y})$ as common we get,
$(x-2 y)[5(x-2 y)+3]$
$(x-2 y)(5 x-10 y+3)$
6. $16(2 I-3 m)^{2}-12(3 m-2 I)$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

We have,
$16(2 l-3 m)^{2}-12(3 m-2 l)$
By taking (-1) as common we get,
$16(2 l-3 m)^{2}+12(2 l-3 m)$
By taking 4(2l-3m) as common we get,
$4(2 l-3 m)[4(2 l-3 m)+3]$
$4(2 l-3 m)(8 l-12 m+3)$
7. $3 a(x-2 y)-b(x-2 y)$

Solution:

We have,
$3 a(x-2 y)-b(x-2 y)$
By taking ($\mathrm{x}-2 \mathrm{y}$) as common we get,
$(3 a-b)(x-2 y)$
8. $a^{2}(x+y)+b^{2}(x+y)+c^{2}(x+y)$

Solution:

We have,
$a^{2}(x+y)+b^{2}(x+y)+c^{2}(x+y)$
By taking $(x+y)$ as common we get,
$\left(a^{2}+b^{2}+c^{2}\right)(x+y)$
9. $(x-y)^{2}+(x-y)$

Solution:

We have,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

$(x-y)^{2}+(x-y)$
By taking $(x-y)$ as common we get,
$(x-y)(x-y+1)$
10. $6(a+2 b)-4(a+2 b)^{2}$

Solution:

We have,
$6(a+2 b)-4(a+2 b)^{2}$
By taking $(a+2 b)$ as common we get, $[6-4(a+2 b)](a+2 b)$
$(6-4 a-8 b)(a+2 b)$
$2(3-2 a-4 b)(a+2 b)$
11. $a(x-y)+2 b(y-x)+c(x-y)^{2}$

Solution:

We have,
$a(x-y)+2 b(y-x)+c(x-y)^{2}$
By taking (-1) as common we get,
$a(x-y)-2 b(x-y)+c(x-y)^{2}$

By taking $(x-y)$ as common we get, $[a-2 b+c(x-y)](x-y)$
$(x-y)(a-2 b+c x-c y)$
12. $-4(x-2 y)^{2}+8(x-2 y)$

Solution:

We have,
$-4(x-2 y)^{2}+8(x-2 y)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
ClndCareer

By taking $4(x-2 y)$ as common we get, $[-(x-2 y)+2] 4(x-2 y)$
$4(x-2 y)(-x+2 y+2)$
13. $x^{3}(a-2 b)+x^{2}(a-2 b)$

Solution:

We have,
$x^{3}(a-2 b)+x^{2}(a-2 b)$
By taking $x^{2}(a-2 b)$ as common we get,
$(x+1)\left[x^{2}(a-2 b)\right]$
$x^{2}(a-2 b)(x+1)$
14. $(2 x-3 y)(a+b)+(3 x-2 y)(a+b)$

Solution:

We have,
$(2 x-3 y)(a+b)+(3 x-2 y)(a+b)$
By taking ($a+b$) as common we get,
$(a+b)[(2 x-3 y)+(3 x-2 y)]$
$(a+b)[2 x-3 y+3 x-2 y]$
$(a+b)[5 x-5 y]$
$(a+b) 5(x-y)$
15. $4(x+y)(3 a-b)+6(x+y)(2 b-3 a)$

Solution:

We have,
$4(x+y)(3 a-b)+6(x+y)(2 b-3 a)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
elndCareer

By taking $(\mathrm{x}+\mathrm{y})$ as common we get,

$$
\begin{aligned}
& (x+y)[4(3 a-b)+6(2 b-3 a)] \\
& (x+y)[12 a-4 b+12 b-18 a] \\
& (x+y)[-6 a+8 b] \\
& (x+y) 2(-3 a+4 b) \\
& (x+y) 2(4 b-3 a)
\end{aligned}
$$

EXERCISE 7.4 PAGE NO: 7.12

Factorize each of the following expressions:

1. $q r-p r+q s-p s$

Solution:

We have,
$q r-p r+q s-p s$
By grouping similar terms we get,
$q r+q s-p r-p s$
$q(r+s)-p(r+s)$
$(q-p)(r+s)$
2. $p^{2} q-p r^{2}-p q+r^{2}$

Solution:

We have,
$p^{2} q-p r^{2}-p q+r^{2}$
By grouping similar terms we get,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
$p^{2} q-p q-p r^{2}+r^{2}$
$p q(p-1)-r^{2}(p-1)$
$(p-1)\left(p q-r^{2}\right)$
3. $1+x+x y+x^{2} y$

Solution:

We have,
$1+x+x y+x^{2} y$
$1(1+x)+x y(1+x)$
$(1+x)(1+x y)$
4. $a x+a y-b x-b y$

Solution:

We have,
$a x+a y-b x-b y$
$a(x+y)-b(x+y)$
$(a-b)(x+y)$
5. $\mathrm{xa}^{2}+\mathbf{x b ^ { 2 }}-\mathbf{y a} a^{2}-\mathbf{y b} \mathbf{b}^{2}$

Solution:
We have,
$x a^{2}+x b^{2}-y a^{2}-y b^{2}$
$x\left(a^{2}+b^{2}\right)-y\left(a^{2}+b^{2}\right)$
$(x-y)\left(a^{2}+b^{2}\right)$
6. $x^{2}+x y+x z+y z$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
ClndCareer

Solution:

We have,
$x^{2}+x y+x z+y z$
$x(x+y)+z(x+y)$
$(x+y)(x+z)$
7. $2 a x+b x+2 a y+b y$

Solution:

We have,
$2 a x+b x+2 a y+b y$
By grouping similar terms we get,
$2 a x+2 a y+b x+b y$
$2 a(x+y)+b(x+y)$
$(2 a+b)(x+y)$
8. $a b-b y-a y+y^{2}$

Solution:

We have,
$a b-b y-a y+y^{2}$
By grouping similar terms we get,
$A b-a y-b y+y^{2}$
$a(b-y)-y(b-y)$
$(a-y)(b-y)$
9. $a x y+b c x y-a z-b c z$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

Solution:

We have,
$a x y+b c x y-a z-b c z$
By grouping similar terms we get,
$a x y-a z+b c x y-b c z$
$a(x y-z)+b c(x y-z)$
$(a+b c)(x y-z)$
10. $\mathrm{Im}^{2}-\mathrm{mn}^{2}-\mathrm{Im}+\mathrm{n}^{\mathbf{2}}$

Solution:

We have,
$I^{2}-m n^{2}-I m+n^{2}$
By grouping similar terms we get,
$\mathrm{Im}^{2}-\mathrm{Im}-\mathrm{mn}^{2}+\mathrm{n}^{2}$
$\operatorname{lm}(m-1)-n^{2}(m-1)$
$\left(I m-n^{2}\right)(m-1)$
11. $x^{3}-y^{2}+x-x^{2} y^{2}$

Solution:

We have,
$x^{3}-y^{2}+x-x^{2} y^{2}$
By grouping similar terms we get,
$x+x^{3}-y^{2}-x^{2} y^{2}$
$x\left(1+x^{2}\right)-y^{2}\left(1+x^{2}\right)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
$\left(x-y^{2}\right)\left(1+x^{2}\right)$
12. $6 x y+6-9 y-4 x$

Solution:

We have,
$6 x y+6-9 y-4 x$
By grouping similar terms we get,
$6 x y-4 x-9 y+6$
$2 x(3 y-2)-3(3 y-2)$
$(2 x-3)(3 y-2)$
13. $x^{2}-2 a x-2 a b+b x$

Solution:

We have,
$x^{2}-2 a x-2 a b+b x$
By grouping similar terms we get,
$x^{2}+b x-2 a x-2 a b$
$x(x+b)-2 a(x+b)$
$(x-2 a)(x+b)$
14. $x^{3}-2 x^{2} y+3 x y^{2}-6 y^{3}$

