Class 12 Chapter 8 Solution of Simultaneous Linear Equations

RD Sharma Solutions for Class 12 Maths Chapter 8-Solution of Simultaneous Linear Equations

Class 12: Maths Chapter 8 solutions. Complete Class 12 Maths Chapter 8 Notes.
RD Sharma Solutions for Class 12 Maths Chapter 8-Solution of Simultaneous Linear Equations

RD Sharma 12th Maths Chapter 8, Class 12 Maths Chapter 8 solutions
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClndCareer

Exercise 8.1 Page No: 8.14

1. Solve the following system of equations by matrix method:
(i) $5 x+7 y+2=0$
$4 x+6 y+3=0$
(ii) $5 x+2 y=3$
$3 x+2 y=5$
(iii) $3 x+4 y-5=0$
$x-y+3=0$
(iv) $\mathbf{3 x}+\mathrm{y}=19$
$3 x-y=23$
(v) $3 x+7 y=4$
$x+2 y=-1$
(vi) $3 x+y=7$
$5 x+3 y=12$
Solution:
(i) Given $5 x+7 y+2=0$ and $4 x+6 y+3=0$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClndCareer

The above system of equations can be written as
$\left[\begin{array}{ll}5 & 7 \\ 4 & 6\end{array}\right]\left[\begin{array}{l}\mathrm{X} \\ \mathrm{Y}\end{array}\right]=\left[\begin{array}{l}-2 \\ -3\end{array}\right]$ Or AX $=\mathrm{B}$
Where $\mathrm{A}=\left[\begin{array}{ll}5 & 7 \\ 4 & 6\end{array}\right] \mathrm{B}=\left[\begin{array}{l}-2 \\ -3\end{array}\right]$ and $\mathrm{X}=\left[\begin{array}{l}\mathrm{X} \\ \mathrm{Y}\end{array}\right]$
$|\mathrm{A}|=30-28=2$
So, the above system has a unique solution, given by
$X=A^{-1} B$
Let C_{ij} be the cofactor of a_{ij} in A , then
$\mathrm{C}_{11}=(-1)^{1+1} 6=6$
$C_{12}=(-1)^{1+2} 4=-4$
$\mathrm{C}_{21}=(-1)^{2+1} 7=-7$
$\mathrm{C}_{22}=(-1)^{2+2} 5=5$

Also, $\operatorname{adj} \mathrm{A}=\left[\begin{array}{cc}6 & -4 \\ -7 & 5\end{array}\right]^{\mathrm{T}}$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
6 & -7 \\
-4 & 5
\end{array}\right] \\
& \mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \operatorname{adj} \mathrm{A} \\
& \mathrm{~A}^{-1}=\frac{1}{2}\left[\begin{array}{cc}
6 & -7 \\
-4 & 5
\end{array}\right]
\end{aligned}
$$

$$
\text { Now, } X=A^{-1} B
$$

$$
\left[\begin{array}{c}
\mathrm{X} \\
\mathrm{Y}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
6 & -7 \\
-4 & 5
\end{array}\right]\left[\begin{array}{l}
-2 \\
-3
\end{array}\right]
$$

$$
\left[\begin{array}{c}
\mathrm{X} \\
\mathrm{Y}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
-12+21 \\
8-15
\end{array}\right]
$$

$$
\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{Y}
\end{array}\right]=\left[\begin{array}{c}
\frac{9}{2} \\
\frac{-7}{2}
\end{array}\right]
$$

Hence, $x=9 / 2$ and $y=-7 / 2$
(ii) Given $5 \mathrm{x}+2 \mathrm{y}=3$
$3 x+2 y=5$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClndCareer

The above system of equations can be written as
$\left[\begin{array}{ll}5 & 2 \\ 3 & 2\end{array}\right]\left[\begin{array}{l}\mathrm{X} \\ \mathrm{Y}\end{array}\right]=\left[\begin{array}{l}3 \\ 5\end{array}\right]$ Or $\mathrm{AX}=\mathrm{B}$
Where $\mathrm{A}=\left[\begin{array}{ll}5 & 2 \\ 3 & 2\end{array}\right] \mathrm{B}=\left[\begin{array}{l}3 \\ 5\end{array}\right]$ and $\mathrm{X}=\left[\begin{array}{l}\mathrm{X} \\ \mathrm{Y}\end{array}\right]$
$|A|=10-6=4$
So, the above system has a unique solution, given by
$X=A^{-1} B$
Let C_{ij} be the cofactor of a_{ij} in A , then

$$
\begin{aligned}
& C_{11}=(-1)^{1+1} 2=2 \\
& C_{12}=(-1)^{1+2} 3=-3 \\
& C_{21}=(-1)^{2+1} 2=-2 \\
& C_{22}=(-1)^{2+2} 2=5
\end{aligned}
$$

Also, $\operatorname{adj} A=\left[\begin{array}{cc}2 & -3 \\ -2 & 5\end{array}\right]^{T}$
$=\left[\begin{array}{cc}2 & -2 \\ -3 & 5\end{array}\right]$
$A^{-1}=\frac{1}{|A|} \operatorname{adj} \mathrm{A}$
$A^{-1}=\frac{1}{4}\left[\begin{array}{cc}2 & -2 \\ -3 & 5\end{array}\right]$
Now, $X=A^{-1} B$
$\left[\begin{array}{l}\mathrm{X} \\ \mathrm{Y}\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}2 & -2 \\ -3 & 5\end{array}\right]\left[\begin{array}{l}3 \\ 5\end{array}\right]$
$\left[\begin{array}{l}\mathrm{X} \\ \mathrm{Y}\end{array}\right]=\frac{1}{4}\left[\begin{array}{c}6-10 \\ -9+25\end{array}\right]$
$\left[\begin{array}{l}\mathrm{X} \\ \mathrm{Y}\end{array}\right]=\frac{1}{4}\left[\begin{array}{c}-4 \\ 16\end{array}\right]$
$\left[\begin{array}{c}\mathrm{X} \\ \mathrm{Y}\end{array}\right]=\left[\begin{array}{c}-1 \\ 4\end{array}\right]$

Hence, $x=-1$ and $y=4$
(iii) Given $3 x+4 y-5=0$
$x-y+3=0$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

Clnd Career

The above system of equations can be written as
$\left[\begin{array}{cc}3 & 4 \\ 1 & -1\end{array}\right]\left[\begin{array}{c}\mathrm{X} \\ \mathrm{Y}\end{array}\right]=\left[\begin{array}{c}5 \\ -3\end{array}\right]$ Or $\mathrm{AX}=\mathrm{B}$
Where $\mathrm{A}=\left[\begin{array}{cc}3 & 4 \\ 1 & -1\end{array}\right] \mathrm{B}=\left[\begin{array}{c}5 \\ -3\end{array}\right]$ and $\mathrm{X}=\left[\begin{array}{l}\mathrm{X} \\ \mathrm{Y}\end{array}\right]$
$|A|=-3-4=-7$
So, the above system has a unique solution, given by
$X=A^{-1} B$
Let C_{ij} be the cofactor of a_{ij} in A , then
$\mathrm{C}_{11}=(-1)^{1+1}-1=-1$
$\mathrm{C}_{12}=(-1)^{1+2} 1=-1$
$C_{21}=(-1)^{2+1} 4=-4$
$C_{22}=(-1)^{2+2} 3=3$
Also, $\operatorname{adj} A=\left[\begin{array}{cc}-1 & -1 \\ -4 & 3\end{array}\right]^{T}$
$=\left[\begin{array}{cc}-1 & -4 \\ -1 & 3\end{array}\right]$
$A^{-1}=\frac{1}{|A|} \operatorname{adj} \mathrm{A}$
$\mathrm{A}^{-1}=\frac{1}{7}\left[\begin{array}{cc}-1 & -4 \\ -1 & 3\end{array}\right]$
Now, $X=A^{-1} B$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClndCareer

$$
\begin{aligned}
& {\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{Y}
\end{array}\right]=\frac{1}{7}\left[\begin{array}{cc}
-1 & -4 \\
-1 & 3
\end{array}\right]\left[\begin{array}{c}
5 \\
-3
\end{array}\right]} \\
& {\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{Y}
\end{array}\right]=\frac{1}{7}\left[\begin{array}{c}
-5+12 \\
-5-9
\end{array}\right]} \\
& {\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{Y}
\end{array}\right]=\frac{1}{7}\left[\begin{array}{c}
7 \\
-14
\end{array}\right]} \\
& {\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{Y}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2
\end{array}\right]}
\end{aligned}
$$

Hence, $X=1 Y=-2$
(iv) Given $3 x+y=19$

$$
3 x-y=23
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClndCareer

The above system of equations can be written as
$\left[\begin{array}{cc}3 & 1 \\ 3 & -1\end{array}\right]\left[\begin{array}{l}\mathrm{X} \\ \mathrm{Y}\end{array}\right]=\left[\begin{array}{l}19 \\ 23\end{array}\right]$ Or $\mathrm{AX}=\mathrm{B}$
Where $\mathrm{A}=\left[\begin{array}{cc}3 & 1 \\ 3 & -1\end{array}\right] \mathrm{B}=\left[\begin{array}{l}19 \\ 23\end{array}\right]$ and $\mathrm{X}=\left[\begin{array}{l}\mathrm{X} \\ \mathrm{Y}\end{array}\right]$
$|A|=-3-3=-6$
So, the above system has a unique solution, given by
$X=A^{-1} B$
Let C_{ij} be the cofactor of a_{ij} in A , then

$$
\begin{aligned}
& C_{11}=(-1)^{1+1}-1=-1 \\
& C_{12}=(-1)^{1+2} 3=-3 \\
& C_{21}=(-1)^{2+1} 1=-1 \\
& C_{22}=(-1)^{2+2} 3=3
\end{aligned}
$$

Also, $\operatorname{adj} A=\left[\begin{array}{cc}-1 & -3 \\ -1 & 3\end{array}\right]^{T}$
$=\left[\begin{array}{cc}-1 & -1 \\ -3 & 3\end{array}\right]$
$A^{-1}=\frac{1}{|A|} \operatorname{adj} \mathrm{A}$
$A^{-1}=\frac{1}{-6}\left[\begin{array}{cc}-1 & -1 \\ -3 & 3\end{array}\right]$

ClindCareer

$$
\begin{array}{ll}
\text { Now, } X=A^{-1} B & {\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\frac{1}{-6}\left[\begin{array}{c}
-42 \\
14
\end{array}\right]} \\
{\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\frac{1}{-6}\left[\begin{array}{cc}
-1 & -1 \\
-3 & 3
\end{array}\right]\left[\begin{array}{l}
19 \\
23
\end{array}\right]} & {\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{c}
7 \\
-2
\end{array}\right]} \\
{\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\frac{1}{-6}\left[\begin{array}{cc}
-19-23 \\
-57 & +69
\end{array}\right]} & \text { Hence, } x=7 \text { and } y=-2
\end{array}
$$

(v) Given $3 x+7 y=4$

$x+2 y=-1$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClndCareer

The above system of equations can be written as
$\left[\begin{array}{ll}3 & 7 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}\mathrm{X} \\ \mathrm{Y}\end{array}\right]=\left[\begin{array}{c}4 \\ -1\end{array}\right]$ Or $\mathrm{AX}=\mathrm{B}$
Where $\mathrm{A}=\left[\begin{array}{ll}3 & 7 \\ 1 & 2\end{array}\right] \mathrm{B}=\left[\begin{array}{c}4 \\ -1\end{array}\right]$ and $\mathrm{X}=\left[\begin{array}{l}\mathrm{X} \\ \mathrm{Y}\end{array}\right]$
$|A|=6-7=-1$
So, the above system has a unique solution, given by
$X=A^{-1} B$
Let C_{ij} be the cofactor of a_{ij} in A , then
$\mathrm{C}_{11}=(-1)^{1+1} 2=2$
$\mathrm{C}_{12}=(-1)^{1+2} 1=-1$
$\mathrm{C}_{21}=(-1)^{2+1} 7=-7$
$\mathrm{C}_{22}=(-1)^{2+2} 3=3$
Also, $\operatorname{adj} A=\left[\begin{array}{cc}2 & -1 \\ -7 & 3\end{array}\right]^{T}$
$=\left[\begin{array}{cc}2 & -7 \\ -1 & 3\end{array}\right]$
$\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \operatorname{adj} \mathrm{A}$

ClndCareer

Now, $X=A^{-1} B$

$$
\begin{aligned}
& {\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{Y}
\end{array}\right]=\frac{1}{-1}\left[\begin{array}{cc}
2 & -7 \\
-1 & 3
\end{array}\right]\left[\begin{array}{c}
4 \\
-1
\end{array}\right]} \\
& {\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{Y}
\end{array}\right]=\frac{1}{-1}\left[\begin{array}{cc}
8+7 \\
-4-3
\end{array}\right]} \\
& {\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{Y}
\end{array}\right]=\frac{1}{-1}\left[\begin{array}{c}
15 \\
-7
\end{array}\right]} \\
& {\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{Y}
\end{array}\right]=\left[\begin{array}{c}
-15 \\
7
\end{array}\right]}
\end{aligned}
$$

Hence, $X=-15 Y=7$
(vi) Given $3 x+y=7$
$5 x+3 y=12$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClndCareer

The above system of equations can be written as
$\left[\begin{array}{ll}3 & 1 \\ 5 & 3\end{array}\right]\left[\begin{array}{l}\mathrm{X} \\ \mathrm{Y}\end{array}\right]=\left[\begin{array}{c}7 \\ 12\end{array}\right]$ Or $\mathrm{AX}=\mathrm{B}$
Where $\mathrm{A}=\left[\begin{array}{ll}3 & 1 \\ 5 & 3\end{array}\right] \mathrm{B}=\left[\begin{array}{c}7 \\ 12\end{array}\right]$ and $\mathrm{X}=\left[\begin{array}{l}\mathrm{X} \\ \mathrm{Y}\end{array}\right]$
$|A|=9-5=4$
So, the above system has a unique solution, given by
$X=A^{-1} B$
Let C_{ij} be the cofactor of a_{ij} in A , then
$\mathrm{C}_{11}=(-1)^{1+1} 3=3$
$\mathrm{C}_{12}=(-1)^{1+2} 5=-5$
$\mathrm{C}_{21}=(-1)^{2+1} 1=-1$
$C_{22}=(-1)^{2+2} 3=3$

$$
\begin{aligned}
& \text { Also, adj } \mathrm{A}=\left[\begin{array}{cc}
3 & -5 \\
-1 & 3
\end{array}\right]^{\mathrm{T}} \\
& =\left[\begin{array}{cc}
2 & -1 \\
-5 & 3
\end{array}\right] \\
& \mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \operatorname{adj} \mathrm{A} \\
& \mathrm{~A}^{-1}=\frac{1}{4}\left[\begin{array}{cc}
3 & -1 \\
-5 & 3
\end{array}\right] \\
& \mathrm{Now}^{\mathrm{Now}} \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B} \\
& {\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{Y}
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
3 & -1 \\
-5 & 3
\end{array}\right]\left[\begin{array}{c}
7 \\
12
\end{array}\right]} \\
& {\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{Y}
\end{array}\right]=\frac{1}{4}\left[\begin{array}{c}
21-12 \\
-35
\end{array}\right]} \\
& {\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{Y}
\end{array}\right]=\frac{1}{4}\left[\begin{array}{l}
9 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{Y}
\end{array}\right]=\left[\begin{array}{l}
\frac{9}{4} \\
\frac{1}{4}
\end{array}\right]} \\
& \mathrm{Hence}
\end{aligned}
$$