Solution:

We have,
$x^{3}-2 x^{2} y+3 x y^{2}-6 y^{3}$
By grouping similar terms we get,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

$x^{3}+3 x y^{2}-2 x^{2} y-6 y^{3}$
$x\left(x^{2}+3 y^{2}\right)-2 y\left(x^{2}+3 y^{2}\right)$
$(x-2 y)\left(x^{2}+3 y^{2}\right)$
15. $a b x^{2}+(a y-b) x-y$

Solution:

We have,

$$
\begin{aligned}
& a b x^{2}+(a y-b) x-y \\
& a b x^{2}+a y x-b x-y
\end{aligned}
$$

By grouping similar terms we get,

$$
a b x^{2}-b x+a y x-y
$$

$b x(a x-1)+y(a x-1)$
$(b x+y)(a x-1)$
16. $(a x+b y)^{2}+(b x-a y)^{2}$

Solution:

We have,
$(a x+b y)^{2}+(b x-a y)^{2}$
$a^{2} x^{2}+b^{2} y^{2}+2 a x b y+b^{2} x^{2}+a^{2} y^{2}-2 a x b y$
$a^{2} x^{2}+b^{2} y^{2}+b^{2} x^{2}+a^{2} y^{2}$
By grouping similar terms we get,
$a^{2} x^{2}+a^{2} y^{2}+b^{2} y^{2}+b^{2} x^{2}$
$a^{2}\left(x^{2}+y^{2}\right)+b^{2}\left(x^{2}+y^{2}\right)$
$\left(a^{2}+b^{2}\right)\left(x^{2}+y^{2}\right)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
ClndCareer
17. $16(a-b)^{3}-24(a-b)^{2}$

Solution:

We have,
$16(a-b)^{3}-24(a-b)^{2}$
$8(a-b)^{2}[2(a-b)-3]$
$8(a-b)^{2}(2 a-2 b-3)$
18. $a b\left(x^{2}+1\right)+x\left(a^{2}+b^{2}\right)$

Solution:

We have,
$a b\left(x^{2}+1\right)+x\left(a^{2}+b^{2}\right)$
$a b x^{2}+a b+x a^{2}+x b^{2}$
By grouping similar terms we get,
$a b x^{2}+x a^{2}+x b^{2}+a b$
$a x(b x+a)+b(b x+a)$
$(a x+b)(b x+a)$
19. $a^{2} x^{2}+\left(a x^{2}+1\right) x+a$

Solution:

We have,
$a^{2} x^{2}+\left(a x^{2}+1\right) x+a$
$a^{2} x^{2}+a x^{3}+x+a$
$a x^{2}(a+x)+1(x+a)$
$(x+a)\left(a x^{2}+1\right)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
ClndCareer
20. $a(a-2 b-c)+2 b c$

Solution:

We have,
$a(a-2 b-c)+2 b c$
$a^{2}-2 a b-a c+2 b c$
$a(a-2 b)-c(a-2 b)$
$(a-2 b)(a-c)$
21. $a(a+b-c)-b c$

Solution:

We have,
$a(a+b-c)-b c$
$a^{2}+a b-a c-b c$
$a(a+b)-c(a+b)$
$(a+b)(a-c)$
22. $x^{2}-11 x y-x+11 y$

Solution:

We have,
$x^{2}-11 x y-x+11 y$
By grouping similar terms we get,
$x^{2}-x-11 x y+11 y$
$x(x-1)-11 y(x-1)$
$(x-11 y)(x-1)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClindCareer

23. $a b-a-b+1$

Solution:

We have,
$a b-a-b+1$
$a(b-1)-1(b-1)$
$(a-1)(b-1)$
24. $x^{2}+y-x y-x$

Solution:
We have,
$x^{2}+y-x y-x$
By grouping similar terms we get,
$x^{2}-x+y-x y$
$x(x-1)-y(x-1)$
$(x-y)(x-1)$

EXERCISE 7.5 PAGE NO: 7.17
Factorize each of the following expressions:

1. $16 x^{2}-25 y^{2}$

Solution:

We have,
$16 x^{2}-25 y^{2}$
$(4 x)^{2}-(5 y)^{2}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$ we get,
$(4 x+5 y)(4 x-5 y)$
2. $27 x^{2}-12 y^{2}$

Solution:

We have,
$27 x^{2}-12 y^{2}$
By taking 3 as common we get,
$3\left[(3 x)^{2}-(2 y)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$3(3 x+2 y)(3 x-2 y)$
3. $144 a^{2}-289 b^{2}$

Solution:

We have,
$144 a^{2}-289 b^{2}$
$(12 a)^{2}-(17 b)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$(12 a+17 b)(12 a-17 b)$
4. $12 m^{2}-27$

Solution:

We have,
$12 m^{2}-27$
By taking 3 as common we get,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
ClndCareer
$3\left(4 m^{2}-9\right)$
$3\left[(2 m)^{2}-3^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$3(2 m+3)(2 m-3)$
5. $125 x^{2}-45 y^{2}$

Solution:

We have,
$125 x^{2}-45 y^{2}$
By taking 5 as common we get,
$5\left(25 x^{2}-9 y^{2}\right)$
$5\left[(5 x)^{2}-(3 y)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$5(5 x+3 y)(5 x-3 y)$
6. $144 a^{2}-169 b^{2}$

Solution:

We have,
$144 a^{2}-169 b^{2}$
$(12 a)^{2}-(13 b)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$(12 a+13 b)(12 a-13 b)$
7. $(2 a-b)^{2}-16 c^{2}$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

We have,

$$
\begin{aligned}
& (2 a-b)^{2}-16 c^{2} \\
& (2 a-b)^{2}-(4 c)^{2}
\end{aligned}
$$

By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$(2 a-b+4 c)(2 a-b-4 c)$
8. $(x+2 y)^{2}-4(2 x-y)^{2}$

Solution:

We have,
$(x+2 y)^{2}-4(2 x-y)^{2}$
$(x+2 y)^{2}-[2(2 x-y)]^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$ we get, $[(x+2 y)+2(2 x-y)][x+2 y-2(2 x-y)]$
$(x+4 x+2 y-2 y)(x-4 x+2 y+2 y)$
$(5 x)(4 y-3 x)$
9. $3 a^{5}-48 a^{3}$

Solution:

We have,
$3 a^{5}-48 a^{3}$
By taking 3 as common we get,
$3 a^{3}\left(a^{2}-16\right)$
$3 a^{3}\left(a^{2}-4^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$3 a^{3}(a+4)(a-4)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

10. $a^{4}-16 b^{4}$

Solution:

We have,
$a^{4}-16 b^{4}$
$\left(a^{2}\right)^{2}-\left(4 b^{2}\right)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(a^{2}+4 b^{2}\right)\left(a^{2}-4 b^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(a^{2}+4 b^{2}\right)(a+2 b)(a-2 b)$
11. $x^{8}-1$

Solution:

We have,
$x^{8}-1$
$\left(x^{4}\right)^{2}-(1)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(x^{4}+1\right)\left(x^{4}-1\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(x^{4}+1\right)\left(x^{2}+1\right)(x-1)(x+1)$
12. $64-(a+1)^{2}$

Solution:

We have,
$64-(a+1)^{2}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

$8^{2}-(a+1)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)[8+(a+1)][8-(a+1)]$
$(a+9)(7-a)$
13. $36 I^{2}-(m+n)^{2}$

Solution:

We have,
$361^{2}-(m+n)^{2}$
$(6 \mathrm{l})^{2}-(m+n)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$(61+m+n)(6 I-m-n)$
14. $25 x^{4} y^{4}-1$

Solution:

We have,
$25 x^{4} y^{4}-1$
$\left(5 x^{2} y^{2}\right)^{2}-(1)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(5 x^{2} y^{2}-1\right)\left(5 x^{2} y^{2}+1\right)$
15. $a^{4}-1 / b^{4}$