2. Solve the following system of equations by matrix method:
(i) $\mathbf{x + y - z = 3}$

$$
2 x+3 y+z=10
$$

$$
3 x-y-7 z=1
$$

(ii) $x+y+z=3$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

$$
\begin{aligned}
& 2 x-y+z=-1 \\
& 2 x+y-3 z=-9 \\
& \text { (iii) } 6 x-12 y+25 z=4 \\
& 4 x+15 y-20 z=3 \\
& 2 x+18 y+15 z=10 \\
& \text { (iv) } 3 x+4 y+7 z=14 \\
& 2 x-y+3 z=4 \\
& x+2 y-3 z=0 \\
& (v)(2 / x)-(3 / y)+(3 / z)=10 \\
& (1 / x)+(1 / y)+(1 / z)=10 \\
& (3 / x)-(1 / y)+(2 / z)=13 \\
& (v i) 5 x+3 y+z=16 \\
& 2 x+y+3 z=19 \\
& x+2 y+4 z=25 \\
& (\text { vii) } 3 x+4 y+2 z=8 \\
& 2 y-3 z=3 \\
& x-2 y+6 z=-2 \\
& (\text { viii) } 2 x+y+z=2 \\
& x+3 y-z=5 \\
& 3 x+y-2 z=6 \\
& (i x) 2 x+6 y=2 \\
& 3 x-z=-8 \\
& 2
\end{aligned}
$$

$$
\begin{aligned}
& 2 x-y+z=-3 \\
& (x) 2 y-z=1 \\
& x-y+z=2 \\
& 2 x-y=0 \\
& (x i) 8 x+4 y+3 z=18 \\
& 2 x+y+z=5 \\
& x+2 y+z=5 \\
& (x i i) x+y+z=6 \\
& x+2 z=7 \\
& 3 x+y+z=12 \\
& (x i i i)(2 / x)+(3 / y)+(10 / z)=4, \\
& (4 / x)-(6 / y)+(5 / z)=1, \\
& (6 / x)+(9 / y)-(20 / z)=2, x, y, z \neq 0 \\
& (x i v) x-y+2 z=7 \\
& 3 x+4 y-5 z=-5 \\
& 2 x-y+3 z=12
\end{aligned}
$$

Solution:

(i) Given $x+y-z=3$
$2 x+3 y+z=10$
$3 x-y-7 z=1$

ClndCareer

The given system can be written in matrix form as:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & 3 & 1 \\
3 & -1 & -7
\end{array}\right]\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
3 \\
10 \\
1
\end{array}\right] \text { Or } \mathrm{AX}=\mathrm{B}} \\
& \mathrm{~A}=\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & 3 & 1 \\
3 & -1 & -7
\end{array}\right], \mathrm{X}=\left[\begin{array}{c}
\mathrm{X} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right] \text { and } \mathrm{B}=\left[\begin{array}{c}
3 \\
10 \\
1
\end{array}\right] \\
& \text { Now, }|\mathrm{A}|=1-1\left|\begin{array}{cc}
3 & 1 \\
-1 & -7
\end{array}\right|-1\left|\begin{array}{cc}
2 & 1 \\
3 & -7
\end{array}\right|-1\left|\begin{array}{cc}
2 & 3 \\
3 & -1
\end{array}\right| \\
& =\mathbf{(- 2 0) - 1 (- 1 7) - \mathbf { 1 } (1 1)} \\
& =\mathbf{- 2 0 + 1 7} \mathbf{+ 1 1} \mathbf{- 1} \mathbf{8}
\end{aligned}
$$

So, the above system has a unique solution, given by
$X=A{ }^{-1} B$

Cofactors of A are

$C_{11}=(-1)^{1+1}-21+1=-20$
$C_{21}=(-1)^{2+1}-7-1=8$
$C_{31}=(-1)^{3+1} 1+3=4$
$C_{12}=(-1)^{1+2}-14-3=17$
$C_{22}=(-1)^{2+1}-7+3=-4$
$C_{32}=(-1)^{3+1} 1+2=-3$
$C_{13}=(-1)^{1+2}-2-9=-11$
$C_{23}=(-1)^{2+1}-1-3=4$
$C_{33}=(-1)^{3+1} 3-2=1$

CIndCareer

$$
\begin{aligned}
& \operatorname{Adj} A=\left[\begin{array}{ccc}
-20 & 17 & -11 \\
8 & -4 & 4 \\
4 & -3 & 1
\end{array}\right]^{\mathrm{T}} \\
& =\left[\begin{array}{ccc}
-20 & 8 & 4 \\
17 & -4 & -3 \\
-11 & 4 & 1
\end{array}\right]
\end{aligned}
$$

(ii) Given $x+y+z=3$
$2 x-y+z=-1$
$2 x+y-3 z=-9$
The given system can be written in matrix form as:

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & -1 & 1 \\
2 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1 \\
-9
\end{array}\right] \text { Or } \mathrm{AX}=\mathrm{B}
$$

$A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & -1 & 1 \\ 2 & 1 & -3\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}3 \\ -1 \\ -9\end{array}\right]$
Now, $|A|=1\left|\begin{array}{cc}-1 & 1 \\ 1 & -3\end{array}\right|-1\left|\begin{array}{cc}2 & 1 \\ 2 & -3\end{array}\right|+1\left|\begin{array}{ll}2 & 1 \\ 2 & 1\end{array}\right|$
$=(3-1)-1(-6-2)+1(2+2)$
$=2+8+4$
$=14$
So, the above system has a unique solution, given by
$X=A^{-1} B$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/
elndCareer

ClndCareer

Cofactors of A are

$$
\begin{aligned}
& C_{11}=(-1)^{1+1} 3-1=2 \\
& C_{21}=(-1)^{2+1}-3-1=4 \\
& C_{31}=(-1)^{3+1} 1+1=2 \\
& C_{12}=(-1)^{1+2}-6-2=8 \\
& C_{22}=(-1)^{2+1}-3-2=-5 \\
& C_{32}=(-1)^{3+1} 1-2=1 \\
& C_{13}=(-1)^{1+2} 2+2=4 \\
& C_{23}=(-1)^{2+1} 1-2=1 \\
& C_{33}=(-1)^{3+1}-1-2=-3
\end{aligned}
$$

$\operatorname{Adj} A=\left[\begin{array}{ccc}2 & 8 & 4 \\ 4 & -5 & 1 \\ 2 & 1 & -3\end{array}\right]^{T}$

$$
=\left[\begin{array}{ccc}
2 & 4 & 2 \\
8 & -5 & 1 \\
4 & 1 & -3
\end{array}\right]
$$

Now, $\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}=\frac{1}{14}\left[\begin{array}{ccc}2 & 4 & 2 \\ 8 & -5 & 1 \\ 4 & 1 & -3\end{array}\right]\left[\begin{array}{c}3 \\ -1 \\ -9\end{array}\right]$
$X=\frac{1}{14}\left[\begin{array}{c}-16 \\ 20 \\ 38\end{array}\right]$
$X=\left[\begin{array}{c}\frac{1}{7} \\ \frac{-8}{7} \\ \frac{10}{7} \\ \frac{19}{7}\end{array}\right]$

Hence, $X=\frac{-8}{7}, Y=\frac{10}{7}$ and $Z=\frac{19}{7}$
$X=A{ }^{-1} B$

Cofactors of A are

$$
C_{11}=(-1)^{1+1}(225+360)=585
$$

$$
C_{21}=(-1)^{2+1}(-180-450)=630
$$

$$
C_{31}=(-1)^{3+1}(240-375)=-135
$$

$$
C_{12}=(-1)^{1+2}(60+40)=-100
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClndCareer

$C_{22}=(-1)^{2+1}(90-50)=40$
$C_{32}=(-1)^{3+1}(-120-100)=220$
$C_{13}=(-1)^{1+2}(72-30)=42$
$C_{23}=(-1)^{2+1}(108+24)=-132$
$C_{33}=(-1)^{3+1}(90+48)=138$

Adj $A=\left[\begin{array}{ccc}585 & -100 & 42 \\ 630 & 40 & -132 \\ -135 & 220 & 138\end{array}\right]^{T}$
$=\left[\begin{array}{ccc}585 & 630 & -135 \\ -100 & 40 & 220 \\ 42 & -132 & 138\end{array}\right]$
Now, $\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}=\frac{1}{5760}\left[\begin{array}{ccc}585 & 630 & -135 \\ -100 & 40 & 220 \\ 42 & -132 & 138\end{array}\right]\left[\begin{array}{c}4 \\ 3 \\ 10\end{array}\right]$

$$
X={ }^{\frac{1}{5760}}\left[\begin{array}{l}
2880 \\
1920 \\
1152
\end{array}\right]
$$

$X=\left[\begin{array}{l}\frac{1}{7} \\ \frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{5}\end{array}\right]$
Hence, $X=\frac{1}{2}, Y=\frac{1}{3}$ and $Z=\frac{1}{5}$
(iv) Given $3 x+4 y+7 z=14$
$2 x-y+3 z=4$
$x+2 y-3 z=0$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClindCareer

The given system can be written in matrix form as:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
3 & 4 & 7 \\
2 & -1 & 3 \\
1 & 2 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
14 \\
4 \\
0
\end{array}\right] \text { Or } A X=B} \\
& A=\left[\begin{array}{ccc}
3 & 4 & 7 \\
2 & -1 & 3 \\
1 & 2 & -3
\end{array}\right], \mathrm{X}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { and } B=\left[\begin{array}{c}
14 \\
4 \\
0
\end{array}\right] \\
& \text { Now, }|A|=3\left|\begin{array}{cc}
-1 & 3 \\
2 & -3
\end{array}\right|-4\left|\begin{array}{cc}
2 & 3 \\
1 & -3
\end{array}\right|+7\left|\begin{array}{cc}
2 & 3 \\
2 & -3
\end{array}\right| \\
& =\mathbf{3 (3 - 6})-\mathbf{4}(-\mathbf{6}-\mathbf{3})+\mathbf{7 (4 + 1)} \\
& =-\mathbf{9}+\mathbf{3 6}+\mathbf{3 5} \\
& =\mathbf{6 2}
\end{aligned}
$$

So, the above system has a unique solution, given by
$X=A{ }^{-1} B$
Cofactors of A are
$C_{11}=(-1)^{1+1} 3-6=-3$
$C_{21}=(-1)^{2+1}-12-14=26$
$C_{31}=(-1)^{3+1} 12+7=19$
$C_{12}=(-1)^{1+2}-6-3=9$
$C_{22}=(-1)^{2+1}-3-7=-10$
$C_{32}=(-1)^{3+1} 9-14=5$
$C_{13}=(-1)^{1+2} 4+1=5$
$C_{23}=(-1)^{2+1} 6-4=-2$
$C_{33}=(-1)^{3+1}-3-8=-11$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/
ClndCareer

ClindCareer

$$
\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \operatorname{adj} \mathrm{A}
$$

Now, $\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}={ }^{\frac{1}{62}}\left[\begin{array}{ccc}-3 & 26 & 19 \\ 9 & -16 & 5 \\ 5 & -2 & -11\end{array}\right]\left[\begin{array}{c}14 \\ 4 \\ 0\end{array}\right]$

$$
\mathrm{X}={ }^{\frac{1}{62}}\left[\begin{array}{c}
-42+104+0 \\
126-64+0 \\
70-8+0
\end{array}\right]
$$

$$
\begin{array}{ll}
\text { Adj } A=\left[\begin{array}{ccc}
-3 & 9 & 5 \\
26 & -5 & -2 \\
19 & 5 & -11
\end{array}\right]^{\mathrm{T}} & X=\begin{array}{l}
\frac{1}{62}\left[\begin{array}{l}
62 \\
62 \\
62
\end{array}\right] \\
=\left[\begin{array}{ccc}
-3 & 26 & 19 \\
9 & -16 & 5 \\
5 & -2 & -11
\end{array}\right]
\end{array} \\
X=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
\text { Hence, } X=1, Y=1 \text { and } Z=1
\end{array}
$$

(v) Given $(2 / x)-(3 / y)+(3 / z)=10$
$(1 / x)+(1 / y)+(1 / z)=10$
$(3 / x)-(1 / y)+(2 / z)=13$
$=5(4-6)-3(8-3)+1(4-2)$
$=-10-15+3$
$=\mathbf{- 2 2}$
So, the above system has a unique solution, given by
$X=A{ }^{-1} B$

Cofactors of A are

$C_{11}=(-1)^{1+1}(4-6)=-2$
$C_{21}=(-1)^{2+1}(12-2)=-10$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

$$
\begin{aligned}
& C_{31}=(-1)^{3+1}(9-1)=8 \\
& C_{12}=(-1)^{1+2}(8-3)=-5 \\
& C_{22}=(-1)^{2+1} 20-1=19 \\
& C_{32}=(-1)^{3+1} 15-2=-13 \\
& C_{13}=(-1)^{1+2}(4-2)=2 \\
& C_{23}=(-1)^{2+1} 10-3=-7 \\
& C_{33}=(-1)^{3+1} 5-6=-1
\end{aligned}
$$

ClindCareer

$$
\begin{aligned}
& \operatorname{Adj} A=\left[\begin{array}{ccc}
-2 & -5 & -3 \\
-10 & 19 & -7 \\
8 & -13 & -1
\end{array}\right]^{\mathrm{T}} \\
& =\left[\begin{array}{ccc}
-2 & -10 & 8 \\
-5 & 19 & 13 \\
3 & -7 & -1
\end{array}\right] \\
& \mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \operatorname{adj} \mathrm{A}
\end{aligned}
$$

$$
\text { Now, } \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}=\frac{1}{-22}\left[\begin{array}{ccc}
-2 & -10 & 8 \\
-5 & 19 & -13 \\
3 & -7 & -1
\end{array}\right]\left[\begin{array}{l}
16 \\
19 \\
25
\end{array}\right]
$$

$$
X=\frac{1}{-22}\left[\begin{array}{c}
-32-190+200 \\
-80+361-325 \\
48-133-25
\end{array}\right]
$$

$$
X=\frac{1}{-22}\left[\begin{array}{c}
-22 \\
-44 \\
-110
\end{array}\right]
$$

$$
X=\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right]
$$

Hence, $\mathrm{X}=1, \mathrm{Y}=2$ and $\mathrm{Z}=5$
(vi) Given $5 x+3 y+z=16$

$$
\begin{aligned}
& 2 x+y+3 z=19 \\
& x+2 y+4 z=25
\end{aligned}
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClndCareer

The given system can be written in matrix form as:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
3 & 4 & 2 \\
0 & 2 & -3 \\
1 & -2 & 6
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
8 \\
3 \\
-2
\end{array}\right] \text { Or } \mathrm{AX}=\mathrm{B}} \\
& \mathrm{~A}=\left[\begin{array}{ccc}
3 & 4 & 2 \\
0 & 2 & -3 \\
1 & -2 & 6
\end{array}\right], \mathrm{X}=\left[\begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right] \text { and } \mathrm{B}=\left[\begin{array}{c}
8 \\
3 \\
-2
\end{array}\right] \\
& \text { Now, }|\mathrm{A}|=\mathbf{3}\left|\begin{array}{cc}
2 & -3 \\
-2 & 6
\end{array}\right|-4\left|\begin{array}{cc}
0 & -3 \\
1 & 6
\end{array}\right|+2\left|\begin{array}{cc}
0 & 2 \\
1 & -2
\end{array}\right| \\
& =\mathbf{3 (1 2 - 6} \mathbf{- 4} \mathbf{- 4}(\mathbf{0} \mathbf{+ 3}) \mathbf{+ 2 (0 - 2)} \\
& =\mathbf{1 8} \mathbf{- 1 2 - 4} \\
& =\mathbf{2}
\end{aligned}
$$