Solution:

We have,
$a^{4}-1 / b^{4}$
$\left(a^{2}\right)^{2}-\left(1 / b^{2}\right)^{2}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(a^{2}+1 / b^{2}\right)\left(a^{2}-1 / b^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(a^{2}+1 / b^{2}\right)(a-1 / b)(a+1 / b)$
16. $x^{3}-144 x$

Solution:

We have,
$x^{3}-144 x$
$x\left[x^{2}-(12)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$x(x+12)(x-12)$
17. $(x-4 y)^{2}-625$

Solution:

We have,
$(x-4 y)^{2}-625$
$(x-4 y)^{2}-(25)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$(x-4 y+25)(x-4 y-25)$
18. $9(a-b)^{2}-100(x-y)^{2}$

Solution:

We have,
$9(a-b)^{2}-100(x-y)^{2}[3(a-b)]^{2}-[10(x-y)]^{2}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
ClndCareer

ClindCareer

By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)[3(a-b)+10(x+y)][3(a-b)-10(x-y)][3 a-3 b$ $+10 x-10 y][3 a-3 b-10 x+10 y]$
19. $(3+2 a)^{2}-25 a^{2}$

Solution:

We have,
$(3+2 a)^{2}-25 a^{2}$
$(3+2 a)^{2}-(5 a)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$(3+2 a+5 a)(3+2 a-5 a)$
$(3+7 a)(3-3 a)$
$(3+7 a) 3(1-a)$
20. $(x+y)^{2}-(a-b)^{2}$

Solution:

We have,
$(x+y)^{2}-(a-b)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)[(x+y)+(a-b)][(x+y)-(a-b)]$
$(x+y+a-b)(x+y-a+b)$
21. $1 / 16 x^{2} y^{2}-4 / 49 y^{2} z^{2}$

Solution:

We have,
$1 / 16 x^{2} y^{2}-4 / 49 y^{2} z^{2}$
$(1 / 4 x y)^{2}-(2 / 7 y z)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
ClndCareer
$(x y / 4+2 y z / 7)(x y / 4-2 y z / 7)$
$\mathrm{y}^{2}(\mathrm{x} / 4+2 / 7 \mathrm{z})(\mathrm{x} / 4-2 / 7 \mathrm{z})$
22. $75 a^{3} b^{2}-108 a b^{4}$

Solution:

We have,
$75 a^{3} b^{2}-108 a b^{4}$
$3 a b^{2}\left(25 a^{2}-36 b^{2}\right)$
$3 a b^{2}\left[(5 a)^{2}-(6 b)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$3 a b^{2}(5 a+6 b)(5 a-6 b)$
23. $x^{5}-16 x^{3}$

Solution:

We have,
$x^{5}-16 x^{3}$
$x^{3}\left(x^{2}-16\right)$
$x^{3}\left(x^{2}-4^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$x^{3}(x+4)(x-4)$
24. $50 / x^{2}-2 x^{2} / 81$

Solution:

We have,
$50 / x^{2}-2 x^{2} / 81$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
ClndCareer
$2\left(25 / x^{2}-x^{2} / 81\right)$
$2\left[(5 / x)^{2}-(x / 9)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$2(5 / x+x / 9)(5 / x-x / 9)$
25. $256 \mathrm{x}^{3}-81 \mathrm{x}$

Solution:

We have,
$256 x^{3}-81 x$
$x\left(256 x^{4}-81\right)$
$x\left[\left(16 x^{2}\right)^{2}-9^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$x(4 x+3)(4 x-3)\left(16 x^{2}+9\right)$
26. $a^{4}-(2 b+c)^{4}$

Solution:

We have,
$a^{4}-(2 b+c)^{4}$
$\left(a^{2}\right)^{2}-\left[(2 b+c)^{2}\right]^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)\left[a^{2}+(2 b+c)^{2}\right]\left[a^{2}-(2 b+c)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)\left[a^{2}+(2 b+c)^{2}\right][a+2 b+c][a-2 b-c]$
27. $(3 x+4 y)^{4}-x^{4}$

Solution:

We have,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

$(3 x+4 y)^{4}-x^{4}\left[(3 x+4 y)^{2}\right]^{2}-\left(x^{2}\right)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)\left[(3 x+4 y)^{2}+x^{2}\right]\left[(3 x+4 y)^{2}-x^{2}\right]\left[(3 x+4 y)^{2}+x^{2}\right][3 x+$ $4 y+x][3 x+4 y-x]\left[(3 x+4 y)^{2}+x^{2}\right][4 x+4 y][2 x+4 y]\left[(3 x+4 y)^{2}+x^{2}\right] 8[x+2 y][x+y]$
28. $p^{2} q^{2}-p^{4} q^{4}$

Solution:

We have,
$p^{2} q^{2}-p^{4} q^{4}$
$(p q)^{2}-\left(p^{2} q^{2}\right)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(p q+p^{2} q^{2}\right)\left(p q-p^{2} q^{2}\right)$
$p^{2} q^{2}(1+p q)(1-p q)$
29. $3 x^{3} y-243 x y^{3}$

Solution:

We have,
$3 x^{3} y-243 x y^{3}$
$3 x y\left(x^{2}-81 y^{2}\right)$
$3 x y\left[x^{2}-(9 y)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$(3 x y)(x+9 y)(x-9 y)$
30. $a^{4} b^{4}-16 c^{4}$

Solution:

We have,
$a^{4} b^{4}-16 c^{4}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

$\left(a^{2} b^{2}\right)^{2}-\left(4 c^{2}\right)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(a^{2} b^{2}+4 c^{2}\right)\left(a^{2} b^{2}-4 c^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(a^{2} b^{2}+4 c^{2}\right)(a b+2 c)(a b-2 c)$
31. $x^{4}-625$

Solution:

We have,
$x^{4}-625$
$\left(x^{2}\right)^{2}-(25)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(x^{2}+25\right)\left(x^{2}-25\right)$
$\left(x^{2}+25\right)\left(x^{2}-5^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(x^{2}+25\right)(x+5)(x-5)$
32. $x^{4}-1$

Solution:

We have,
$x^{4}-1$
$\left(x^{2}\right)^{2}-(1)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(x^{2}+1\right)\left(x^{2}-1\right)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(x^{2}+1\right)(x+1)(x-1)$
33. $49(a-b)^{2}-25(a+b)^{2}$

Solution:

We have,
$49(a-b)^{2}-25(a+b)^{2}[7(a-b)]^{2}-[5(a+b)]^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)[7(a-b)+5(a+b)][7(a-b)-5(a+b)]$
$(7 a-7 b+5 a+5 b)(7 a-7 b-5 a-5 b)$
$(12 a-2 b)(2 a-12 b)$
$2(6 a-b) 2(a-6 b)$
$4(6 a-b)(a-6 b)$
34. $x-y-x^{2}+y^{2}$

Solution:

We have,
$x-y-x^{2}+y^{2}$
$x-y-\left(x^{2}-y^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$x-y-(x+y)(x-y)$
$(x-y)(1-x-y)$
35. $16(2 x-1)^{2}-25 y^{2}$

Solution:

We have,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

$16(2 x-1)^{2}-25 y^{2}[4(2 x-1)]^{2}-(5 y)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$(8 x+5 y-4)(8 x-5 y-4)$
36. $4(x y+1)^{2}-9(x-1)^{2}$

Solution:

We have,
$4(x y+1)^{2}-9(x-1)^{2}[2(x y+1)]^{2}-[3(x-1)]^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$(2 x y+2+3 x-3)(2 x y+2-3 x+3)$
$(2 x y+3 x-1)(2 x y-3 x+5)$
37. $(2 x+1)^{2}-9 x^{4}$

Solution:

We have,
$(2 x+1)^{2}-9 x^{4}$
$(2 x+1)^{2}-\left(3 x^{2}\right)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(2 x+1+3 x^{2}\right)\left(2 x+1-3 x^{2}\right)$
$\left(3 x^{2}+2 x+1\right)\left(-3 x^{2}+2 x+1\right)$
38. $x^{4}-(2 y-3 z)^{2}$

Solution:

We have,
$x^{4}-(2 y-3 z)^{2}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
ClndCareer

ClndCareer

$\left(x^{2}\right)^{2}-(2 y-3 z)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(x^{2}+2 y-3 z\right)\left(x^{2}-2 y+3 z\right)$
39. $a^{2}-b^{2}+a-b$

Solution:

We have,
$a^{2}-b^{2}+a-b$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$(a+b)(a-b)+(a-b)$
$(a-b)(a+b+1)$
40. $16 a^{4}-b^{4}$

Solution:

We have,
$16 a^{4}-b^{4}$
$\left(4 a^{2}\right)^{2}-\left(b^{2}\right)^{2}$
$\left(4 a^{2}+b^{2}\right)\left(4 a^{2}-b^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(4 a^{2}+b^{2}\right)(2 a+b)(2 a-b)$
41. $a^{4}-16(b-c)^{4}$

Solution:

We have,
$a^{4}-16(b-c)^{4}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

$\left(a^{2}\right)^{2}-\left[4(b-c)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)\left[a^{2}+4(b-c)^{2}\right]\left[a^{2}-4(b-c)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)\left[a^{2}+4(b-c)^{2}\right][(a+2 b-2 c)(a-2 b+2 c)]$
42. $2 a^{5}-32 a$

Solution:

We have,
$2 a^{5}-32 a$
$2 a\left(a^{4}-16\right)$
2a $\left[\left(a^{2}\right)^{2}-(4)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$2 a\left(a^{2}+4\right)\left(a^{2}-4\right)$
$2 a\left(a^{2}+4\right)\left(a^{2}-2^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$2 a\left(a^{2}+4\right)(a+2)(a-2)$
43. $a^{4} b^{4}-81 c^{4}$

Solution:

We have,
$a^{4} b^{4}-81 c^{4}$
$\left(a^{2} b^{2}\right)^{2}-\left(9 c^{2}\right)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(a^{2} b^{2}+9 c^{2}\right)\left(a^{2} b^{2}-9 c^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClindCareer

$\left(a^{2} b^{2}+9 c^{2}\right)(a b+3 c)(a b-3 c)$
44. $x^{9}-y x^{9}$

Solution:

We have,
$x y^{9}-y x^{9}$
$-x y\left(x^{8}-y^{8}\right)$
$-x y\left[\left(x^{4}\right)^{2}-\left(y^{4}\right)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$-x y\left(x^{4}+y^{4}\right)\left(x^{4}-y^{4}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$-x y\left(x^{4}+y^{4}\right)\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$-x y\left(x^{4}+y^{4}\right)\left(x^{2}+y^{2}\right)(x+y)(x-y)$
45. $x^{3}-x$

Solution:

We have,
$x^{3}-x$
$x\left(x^{2}-1\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$x(x+1)(x-1)$
46. $18 a^{2} x^{2}-32$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

We have,
$18 a^{2} x^{2}-32$
$2\left[(3 a x)^{2}-(4)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$2(3 a x+4)(3 a x-4)$

EXERCISE 7.6 PAGE NO: 7.22

Factorize each of the following algebraic expressions:

1. $4 x^{2}+12 x y+9 y^{2}$

Solution:

We have,
$4 x^{2}+12 x y+9 y^{2}$
By using the formula $(x+y)^{2}=x^{2}+y^{2}+2 x y$
$(2 x)^{2}+(3 y)^{2}+2(2 x)(3 y)$
$(2 x+3 y)^{2}$
$(2 x+3 y)(2 x+3 y)$
2. $9 a^{2}-24 a b+16 b^{2}$

Solution:

We have,
$9 a^{2}-24 a b+16 b^{2}$
By using the formula $(x-y)^{2}=x^{2}+y^{2}-2 x y$
Here $x=3 a, y=4 b$ So,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
$(3 a)^{2}+(4 b)^{2}-2(3 a)(4 b)$
$(3 a-4 b)^{2}$
$(3 a-4 b)(3 a-4 b)$
3. $p^{2} q^{2}-6 p q r+9 r^{2}$

Solution:

We have,
$p^{2} q^{2}-6 p q r+9 r^{2}$
By using the formula $(a-b)^{2}=a^{2}+b^{2}-2 a b$
$(p q)^{2}+(3 r)^{2}-2(p q)(3 r)$
$(p q-3 r)^{2}$
$(p q-3 r)(p q-3 r)$
4. $36 a^{2}+36 a+9$

Solution:

We have,
$36 a^{2}+36 a+9$
$(6 a)^{2}+2 \times 6 a \times 3+3^{2}$
$(6 a+3)^{2}$
5. $a^{2}+2 a b+b^{2}-16$

Solution:

We have,
$a^{2}+2 a b+b^{2}-16$
By using the formula $(a-b)^{2}=a^{2}+b^{2}-2 a b$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

$(a+b)^{2}-4^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(a+b+4)(a+b-4)$
6. $9 z^{2}-x^{2}+4 x y-4 y^{2}$

Solution:

We have,
$9 z^{2}-x^{2}+4 x y-4 y^{2}$
$(3 z)^{2}-\left[x^{2}-2(x)(2 y)+(2 y)^{2}\right]$
By using the formula $(a-b)^{2}=a^{2}+b^{2}-2 a b$
$(3 z)^{2}-(x-2 y)^{2}$
By using the formula $\left.\left(a^{2}-b^{2}\right)=(a+b)(a-b)[(x-2 y)+3 z][-x+2 y+3 z)\right]$
7. $9 a^{4}-24 a^{2} b^{2}+16 b^{4}-256$

Solution:

We have,
$9 a^{4}-24 a^{2} b^{2}+16 b^{4}-256$
$\left(3 a^{2}\right)^{2}-2\left(4 a^{2}\right)\left(3 b^{2}\right)+\left(4 b^{2}\right)^{2}-(16)^{2}$
By using the formula $(a-b)^{2}=a^{2}+b^{2}-2 a b$
$\left(3 a^{2}-4 b^{2}\right)^{2}-(16)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$\left(3 a^{2}-4 b^{2}+16\right)\left(3 a^{2}-4 b^{2}-16\right)$
8. $16-a^{6}+4 a^{3} b^{3}-4 b^{6}$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

We have,
$16-a^{6}+4 a^{3} b^{3}-4 b^{6}$
$4^{2}-\left[\left(a^{3}\right)^{2}-2\left(a^{3}\right)\left(2 b^{3}\right)+\left(2 b^{3}\right)^{2}\right]$
By using the formula $(a-b)^{2}=a^{2}+b^{2}-2 a b$
$4^{2}-\left(a^{3}-2 b^{3}\right)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)\left[4+\left(a^{3}-2 b^{3}\right)\right]\left[4-\left(a^{3}-2 b^{3}\right)\right]$
9. $a^{2}-2 a b+b^{2}-c^{2}$

Solution:

We have,
$a^{2}-2 a b+b^{2}-c^{2}$
By using the formula $(a-b)^{2}=a^{2}+b^{2}-2 a b$
$(a-b)^{2}-c^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(a-b+c)(a-b-c)$
10. $x^{2}+2 x+1-9 y^{2}$

Solution:

We have,
$x^{2}+2 x+1-9 y^{2}$
By using the formula $(a-b)^{2}=a^{2}+b^{2}-2 a b$
$(x+1)^{2}-(3 y)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(x+3 y+1)(x-3 y+1)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

11. $a^{2}+4 a b+3 b^{2}$

Solution:

We have,
$a^{2}+4 a b+3 b^{2}$
By using factors for 3 i.e., 3 and 1
$a^{2}+a b+3 a b+3 b^{2}$
By grouping we get,
$a(a+b)+3 b(a+b)$
$(a+3 b)(a+b)$
12. $96-4 x-x^{2}$