So, the above system has a unique solution, given by
$X=A{ }^{-1} B$

Cofactors of A are

$C_{11}=(-1)^{1+1}(12-6)=6$
$\mathrm{C}_{21}=(-1)^{2+1}(24+4)=-28$
$\mathrm{C}_{31}=(-1)^{3+1}(-12-4)=-16$
$\mathrm{C}_{12}=(-1)^{1+2}(0+3)=-3$
$\mathrm{C}_{22}=(-1)^{2+1} 18-2=16$
$\mathrm{C}_{32}=(-1)^{3+1}-9-0=9$
$\mathrm{C}_{13}=(-1)^{1+2}(0-2)=-2$
$\mathrm{C}_{23}=(-1)^{2+1}(-6-4)=10$
$C_{33}=(-1)^{3+1} 6-0=6$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

$$
\begin{array}{ll}
& \text { Now, } X=A^{-1} B=\begin{array}{ccc}
\frac{1}{2}\left[\begin{array}{ccc}
6 & -28 & -16 \\
-3 & 16 & -9 \\
2 & 10 & 6
\end{array}\right]\left[\begin{array}{c}
8 \\
3 \\
-2
\end{array}\right] \\
& \begin{array}{l}
\frac{1}{2}\left[\begin{array}{c}
48-84+32 \\
-24+48-18 \\
-16+30-12
\end{array}\right] \\
\text { Adj } A=\left[\begin{array}{ccc}
6 & -3 & 2 \\
-28 & 16 & 10 \\
-16 & -9 & 6
\end{array}\right]^{T}
\end{array} & X=\frac{1}{2}\left[\begin{array}{c}
-4 \\
6 \\
2
\end{array}\right] \\
=\left[\begin{array}{ccc}
6 & -28 & -16 \\
-3 & 16 & -9 \\
2 & 10 & 6
\end{array}\right] & X=\left[\begin{array}{c}
-2 \\
3 \\
1
\end{array}\right] \\
A^{-1}=\frac{1}{|A|} \text { adj } A & \text { Hence, } X=-2, Y=3 \text { and } Z=1
\end{array} \$=\begin{array}{ll}
&
\end{array}
\end{array}
$$

(vii) Given $3 x+4 y+2 z=8$
$2 y-3 z=3$
$x-2 y+6 z=-2$

The given system can be written in matrix form as:

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & 3 & -1 \\
3 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right] \text { Or } \mathrm{AX}=\mathrm{B}
$$

$$
A=\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & 3 & -1 \\
3 & 1 & -2
\end{array}\right], X=\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right] \text { and } \mathrm{B}=\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]
$$

$$
\text { Now, }|A|=2^{\left|\begin{array}{ll}
3 & -1 \\
1 & -2
\end{array}\right|-1\left|\begin{array}{ll}
1 & -1 \\
3 & -2
\end{array}\right|+1\left|\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right|, ~ \text {. }}
$$

$$
=2(-6+1)-1(-2+3)+1(1-9)
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/
$=-10-1-8$
$=-19$
So, the above system has a unique solution, given by
$X=A^{-1} B$
Cofactors of A are
$C_{11}=(-1)^{1+1}-6+1=-5$
$C_{21}=(-1)^{2+1}(24+4)=-28$
$C_{31}=(-1)^{3+1}-1-3=-4$
$C_{12}=(-1)^{1+2}-2+3=-1$
$C_{22}=(-1)^{2+1}-4-3=-7$
$C_{32}=(-1)^{3+1}-2-1=3$
$C_{13}=(-1)^{1+2} 1-9=-8$
$C_{23}=(-1)^{2+1} 2-3=-1$
$C_{33}=(-1)^{3+1} 6-1=5$
A
(viii) Given $2 x+y+z=2$
$x+3 y-z=5$
$3 x+y-2 z=6$

A

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClndCareer

$$
\begin{aligned}
& =2(-6+1)-1(-2+3)+1(1-9) \\
& =-10-1-8 \\
& =-19
\end{aligned}
$$

So, the above system has a unique solution, given by
$X=A^{-1} B$
Cofactors of A are
$C_{11}=(-1)^{1+1}-6+1=-5$
$C_{21}=(-1)^{2+1}(24+4)=-28$
$C_{31}=(-1)^{3+1}-1-3=-4$
$C_{12}=(-1)^{1+2}-2+3=-1$
$C_{22}=(-1)^{2+1}-4-3=-7$
$C_{32}=(-1)^{3+1}-2-1=3$
$C_{13}=(-1)^{1+2} 1-9=-8$
$C_{23}=(-1)^{2+1} 2-3=-1$
$C_{33}=(-1)^{3+1} 6-1=5$

Adj $A=\left[\begin{array}{ccc}-5 & -1 & -8 \\ 3 & -7 & 1 \\ -4 & 3 & 5\end{array}\right]^{T}$
$=\left[\begin{array}{ccc}-5 & 3 & -4 \\ -1 & -7 & 3 \\ -8 & 1 & 5\end{array}\right]$
$A^{-1}=\frac{1}{|A|} \operatorname{adj} \mathrm{A}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClindCareer

Now, $\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}={ }^{\frac{1}{-19}}\left[\begin{array}{ccc}-5 & 3 & -4 \\ -1 & -7 & 3 \\ -8 & 1 & 5\end{array}\right]\left[\begin{array}{l}2 \\ 5 \\ 6\end{array}\right]$
$X=\frac{1}{-19}\left[\begin{array}{l}-10+15-24 \\ -2-35+18 \\ -16+5+30\end{array}\right]$
$X=\frac{1}{-19}\left[\begin{array}{c}-19 \\ -19 \\ 19\end{array}\right]$
$\mathrm{X}=\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$
Hence, $X=1, Y=1$ and $Z=-1$
(ix) Given $2 x+6 y=2$
$3 x-z=-8$
$2 x-y+z=-3$
The given system can be written in matrix form as:

$$
\left[\begin{array}{ccc}
2 & 6 & 0 \\
3 & 0 & -1 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-8 \\
-3
\end{array}\right]_{\text {Or } \mathrm{AX}=\mathrm{B}}
$$

$$
A=\left[\begin{array}{ccc}
2 & 6 & 0 \\
3 & 0 & -1 \\
2 & -1 & 1
\end{array}\right], X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { and } B=\left[\begin{array}{c}
2 \\
-8 \\
-3
\end{array}\right]
$$

$$
\text { Now, } \left.|A|=2^{\mid c c} \begin{array}{cc}
0 & -1 \\
-1 & 1
\end{array}|-6| \begin{array}{cc}
3 & -1 \\
2 & 1
\end{array} \right\rvert\,+0
$$

$$
=2(0-1)-6(3+2)
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

$$
\begin{aligned}
& =-2-30 \\
& =-32
\end{aligned}
$$

So, the above system has a unique solution, given by

$$
X=A^{-1} B
$$

Cofactors of A are
$C_{11}=(-1)^{1+1} 0-1=-1$
$C_{21}=(-1)^{2+1} 6+0=-6$
$C_{31}=(-1)^{3+1}-6=-6$
$C_{12}=(-1)^{1+2} 3+2=5$
$C_{22}=(-1)^{2+1} 2-0=2$
$C_{32}=(-1)^{3+1}-2-0=2$
$C_{13}=(-1)^{1+2}-3-0=-3$
$C_{23}=(-1)^{2+1}-2-12=14$
$C_{33}=(-1)^{3+1} 0-18=-18$

$$
\begin{aligned}
& \text { Adj } A=\left[\begin{array}{ccc}
-1 & -5 & -3 \\
-6 & 2 & 14 \\
-6 & 2 & -18
\end{array}\right]^{\mathrm{T}} \\
& =\left[\begin{array}{ccc}
-1 & -6 & -6 \\
-5 & 2 & 2 \\
-3 & 14 & -18
\end{array}\right] \\
& A^{-1}=\frac{1}{|A|} \text { adj } A \\
& \text { Now, } X=A^{-1} B=\begin{array}{c}
\frac{1}{-32}
\end{array}\left[\begin{array}{ccc}
-1 & -6 & -6 \\
-5 & 2 & 2 \\
-3 & 14 & -18
\end{array}\right]\left[\begin{array}{c}
2 \\
-8 \\
-3
\end{array}\right] \\
& X=\frac{1}{62}\left[\begin{array}{c}
-2+48+18 \\
-10-16-6 \\
-6-112+54
\end{array}\right] \\
& X=\frac{1}{62}\left[\begin{array}{c}
64 \\
-32 \\
-64
\end{array}\right] \\
& X=\left[\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right] \\
& \text { Hence, } X=-2, Y=1 \text { and } Z=2
\end{aligned}
$$

(x) Given $2 \mathrm{y}-\mathrm{z}=1$

$x-y+z=2$
$2 x-y=0$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClndCareer

The given system can be written in matrix form as:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & 2 & -1 \\
1 & -1 & 1 \\
2 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{y} \\
\mathrm{Z}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]} \\
& \mathrm{AX}=\mathrm{B} \\
& \text { Now, }|\mathrm{A}|=0
\end{aligned} \begin{aligned}
& -2\left|\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right|-1\left|\begin{array}{ll}
1 & -1 \\
2 & -1
\end{array}\right| \\
& =\mathbf{0}+4-1 \\
& =\mathbf{3}
\end{aligned}
$$

So, the above system has a unique solution, given by
$X=A^{-1} B$

Cofactors of A are

$$
\begin{aligned}
& C_{11}=(-1)^{1+1} 1-0=1 \\
& C_{21}=(-1)^{2+1} 1-2=1 \\
& C_{31}=(-1)^{3+1} 0+1=1 \\
& C_{12}=(-1)^{1+2}-2-0=2 \\
& C_{22}=(-1)^{2+1}-1-0=-1 \\
& C_{32}=(-1)^{3+1} 0-2=2 \\
& C_{13}=(-1)^{1+2} 4-0=4 \\
& C_{23}=(-1)^{2+1} 2-0=-2 \\
& C_{33}=(-1)^{3+1}-1+2=1
\end{aligned}
$$

$\operatorname{Adj} \mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 4 \\ 1 & -1 & -2 \\ 1 & 2 & 1\end{array}\right]^{\mathrm{T}}$
$=\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & -1 & 2 \\ 4 & -2 & 1\end{array}\right]$
$\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \operatorname{adj} \mathrm{A}$
Now, $\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}=\frac{\frac{1}{3}}{}{ }^{1}\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & -1 & 2 \\ 4 & -2 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$
(xi) Given $8 x+4 y+3 z=18$
$2 x+y+z=5$
$x+2 y+z=5$
The given system can be written in matrix form as:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
8 & 4 & 3 \\
2 & 1 & 1 \\
1 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
18 \\
5 \\
5
\end{array}\right]} \\
& \mathrm{AX}=\mathrm{B}
\end{aligned}
$$

Now, $|\mathrm{A}|=8\left|\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right|-4\left|\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right|+3\left|\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right|$
$=8(-1)-4(1)+3(3)$
$=-8-4+9$
$=-3$
So, the above system has a unique solution, given by
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

$$
X=A^{-1} B
$$

Cofactors of A are

$$
\begin{aligned}
& C_{11}=(-1)^{1+1} 1-2=-1 \\
& C_{21}=(-1)^{2+1} 4-6=2 \\
& C_{31}=(-1)^{3+1} 4-3=1 \\
& C_{12}=(-1)^{1+2} 2-1=-1 \\
& C_{22}=(-1)^{2+1} 8-3=5 \\
& C_{32}=(-1)^{3+1} 8-6=-2 \\
& C_{13}=(-1)^{1+2} 4-1=3 \\
& C_{23}=(-1)^{2+1} 16-4=-12 \\
& C_{33}=(-1)^{3+1} 8-8=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Adj } \mathrm{A}=\left[\begin{array}{ccc}
-1 & -1 & 3 \\
2 & 5 & -12 \\
1 & -2 & 0
\end{array}\right]^{\mathrm{T}} \\
& =\left[\begin{array}{ccc}
-1 & 2 & 1 \\
-1 & 5 & -2 \\
3 & -12 & 0
\end{array}\right] \\
& \mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \text { adj } \mathrm{A} \\
& \text { Now, } \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}={ }^{\frac{-3}{-3}}\left[\begin{array}{ccc}
-1 & 2 & 1 \\
-1 & 5 & -2 \\
3 & -12 & 0
\end{array}\right]\left[\begin{array}{c}
18 \\
5 \\
5
\end{array}\right] \\
& \mathrm{X}={ }^{\frac{1}{3}}\left[\begin{array}{c}
-18+10+5 \\
-18+25-10 \\
54-60+0
\end{array}\right] \\
& \mathrm{X}=\frac{1}{-3}\left[\begin{array}{l}
-3 \\
-3 \\
-6
\end{array}\right] \\
& \mathrm{X}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
\end{aligned}
$$

$$
\text { Hence, } X=1, Y=1 \text { and } Z=2
$$

(xii) Given $\mathrm{x}+\mathrm{y}+\mathrm{z}=6$
$x+2 z=7$

$$
3 x+y+z=12
$$

ClndCareer

The given system can be written in matrix form as:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 2 \\
3 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{Z}
\end{array}\right]=\left[\begin{array}{c}
6 \\
17 \\
12
\end{array}\right]} \\
& \mathrm{AX}=\mathrm{B} \\
& \text { Now, }|\mathrm{A}|=1\left|\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right|-1\left|\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right|+1\left|\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right| \\
& =1(-2)-1(1-6)+1(1) \\
& =-\mathbf{2}+\mathbf{5}+1 \\
& =\mathbf{4}
\end{aligned}
$$

So, the above system has a unique solution, given by
$X=A{ }^{-1} B$
Cofactors of A are
$C_{11}=(-1)^{1+1} 0-2=-2$
$C_{21}=(-1)^{2+1} 1-1=0$
$C_{31}=(-1)^{3+1} 2-0=2$
$C_{12}=(-1)^{1+2} 1-6=5$
$C_{22}=(-1)^{2+1} 1-3=-2$
$C_{32}=(-1)^{3+1} 2-1=-1$
$C_{13}=(-1)^{1+2} 1-0=1$
$C_{23}=(-1)^{2+1} 1-3=2$
$C_{33}=(-1)^{3+1} 0-1=-1$

$$
\text { : } \mathrm{X}=\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right] \quad \text { Hence, } \mathrm{X}=3, \mathrm{Y}=1 \text { and } \mathrm{Z}=2
$$

(xiii) Given $(2 / x)+(3 / y)+(10 / z)=4$,
$(4 / x)-(6 / y)+(5 / z)=1$,
$(6 / x)+(9 / y)-(20 / z)=2, x, y, z \neq 0$
The given system can be written in matrix form as:

$$
\left[\begin{array}{ccc}
2 & 3 & 10 \\
4 & -6 & 5 \\
6 & 9 & -20
\end{array}\right]\left[\begin{array}{c}
\mathrm{u} \\
\mathrm{v} \\
\mathrm{w}
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right]
$$

$A X=B$
Now,
$|A|=2(75)-3(-110)+10(72)$
$=150+330+720$
$=1200$
So, the above system has a unique solution, given by
$X=A{ }^{-1} B$
Cofactors of A are
$C_{11}=(-1)^{1+1} 120-45=75$
$C_{21}=(-1)^{2+1}-60-90=150$
$C_{31}=(-1)^{3+1} 15+60=75$
$C_{12}=(-1)^{1+2}-80-30=110$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClndCareer

$C_{22}=(-1)^{2+1}-40-60=-100$
$C_{32}=(-1)^{3+1} 10-40=30$
$C_{13}=(-1)^{1+2} 36+36=72$
$C_{23}=(-1)^{2+1} 18-18=0$
$C_{33}=(-1)^{3+1}-12-12=-24$
Adj $A=\left[\begin{array}{ccc}75 & 110 & 72 \\ 150 & -100 & 0 \\ 75 & 30 & -24\end{array}\right]^{\mathrm{T}}$
$=\left[\begin{array}{ccc}75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24\end{array}\right]$
$A^{-1}=\frac{1}{|A|} \operatorname{adj} A$
Now, $\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}=\stackrel{1}{1200}\left[\begin{array}{ccc}75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24\end{array}\right]\left[\begin{array}{l}4 \\ 1 \\ 2\end{array}\right]$
$X=\frac{1}{1200}\left[\begin{array}{l}600 \\ 400 \\ 240\end{array}\right]$
$\left[\begin{array}{c}\mathrm{u} \\ \mathrm{v} \\ \mathrm{W}\end{array}\right]=\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{5}\end{array}\right]$
Hence, $X=2, Y=3$ and $Z=5$
(xiv) Given $x-y+2 z=7$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/
$3 x+4 y-5 z=-5$
$2 x-y+3 z=12$
The given system can be written in matrix form as:

$$
\left[\begin{array}{ccc}
1 & -1 & 2 \\
3 & 4 & -5 \\
2 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
7 \\
-5 \\
12
\end{array}\right]
$$

$A X=B$
Now,

$$
|A|=1(12-5)+1(9+10)+2(-3-8)
$$

$$
=7+19-22
$$

$$
=4
$$

So, the above system has a unique solution, given by
$X=A{ }^{-1} B$
Cofactors of A are
$C_{11}=(-1)^{1+1} 12-5=7$
$C_{21}=(-1)^{2+1}-3+2=1$
$C_{31}=(-1)^{3+1} 5-8=-3$
$C_{12}=(-1)^{1+2} 9+10=-19$
$C_{22}=(-1)^{2+1} 3-4=-1$
$C_{32}=(-1)^{3+1}-5-6=11$
$C_{13}=(-1)^{1+2}-3-8=-11$
$C_{23}=(-1)^{2+1}-1+2=-1$
$C_{33}=(-1)^{3+1} 4+3=7$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/
ClndCareer

$$
\begin{aligned}
& \text { Adj } A=\left[\begin{array}{ccc}
7 & -19 & -11 \\
1 & -1 & -1 \\
-3 & 11 & -7
\end{array}\right]^{\mathrm{T}} \\
& =\left[\begin{array}{ccc}
7 & 1 & -3 \\
-19 & -1 & 11 \\
-11 & -1 & 7
\end{array}\right] \\
& \mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \operatorname{adj} \mathrm{A}
\end{aligned}
$$

Now, $X=A^{-1} B=\frac{1}{4}\left[\begin{array}{ccc}7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7\end{array}\right]\left[\begin{array}{c}7 \\ -5 \\ 12\end{array}\right]$
$X=\frac{1}{4}\left[\begin{array}{c}8 \\ 4 \\ 12\end{array}\right]$

$$
\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]
$$

Hence, $\mathrm{X}=2, \mathrm{Y}=1$ and $\mathrm{Z}=3$
3. Show that each one of the following systems of linear equations is consistent and also find their solutions:
(i) $6 x+4 y=2$
$9 x+6 y=3$
(ii) $2 x+3 y=5$
$6 x+9 y=15$
(iii) $\mathbf{5 x + 3 y + 7 z = 4}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/
$3 x+26 y+2 z=9$
$7 x+2 y+10 z=5$
(v) $x+y+z=6$
$x+2 y+3 z=14$
$x+4 y+7 z=30$
(vi) $2 x+2 y-2 z=1$
$4 x+4 y-z=2$
$6 x+6 y+2 z=3$

Solution:

(i) Given $6 x+4 y=2$
$9 x+6 y=3$

The above system of equations can be written as
$\left[\begin{array}{ll}6 & 4 \\ 9 & 6\end{array}\right]\left[\begin{array}{l}X \\ \mathrm{Y}\end{array}\right]=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ Or $\mathrm{AX}=\mathrm{B}$
Where $A=\left[\begin{array}{ll}6 & 4 \\ 9 & 6\end{array}\right] B=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ and $X=\left[\begin{array}{l}X \\ Y\end{array}\right]$
$|A|=36-36=0$
So, A is singular, Now X will be consistence if (Adj $A) \times B=0$
$C_{11}=(-1)^{1+1} 6=6$
$C_{12}=(-1)^{1+2} 9=-9$
$C_{21}=(-1)^{2+1} 4=-4$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClindCareer

$C_{22}=(-1)^{2+2} 6=6$
Also, adj $A=\left[\begin{array}{cc}6 & -9 \\ -4 & 6\end{array}\right]^{T}$
$=\left[\begin{array}{cc}6 & -4 \\ -9 & 6\end{array}\right]$
Let $\mathrm{y}=\mathrm{k}$
$(\operatorname{Adj} A) \cdot B=\left[\begin{array}{cc}6 & -4 \\ -9 & 6\end{array}\right]\left[\begin{array}{l}2 \\ 3\end{array}\right] \quad$ Hence, $6 x=2-4 k$ or $9 x=3-6 k$
$=\left[\begin{array}{c}12-12 \\ -18+18\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$X=\frac{1-2 k}{3}$

Thus, $A X=B$ will be infinite solution, Hence, $X=\frac{1-2}{3}, Y=k$
(ii) Given $2 x+3 y=5$
$6 x+9 y=15$
The above system of equations can be written as
$\left[\begin{array}{ll}2 & 3 \\ 6 & 9\end{array}\right]\left[\begin{array}{l}\mathrm{X} \\ \mathrm{Y}\end{array}\right]=\left[\begin{array}{c}5 \\ 15\end{array}\right]$ Or $\mathrm{AX}=\mathrm{B}$
Where $A=\left[\begin{array}{ll}2 & 3 \\ 6 & 9\end{array}\right] B=\left[\begin{array}{c}5 \\ 15\end{array}\right]$ and $X=\left[\begin{array}{l}X \\ Y\end{array}\right]$
$|A|=18-18=0$
So, A is singular,
Now X will be consistence if $(\operatorname{Adj} A) \times B=0$
$C_{11}=(-1)^{1+1} 9=9$
$C_{12}=(-1)^{1+2} 6=-6$
$C_{21}=(-1)^{2+1} 3=-3$
$C_{22}=(-1)^{2+2} 2=2$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClindCareer

Also, $\operatorname{adj} \mathrm{A}=\left[\begin{array}{cc}9 & -6 \\ -3 & 2\end{array}\right]^{T}$

$$
\begin{array}{ll}
=\left[\begin{array}{cc}
9 & -3 \\
-6 & 2
\end{array}\right] & \text { Let } y=k \\
\text { Hence, } \\
\text { (Adj A).B }=\left[\left[\begin{array}{cc}
9 & -3 \\
-6 & 2
\end{array}\right]\left[\begin{array}{c}
5 \\
15
\end{array}\right]\right. & 2 x=5-3 \\
=\left[\begin{array}{c}
45-45 \\
-30+30
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] & x=15-9
\end{array}
$$