Solution:

We have,
$96-4 x-x^{2}$
$-x^{2}-4 x+96$
By using factors for 96 i.e., 12 and 8
$-x^{2}-12 x+8 x+96$
By grouping we get,
$-x(x+12)+8(x+12)$
$(x+12)(-x+8)$
13. $a^{4}+3 a^{2}+4$

Solution:

We have,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

$$
\begin{aligned}
& a^{4}+3 a^{2}+4 \\
& \left(a^{2}\right)^{2}+\left(a^{2}\right)^{2}+2\left(2 a^{2}\right)+4-a^{2} \\
& \left(a^{2}+2\right)^{2}+\left(-a^{2}\right)
\end{aligned}
$$

By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$\left(a^{2}+2+a\right)\left(a^{2}+2-a\right)$
$\left(a^{2}+a+2\right)\left(a^{2}-a+2\right)$

14. $4 x^{4}+1$

Solution:

We have,
$4 x^{4}+1$
$\left(2 x^{2}\right)^{2}+1+4 x^{2}-4 x^{2}$
$\left(2 x^{2}+1\right)^{2}-4 x^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$\left(2 x^{2}+1+2 x\right)\left(2 x^{2}+1-2 x\right)$
$\left(2 x^{2}+2 x+1\right)\left(2 x^{2}-2 x+1\right)$
15. $4 x^{4}+y^{4}$

Solution:

We have,
$4 x^{4}+y^{4}$
$\left(2 x^{2}\right)^{2}+\left(y^{2}\right)^{2}+4 x^{2} y^{2}-4 x^{2} y^{2}$
$\left(2 x^{2}+y^{2}\right)^{2}-4 x^{2} y^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

$\left(2 x^{2}+y^{2}+2 x y\right)\left(2 x^{2}+y^{2}-2 x y\right)$
16. $(x+2)^{4}-6(x+2)+9$

Solution:

We have,
$(x+2)^{4}-6(x+2)+9$
$\left(x^{2}+2^{2}\right)^{2}-6 x-12+9$
$\left(x^{2}+2^{2}+2(2)(x)\right)-6 x-12+9$
$x^{2}+4+4 x-6 x-12+9$
$x^{2}-2 x+1$
By using the formula $(a-b)^{2}=a^{2}+b^{2}-2 a b$
$(x-1)^{2}$
17. $25-p^{2}-q^{2}-2 p q$

Solution:

We have,
$25-p^{2}-q^{2}-2 p q$
$25-\left(p^{2}+q^{2}+2 p q\right)$
$(5)^{2}-(p+q)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(5+p+q)(5-p-q)$
$-(p+q+5)(p+q-5)$
18. $x^{2}+9 y^{2}-6 x y-25 a^{2}$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

We have,
$x^{2}+9 y^{2}-6 x y-25 a^{2}$
$(x-3 y)^{2}-(5 a)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(x-3 y+5 a)(x-3 y-5 a)$
19. $49-a^{2}+8 a b-16 b^{2}$

Solution:

We have,
$49-a^{2}+8 a b-16 b^{2}$
$49-\left(a^{2}-8 a b+16 b^{2}\right)$
$49-(a-4 b)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(7+a-4 b)(7-a+4 b)$
$-(a-4 b+7)(a-4 b-7)$
20. $a^{2}-8 a b+16 b^{2}-25 c^{2}$

Solution:

We have,
$a^{2}-8 a b+16 b^{2}-25 c^{2}$
$(a-4 b)^{2}-(5 c)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(a-4 b+5 c)(a-4 b-5 c)$
21. $x^{2}-y^{2}+6 y-9$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

Solution:

We have,
$x^{2}-y^{2}+6 y-9$
$x^{2}+6 y-\left(y^{2}-6 y+9\right)$
$x^{2}-(y-3)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(x+y-3)(x-y+3)$
22. $25 x^{2}-10 x+1-36 y^{2}$

Solution:

We have,
$25 x^{2}-10 x+1-36 y^{2}$
$(5 x)^{2}-2(5 x)+1-(6 y)^{2}$
$(5 x-1)^{2}-(6 y)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(5 x-6 y-1)(5 x+6 y-1)$
23. $a^{2}-b^{2}+2 b c-c^{2}$

Solution:

We have,
$a^{2}-b^{2}+2 b c-c^{2}$
$a^{2}-\left(b^{2}-2 b c+c^{2}\right)$
$a^{2}-(b-c)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

$(a+b-c)(a-b+c)$
24. $a^{2}+2 a b+b^{2}-c^{2}$

Solution:

We have,
$a^{2}+2 a b+b^{2}-c^{2}$
$(a+b)^{2}-c^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(a+b+c)(a+b-c)$
25. $49-x^{2}-y^{2}+2 x y$

Solution:

We have,
$49-x^{2}-y^{2}+2 x y$
$49-\left(x^{2}+y^{2}-2 x y\right)$
$7^{2}-(x-y)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)[7+(x-y)][7-x+y]$
$(x-y+7)(y-x+7)$
26. $a^{2}+4 b^{2}-4 a b-4 c^{2}$

Solution:

We have,

$$
\begin{aligned}
& a^{2}+4 b^{2}-4 a b-4 c^{2} \\
& a^{2}-2(a)(2 b)+(2 b)^{2}-(2 c)^{2} \\
& (a-2 b)^{2}-(2 c)^{2}
\end{aligned}
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

Clnd Career

By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(a-2 b+2 c)(a-2 b-2 c)$
27. $x^{2}-y^{2}-4 x z+4 z^{2}$

Solution:

We have,
$x^{2}-y^{2}-4 x z+4 z^{2}$
$x^{2}-2(x)(2 z)+(2 z)^{2}-y^{2}$
As $(a-b)^{2}=a^{2}+b^{2}-2 a b$
$(x-2 z)^{2}-y^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(x+y-2 z)(x-y-2 z)$

EXERCISE 7.7 PAGE NO: 7.27

Factorize each of the following algebraic expressions:

1. $x^{2}+12 x-45$

Solution:

We have,
$x^{2}+12 x-45$
To factorize the given expression we have to find two numbers p and q such that $p+q=12$ and $p q=-45$

So we can replace $12 x$ by $15 x-3 x$
-45 by 15×3
$x^{2}+12 x-45=x^{2}+15 x-3 x-45$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
$=x(x+15)-3(x+15)$
$=(x-3)(x+15)$
2. $40+3 x-x^{2}$

Solution:

We have,
$40+3 x-x^{2}$
$-\left(x^{2}-3 x-40\right)$
By considering, $p+q=-3$ and $p q=-40$
So we can replace $-3 x$ by $5 x-8 x$
-40 by 5×-8
$-\left(x^{2}-3 x-40\right)=x^{2}+5 x-8 x-40$
$=-x(x+5)-8(x+5)$
$=-(x-8)(x+5)$
$=(-x+8)(x+5)$
3. $a^{2}+3 a-88$

Solution:

We have,
$a^{2}+3 a-88$
By considering, $p+q=3$ and $p q=-88$
So we can replace 3a by 11a-8a
-40 by -11×8
$a^{2}+3 a-88=a^{2}+11 a-8 a-88$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
$=a(a+11)-8(a+11)$
$=(a-8)(a+11)$
4. $a^{2}-14 a-51$

Solution:

We have,
$a^{2}-14 a-51$
By considering, $p+q=-14$ and $p q=-51$
So we can replace -14a by $3 \mathrm{a}-17 \mathrm{a}$
-51 by -17×3
$a^{2}-14 a-51=a^{2}+3 a-17 a-51$
$=a(a+3)-17(a+3)$
$=(a-17)(a+3)$
5. $x^{2}+14 x+45$

Solution:

We have,
$x^{2}+14 x+45$
By considering, $\mathrm{p}+\mathrm{q}=14$ and $\mathrm{pq}=45$
So we can replace $14 x$ by $5 x+9 x$
45 by 5×9

$$
\begin{aligned}
& x^{2}+14 x+45=x^{2}+5 x+9 x+45 \\
& =x(x+5)-9(x+5) \\
& =(x+9)(x+5)
\end{aligned}
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
6. $x^{2}-22 x+120$

Solution:

We have,
$x^{2}-22 x+120$
By considering, $p+q=-22$ and $p q=120$
So we can replace $-22 x$ by $-12 x-10 x$
120 by -12×-10
$x^{2}-22 x+120=x^{2}-12 x-10 x+120$
$=x(x-12)-10(x-12)$
$=(x-10)(x-12)$
7. $x^{2}-11 x-42$

Solution:

We have,
$x^{2}-11 x-42$
By considering, $p+q=-11$ and $p q=-42$
So we can replace $-11 x$ by $3 x-14 x$
-42 by 3×-14
$x^{2}-11 x-42=x^{2}+3 x-14 x-42$
$=x(x+3)-14(x+3)$
$=(x-14)(x+3)$
8. $a^{2}+2 a-3$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

We have,
$a^{2}+2 a-3$
By considering, $\mathrm{p}+\mathrm{q}=2$ and $\mathrm{pq}=-3$
So we can replace 2a by 3a-a
-3 by 3×-1
$a^{2}+2 a-3=a^{2}+3 a-a-3$
$=a(a+3)-1(a+3)$
$=(a-1)(a+3)$
9. $a^{2}+14 a+48$

Solution:

We have,
$a^{2}+14 a+48$
By considering, $\mathrm{p}+\mathrm{q}=14$ and $\mathrm{pq}=48$
So we can replace 14 a by $8 \mathrm{a}+6 \mathrm{a}$
48 by 8×6
$a^{2}+14 a+48=a^{2}+8 a+6 a+48$
$=a(a+8)+6(a+8)$
$=(a+6)(a+8)$
10. $x^{2}-4 x-21$

Solution:

We have,
$x^{2}-4 x-21$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

By considering, $p+q=-4$ and $p q=-21$
So we can replace $-4 x$ by $3 x-7 x$
-21 by 3×-7
$x^{2}+4 x-21=x^{2}+3 x-7 x-21$
$=x(x+3)-7(x+3)$
$=(x-7)(x+3)$
11. $y^{2}+5 y-36$

Solution:

We have,
$y^{2}+5 y-36$
By considering, $p+q=5$ and $p q=-36$
So we can replace 5 y by $9 \mathrm{y}-4 \mathrm{y}$
-36 by 9×-4
$y^{2}+5 y-36=y^{2}+9 y-4 y-36$
$=y(y+9)-4(y+9)$
$=(y-4)(y+9)$
12. $\left(a^{2}-5 a\right)^{2}-36$

Solution:

We have,

$$
\begin{aligned}
& \left(a^{2}-5 a\right)^{2}-36 \\
& \left(a^{2}-5 a\right)^{2}-6^{2}
\end{aligned}
$$

By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
ClndCareer

ClndCareer

$\left(a^{2}-5 a\right)^{2}-6^{2}=\left(a^{2}-5 a+6\right)\left(a^{2}-5 a-6\right)$
So now we shall factorize the expression $\left(a^{2}-5 a+6\right)$
By considering, $p+q=-5$ and $p q=6$
So we can replace -5a by a -6a
6 by 1×-6
$a^{2}-5 a-6=a^{2}+a-6 a-6$
$=a(a+1)-6(a+1)$
$=(a-6)(a+1)$
So now we shall factorize the expression $\left(a^{2}-5 a+6\right)$
By considering, $\mathrm{p}+\mathrm{q}=-5$ and $\mathrm{pq}=-6$
So we can replace -5a by -2a -3a
6 by -2×-3
$a^{2}-5 a+6=a^{2}-2 a-3 a+6$
$=a(a-2)-3(a-2)$
$=(a-3)(a-2)$
$\therefore\left(a^{2}-5 a\right)^{2}-36=\left(a^{2}-5 a+6\right)\left(a^{2}-5 a-6\right)$
$=(a+1)(a-6)(a-2)(a-3)$
13. $(a+7)(a-10)+16$

Solution:

We have,
$(a+7)(a-10)+16$
$a^{2}-10 a+7 a-70+16$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
$a^{2}-3 a-54$
By considering, $p+q=-3$ and $p q=-54$
So we can replace -3a by 6a-9a
-54 by 6×-9
$a^{2}-3 a-54=a^{2}+6 a-9 a-54$
$=a(a+6)-9(a+6)$
$=(a-9)(a+6)$

EXERCISE 7.8 PAGE NO: 7.30

Resolve each of the following quadratic trinomials into factors:

1. $2 x^{2}+5 x+3$

Solution:

We have,
$2 x^{2}+5 x+3$
The coefficient of x^{2} is 2
The coefficient of x is 5
Constant term is 3
We shall split up the center term i.e., 5 into two parts such that their sum $p+q$ is 5 and product $\mathrm{pq}=2 \times 3$ is 6

So, we express the middle term $5 x$ as $2 x+3 x$
$2 x^{2}+5 x+3=2 x^{2}+2 x+3 x+3$
$=2 x(x+1)+3(x+1)$
$=(2 x+3)(x+1)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

2. $2 x^{2}-3 x-2$

Solution:

We have,
$2 x^{2}-3 x-2$
The coefficient of x^{2} is 2
The coefficient of x is -3
Constant term is -2

So, we express the middle term $-3 x$ as $-4 x+x$
$2 x^{2}-3 x-2=2 x^{2}-4 x+x-2$
$=2 x(x-2)+1(x-2)$
$=(x-2)(2 x+1)$
3. $3 x^{2}+10 x+3$

Solution:

We have,
$3 x^{2}+10 x+3$

The coefficient of x^{2} is 3
The coefficient of x is 10
Constant term is 3

So, we express the middle term $10 x$ as $9 x+x$
$3 x^{2}+10 x+3=3 x^{2}+9 x+x+3$
$=3 x(x+3)+1(x+3)$
$=(3 x+1)(x+3)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
4. $7 x-6-2 x^{2}$

Solution:

We have,
$7 x-6-2 x^{2}$
$-2 x^{2}+7 x-6$
$2 x^{2}-7 x+6$
The coefficient of x^{2} is 2
The coefficient of x is -7
Constant term is 6
So, we express the middle term $-7 x$ as $-4 x-3 x$
$2 x^{2}-7 x+6=2 x^{2}-4 x-3 x+6$
$=2 x(x-2)-3(x-2)$
$=(x-2)(2 x-3)$
5. $7 x^{2}-19 x-6$

Solution:

We have,
$7 x^{2}-19 x-6$
The coefficient of x^{2} is 7
The coefficient of x is -19
Constant term is -6
So, we express the middle term $-19 x$ as $2 x-21 x$
$7 x^{2}-19 x-6=7 x^{2}+2 x-21 x-6$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
ClndCareer

ClindCareer

$=x(7 x+2)-3(7 x+2)$
$=(7 x+2)(x-3)$
6. $28-31 x-5 x^{2}$

Solution:

We have,
$28-31 x-5 x^{2}$
$-5 x^{2}-31 x+28$
$5 x^{2}+31 x-28$
The coefficient of x^{2} is 5
The coefficient of x is 31
Constant term is -28
So, we express the middle term 31 x as $-4 \mathrm{x}+35 \mathrm{x}$
$5 x^{2}+31 x-28=5 x^{2}-4 x+35 x-28$
$=x(5 x-4)+7(5 x-4)$
$=(x+7)(5 x-4)$
7. $3+23 y-8 y^{2}$

Solution:

We have,
$3+23 y-8 y^{2}$
$-8 y^{2}+23 y+3$
$8 y^{2}-23 y-3$
The coefficient of y^{2} is 8
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

The coefficient of y is -23
Constant term is -3
So, we express the middle term $-23 y$ as $-24 y+y$
$8 y^{2}-23 y-3=8 y^{2}-24 y+y-3$
$=8 y(y-3)+1(y-3)$
$=(8 y+1)(y-3)$
8. $11 x^{2}-54 x+63$

Solution:

We have,
$11 x^{2}-54 x+63$
The coefficient of x^{2} is 11
The coefficient of x is -54
Constant term is 63
So, we express the middle term $-54 x$ as $-33 x-21 x$
$11 x^{2}-54 x+63=11 x^{2}-33 x-21 x+63$
$=11 x(x-3)-21(x-3)$
$=(11 x-21)(x-3)$
9. $7 x-6 x^{2}+20$

Solution:

We have,
$7 x-6 x^{2}+20$
$-6 x^{2}+7 x+20$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
$6 x^{2}-7 x-20$
The coefficient of x^{2} is 6
The coefficient of x is -7
Constant term is -20
So, we express the middle term $-7 x$ as $-15 x+8 x$
$6 x^{2}-7 x-20=6 x^{2}-15 x+8 x-20$
$=3 x(2 x-5)+4(2 x-5)$
$=(3 x+4)(2 x-5)$
10. $3 x^{2}+22 x+35$

Solution:

We have,
$3 x^{2}+22 x+35$
The coefficient of x^{2} is 3
The coefficient of x is 22
Constant term is 35
So, we express the middle term $22 x$ as $15 x+7 x$
$3 x^{2}+22 x+35=3 x^{2}+15 x+7 x+35$
$=3 x(x+5)+7(x+5)$
$=(3 x+7)(x+5)$
11. $12 x^{2}-17 x y+6 y^{2}$

Solution:

We have,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
$12 x^{2}-17 x y+6 y^{2}$
The coefficient of x^{2} is 12
The coefficient of x is $-17 y$
Constant term is $6 \mathrm{y}^{2}$
So, we express the middle term $-17 x y$ as $-9 x y-8 x y$
$12 x^{2}-17 x y+6 y^{2}=12 x^{2}-9 x y-8 x y+6 y^{2}$
$=3 x(4 x-3 y)-2 y(4 x-3 y)$
$=(3 x-2 y)(4 x-3 y)$
12. $6 x^{2}-5 x y-6 y^{2}$

Solution:

We have,
$6 x^{2}-5 x y-6 y^{2}$
The coefficient of x^{2} is 6
The coefficient of x is $-5 y$
Constant term is $-6 y^{2}$
So, we express the middle term $-5 x y$ as $4 x y-9 x y$
$6 x^{2}-5 x y-6 y^{2}=6 x^{2}+4 x y-9 x y-6 y^{2}$
$=2 x(3 x+2 y)-3 y(3 x+2 y)$
$=(2 x-3 y)(3 x+2 y)$
13. $6 x^{2}-13 x y+2 y^{2}$

Solution:

We have,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
ClindCareer
$6 x^{2}-13 x y+2 y^{2}$
The coefficient of x^{2} is 6
The coefficient of x is $-13 y$
Constant term is $2 \mathrm{y}^{2}$
So, we express the middle term $-13 x y$ as $-12 x y-x y$
$6 x^{2}-13 x y+2 y^{2}=6 x^{2}-12 x y-x y+2 y^{2}$
$=6 x(x-2 y)-y(x-2 y)$
$=(6 x-y)(x-2 y)$
14. $14 x^{2}+11 x y-15 y^{2}$

Solution:

We have,
$14 x^{2}+11 x y-15 y^{2}$
The coefficient of x^{2} is 14
The coefficient of x is $11 y$
Constant term is $-15 y^{2}$
So, we express the middle term 11xy as 21xy - 10xy
$14 x^{2}+11 x y-15 y^{2}=14 x^{2}+21 x y-10 x y-15 y^{2}$
$=2 x(7 x-5 y)+3 y(7 x-5 y)$
$=(2 x+3 y)(7 x-5 y)$
15. $6 a^{2}+17 a b-3 b^{2}$

Solution:

We have,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/
ClindCareer
$6 a^{2}+17 a b-3 b^{2}$
The coefficient of a^{2} is 6
The coefficient of a is $17 b$
Constant term is $-3 b^{2}$
So, we express the middle term 17ab as $18 a b-a b$
$6 a^{2}+17 a b-3 b^{2}=6 a^{2}+18 a b-a b-3 b^{2}$
$=6 a(a+3 b)-b(a+3 b)$
$=(6 a-b)(a+3 b)$
16. $36 a^{2}+12 a b c-15 b^{2} c^{2}$

Solution:

We have,
$36 a^{2}+12 a b c-15 b^{2} c^{2}$
The coefficient of a^{2} is 36
The coefficient of a is $12 b c$
Constant term is $-15 b^{2} c^{2}$
So, we express the middle term 12abc as 30abc - 18abc
$36 a^{2}-12 a b c-15 b^{2} c^{2}=36 a^{2}+30 a b c-18 a b c-15 b^{2} c^{2}$
$=6 a(6 a+5 b c)-3 b c(6 a+5 b c)$
$=(6 a+5 b c)(6 a-3 b c)$
$=(6 a+5 b c) 3(2 a-b c)$
17. $15 x^{2}-16 x y z-15 y^{2} z^{2}$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

We have,
$15 x^{2}-16 x y z-15 y^{2} z^{2}$
The coefficient of x^{2} is 15
The coefficient of x is $-16 y z$
Constant term is $-15 y^{2} z^{2}$
So, we express the middle term $-16 x y z$ as $-25 x y z+9 x y z$
$15 x^{2}-16 x y z-15 y^{2} z^{2}=15 x^{2}-25 y z+9 y z-15 y^{2} z^{2}$
$=5 x(3 x-5 y z)+3 y z(3 x-5 y z)$
$=(5 x+3 y z)(3 x-5 y z)$
18. $(x-2 y)^{2}-5(x-2 y)+6$

Solution:

We have,
$(x-2 y)^{2}-5(x-2 y)+6$
The coefficient of $(x-2 y)^{2}$ is 1
The coefficient of $(x-2 y)$ is -5
Constant term is 6
So, we express the middle term $-5(x-2 y)$ as $-2(x-2 y)-3(x-2 y)$
$(x-2 y)^{2}-5(x-2 y)+6=(x-2 y)^{2}-2(x-2 y)-3(x-2 y)+6$
$=(x-2 y-2)(x-2 y-3)$
19. $(2 a-b)^{2}+2(2 a-b)-8$

Solution:

We have,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

$(2 a-b)^{2}+2(2 a-b)-8$
The coefficient of $(2 a-b)^{2}$ is 1
The coefficient of (2a-b) is 2
Constant term is -8
So, we express the middle term $2(2 a-b)$ as $4(2 a-b)-2(2 a-b)$
$(2 a-b)^{2}+2(2 a-b)-8=(2 a-b)^{2}+4(2 a-b)-2(2 a-b)-8$
$=(2 a-b)(2 a-b+4)-2(2 a-b+4)$
$=(2 a-b+4)(2 a-b-2)$

EXERCISE 7.9 PAGE NO: 7.32
Factorize each of the following quadratic polynomials by using the method of completing the square:

1. $p^{2}+6 p+8$

Solution:

We have,
$p^{2}+6 p+8$
Coefficient of p^{2} is unity. So, we add and subtract square of half of coefficient of p.
$p^{2}+6 p+8=p^{2}+6 p+3^{2}-3^{2}+8$ (Adding and subtracting $\left.3^{2}\right)$
$=(p+3)^{2}-1^{2}($ By completing the square $)$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$=(p+3-1)(p+3+1)$
$=(p+2)(p+4)$
2. $q^{2}-10 q+21$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

Solution:

We have,
$q^{2}-10 q+21$
Coefficient of q^{2} is unity. So, we add and subtract square of half of coefficient of q.
$q^{2}-10 q+21=q^{2}-10 q+5^{2}-5^{2}+21$ (Adding and subtracting 5^{2})
$=(q-5)^{2}-2^{2}$ (By completing the square)
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$=(q-5-2)(q-5+2)$
$=(q-3)(q-7)$
3. $4 y^{2}+12 y+5$

Solution:

We have,
$4 y^{2}+12 y+5$
$4\left(y^{2}+3 y+5 / 4\right)$
Coefficient of y^{2} is unity. So, we add and subtract square of half of coefficient of y.
$4\left(y^{2}+3 y+5 / 4\right)=4\left[y^{2}+3 y+(3 / 2)^{2}-(3 / 2)^{2}+5 / 4\right]$ (Adding and subtracting $\left.(3 / 2)^{2}\right)$
$=4\left[(y+3 / 2)^{2}-1^{2}\right]$ (Completing the square)
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$

$$
\begin{aligned}
& =4(y+3 / 2+1)(y+3 / 2-1) \\
& =4(y+1 / 2)(y+5 / 2) \text { (by taking LCM) } \\
& =4[(2 y+1) / 2][(2 y+5) / 2] \\
& =(2 y+1)(2 y+5)
\end{aligned}
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

4. $p^{2}+6 p-16$

Solution:

We have,
$p^{2}+6 p-16$
Coefficient of p^{2} is unity. So, we add and subtract square of half of coefficient of p.
$p^{2}+6 p-16=p^{2}+6 p+3^{2}-3^{2}-16$ (Adding and subtracting 3^{2})
$=(p+3)^{2}-5^{2}$ (Completing the square)
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$=(p+3+5)(p+3-5)$
$=(p+8)(p-2)$
5. $x^{2}+12 x+20$

Solution:

We have,
$x^{2}+12 x+20$
Coefficient of x^{2} is unity. So, we add and subtract square of half of coefficient of x.
$x^{2}+12 x+20=x^{2}+12 x+6^{2}-6^{2}+20$ (Adding and subtracting 6^{2})
$=(x+6)^{2}-4^{2}$ (Completing the square)
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$=(x+6+4)(x+6-4)$
$=(x+2)(x+10)$
6. $a^{2}-14 a-51$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

We have,
$a^{2}-14 a-51$
Coefficient of a^{2} is unity. So, we add and subtract square of half of coefficient of a.
$a^{2}-14 a-51=a^{2}-14 a+7^{2}-7^{2}-51\left(\right.$ Adding and subtracting $\left.7^{2}\right)$
$=(a-7)^{2}-10^{2}$ (Completing the square)
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$=(a-7+10)(9-7-10)$
$=(a-17)(a+3)$
7. $a^{2}+2 a-3$

Solution:

We have,
$a^{2}+2 a-3$
Coefficient of a^{2} is unity. So, we add and subtract square of half of coefficient of a.
$a^{2}+2 a-3=a^{2}+2 a+1^{2}-1^{2}-3\left(\right.$ Adding and subtracting $\left.1^{2}\right)$
$=(a+1)^{2}-2^{2}$ (Completing the square)
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$=(a+1+2)(a+1-2)$
$=(a+3)(a-1)$
8. $4 x^{2}-12 x+5$

Solution:

We have,
$4 x^{2}-12 x+5$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

$4\left(x^{2}-3 x+5 / 4\right)$
Coefficient of x^{2} is unity. So, we add and subtract square of half of coefficient of x.
$4\left(x^{2}-3 x+5 / 4\right)=4\left[x^{2}-3 x+(3 / 2)^{2}-(3 / 2)^{2}+5 / 4\right]$ (Adding and subtracting $\left.(3 / 2)^{2}\right)$
$=4\left[(x-3 / 2)^{2}-1^{2}\right]$ (Completing the square)
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$=4(x-3 / 2+1)(x-3 / 2-1)$
$=4(x-1 / 2)(x-5 / 2)($ by taking LCM $)$
$=4[(2 x-1) / 2][(2 x-5) / 2]$
$=(2 x-5)(2 x-1)$
9. $y^{2}-7 y+12$

Solution:

We have,
$y^{2}-7 y+12$
Coefficient of y^{2} is unity. So, we add and subtract square of half of coefficient of y.
$y^{2}-7 y+12=y^{2}-7 y+(7 / 2)^{2}-(7 / 2)^{2}+12\left[\right.$ Adding and subtracting $\left.(7 / 2)^{2}\right]$
$=(y-7 / 2)^{2}-(7 / 2)^{2}$ (Completing the square)
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$=(y-(7 / 2-1 / 2))(y-(7 / 2+1 / 2))$
$=(y-3)(y-4)$
10. $z^{2}-4 z-12$

Solution:

We have,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-8-maths-chapter-7-factorizatio n/

ClndCareer

$z^{2}-4 z-12$
Coefficient of z^{2} is unity. So, we add and subtract square of half of coefficient of z.
$z^{2}-4 z-12=z^{2}-4 z+2^{2}-2^{2}-12$ [Adding and subtracting 2^{2}]
$=(z-2)^{2}-4^{2}$ (Completing the square)
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$=(z-2+4)(z-2-4)$
$=(z-6)(z+2)$

ClndCareer

Chapterwise RD Sharma Solutions for Class 8 Maths :

- Chapter 1-Rational Numbers
- Chapter 2-Powers
- Chapter 3-Squares and Square Roots
- Chapter 4-Cubes and Cube Roots
- Chapter 5-Playing with Numbers
- Chapter 6-Algebraic Expressions and Identities
- Chapter 7-Factorization
- Chapter 8-Division of Algebraic Expressions
- Chapter 9-Linear Equation in One Variable
- Chapter 10-Direct and Inverse Variations
- Chapter 11-Time and Work
- Chapter 12-Percentage
- Chapter 13-Profit, Loss, Discount and Value Added Tax (VAT)
- Chapter 14-Compound Interest
- Chapter 15-Understanding Shapes- I (Polygons)

ClndCareer

- Chapter 16-Understanding Shapes- II (Quadrilaterals)
- Chapter 17-Understanding Shapes- III (Special Types of Quadrilaterals)
- Chapter 18-Practical Geometry (Constructions)
- Chapter 19-Visualising Shapes
- Chapter 20-Mensuration - I (Area of a Trapezium and a Polygon)
- Chapter 21-Mensuration - II (Volumes and Surface Areas of a Cuboid and a cube)
- Chapter 22-Mensuration - III (Surface Area and Volume of a Right Circular Cylinder)
- Chapter 23-Data Handling - I (Classification and Tabulation of Data)
- Chapter 24-Data Handling - II (Graphical Representation of Data as Histogram)
- Chapter 25-Data Handling - III (Pictorial Representation of Data as Pie Charts or Circle Graphs)
- Chapter 26-Data Handling - IV (Probability)
- Chapter 27-Introduction to Graphs

ClndCareer

About RD Sharma

RD Sharma isn't the kind of author you'd bump into at lit fests. But his bestselling books have helped many CBSE students lose their dread of maths. Sunday Times profiles the tutor turned internet star

He dreams of algorithms that would give most people nightmares. And, spends every waking hour thinking of ways to explain concepts like 'series solution of linear differential equations'. Meet Dr Ravi Dutt Sharma mathematics teacher and author of 25 reference books - whose name evokes as much awe as the subject he teaches. And though students have used his thick tomes for the last 31 years to ace the dreaded maths exam, it's only recently that a spoof video turned the tutor into a YouTube star.

R D Sharma had a good laugh but said he shared little with his on-screen persona except for the love for maths. "I like to spend all my time thinking and writing about maths problems. I find it relaxing," he says. When he is not writing books explaining mathematical concepts for classes 6 to 12 and engineering students, Sharma is busy dispensing his duty as vice-principal and head of department of science and humanities at Delhi government's Guru Nanak Dev Institute of Technology.