Thus, $A X=B$ will be infinite solution, Hence, $X=\frac{5-3 k}{2}, Y=k$
(iii) Given $5 x+3 y+7 z=4$
$3 x+26 y+2 z=9$
$7 x+2 y+10 z=5$
$|A|=5(260-4)-3(30-14)+7(6-182)$
$=5(256)-3(16)+7(176)$
$|A|=0$
So, A is singular. Thus, the given system is either inconsistent or it is consistent with infinitely many solution according to as:
$(\operatorname{Adj} A) \times B \neq 0$ or $(\operatorname{Adj} A) \times B=0$
Cofactors of A are
$C_{11}=(-1)^{1+1} 260-4=256$
$C_{21}=(-1)^{2+1} 30-14=-16$
$C_{31}=(-1)^{3+1} 6-182=-176$
$C_{12}=(-1)^{1+2} 30-14=-16$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

$$
\begin{aligned}
& C_{22}=(-1)^{2+1} 50-49=1 \\
& C_{32}=(-1)^{3+1} 10-21=11 \\
& C_{13}=(-1)^{1+2} 6-182=-176 \\
& C_{23}=(-1)^{2+1} 10-21=11 \\
& C_{33}=(-1)^{3+1} 130-9=121
\end{aligned}
$$

$$
\operatorname{Adj} A=\left[\begin{array}{ccc}
256 & -16 & -176 \\
-16 & 1 & 11 \\
-176 & 11 & 121
\end{array}\right]^{\mathrm{T}}
$$

$$
=\left[\begin{array}{ccc}
256 & -16 & -176 \\
-16 & 1 & 11 \\
-176 & 11 & 121
\end{array}\right]
$$

$$
\operatorname{Adj} \mathrm{A} \times \mathrm{B}=\left[\begin{array}{ccc}
256 & -16 & -176 \\
-16 & 1 & 11 \\
-176 & 11 & 121
\end{array}\right]\left[\begin{array}{l}
4 \\
9 \\
5
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now, $A X=B$ has infinite many solution
Let $\mathrm{z}=\mathrm{k}$
Then, $5 x+3 y=4-7 k$
$3 x+26 y=9-2 k$
This can be written as
$\left[\begin{array}{cc}5 & 3 \\ 3 & 26\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}4-7 \mathrm{k} \\ 9-2 \mathrm{k}\end{array}\right]$
$|A|=121$
$\operatorname{Adj} \mathrm{A}=\left[\begin{array}{cc}26 & -3 \\ -3 & 5\end{array}\right]$
Now, $\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}=\stackrel{\frac{1}{|\mathrm{~A}|}}{ } \operatorname{Adj} \mathrm{A} \times \mathrm{B}$

$$
\begin{aligned}
& =\frac{1}{121}\left[\begin{array}{cc}
26 & -3 \\
-3 & 5
\end{array}\right]\left[\begin{array}{l}
4-7 \mathrm{k} \\
9-2 \mathrm{k}
\end{array}\right] \\
& =\frac{1}{121}\left[\begin{array}{c}
77-176 \mathrm{k} \\
11 \mathrm{k}+33
\end{array}\right] \\
& =\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
\frac{7-16 \mathrm{k}}{11} \\
\frac{\mathrm{k}+3}{11}
\end{array}\right]
\end{aligned}
$$

There values of x, y and z satisfy the third equation
(v) Given $x+y+z=6$
$x+2 y+3 z=14$
$x+4 y+7 z=30$
This can be written as:

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 7
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
6 \\
14 \\
30
\end{array}\right]
$$

$|A|=1(2)-1(4)+1(2)$
$=2-4+2$
$|A|=0$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClindCareer

So, A is singular. Thus, the given system is either inconsistent or it is consistent with infinitely many solution according to as:
$(\operatorname{Adj} A) \times B \neq 0$ or $(\operatorname{Adj} A) \times B=0$
Cofactors of A are
$C_{11}=(-1)^{1+1} 14-12=2$
$C_{21}=(-1)^{2+1} 7-4=-3$
$C_{31}=(-1)^{3+1} 3-2=1$
$C_{12}=(-1)^{1+2} 7-3=-4$
$C_{22}=(-1)^{2+1} 7-1=6$
$C_{32}=(-1)^{3+1} 3-1=2$
$C_{13}=(-1)^{1+2} 4-2=2$
$C_{23}=(-1)^{2+1} 4-1=-3$
$C_{33}=(-1)^{3+1} 2-1=1$
$\operatorname{Adj} A=\left[\begin{array}{ccc}2 & -4 & 2 \\ -3 & 6 & -3 \\ 1 & -2 & 1\end{array}\right]^{T}$
$=\left[\begin{array}{ccc}2 & -3 & 1 \\ -4 & 1 & -2 \\ 2 & -3 & 1\end{array}\right]$
$\operatorname{Adj} A \times B=\left[\begin{array}{ccc}2 & -3 & 1 \\ -4 & 1 & -2 \\ 2 & -3 & 1\end{array}\right]\left[\begin{array}{c}6 \\ 14 \\ 30\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

Now, $A X=B$ has infinite many solution
Let $\mathrm{z}=\mathrm{k}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

Then, $x+y=6-k$
$x+2 y=14-3 k$
This can be written as:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{c}
6-\mathrm{k} \\
14-3 \mathrm{k}
\end{array}\right]} \\
& |\mathrm{A}|=1
\end{aligned}
$$

$$
\operatorname{Adj} A=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]
$$

Now, $\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}=\frac{1}{|\mathrm{~A}|} \operatorname{Adj} \mathrm{A} \times \mathrm{B}$

$$
\begin{aligned}
& \frac{1}{1}\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
6-\mathrm{k} \\
14-3 \mathrm{k}
\end{array}\right] \\
= & \frac{1}{1}\left[\begin{array}{c}
12-2 \mathrm{k}-14+3 \mathrm{k} \\
-6+\mathrm{k}+14-3 \mathrm{k}
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
-2+\mathrm{k} \\
8-2 \mathrm{k}
\end{array}\right]
$$

There values of x, y and z satisfy the third equation

$$
\text { Hence, } x=k-2, y=8-2 k, z=k
$$

(vi) Given $x+y+z=6$
$x+2 y+3 z=14$
$x+4 y+7 z=30$
This can be written as

$$
\left[\begin{array}{ccc}
2 & 2 & -2 \\
4 & 4 & -1 \\
6 & 6 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

elndCareer

$|A|=2(14)-2(14)-2(0)$
$|A|=0$
So, A is singular. Thus, the given system is either inconsistent or it is consistent with infinitely many solution according to as:
$(\operatorname{Adj} A) \times B \neq 0$ or $(\operatorname{Adj} A) \times B=0$
Cofactors of A are:
$C_{11}=(-1)^{1+1} 8+6=14$
$C_{21}=(-1)^{2+1} 4+12=-16$
$C_{31}=(-1)^{3+1}-2+8=6$
$C_{12}=(-1)^{1+2} 8+6=-14$
$C_{22}=(-1)^{2+1} 4+12=16$
$C_{32}=(-1)^{3+1}-2+8=-6$
$C_{13}=(-1)^{1+2} 24-24=0$
$C_{23}=(-1)^{2+1} 12-12=0$
$C_{33}=(-1)^{3+1} 8-8=0$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/
$\operatorname{Adj} \mathrm{A}=\left[\begin{array}{ccc}14 & -14 & 6 \\ -16 & 16 & -6 \\ 0 & 0 & 0\end{array}\right]^{\mathrm{T}}$
$=\left[\begin{array}{ccc}14 & -16 & 6 \\ -14 & 16 & -6 \\ 0 & 0 & 0\end{array}\right]$
$\operatorname{Adj} \mathrm{A} \times \mathrm{B}=\left[\begin{array}{ccc}14 & -16 & 6 \\ -14 & 16 & -6 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
Now, $A X=B$ has infinite many solution
Let $\mathrm{z}=\mathrm{k}$
Then, $2 \mathrm{x}+2 \mathrm{y}=1+2 \mathrm{k}$
$4 \mathrm{x}+4 \mathrm{y}=2+\mathrm{k}$
This can be written as:
$\left[\begin{array}{ll}2 & 2 \\ 4 & 4\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\left[\begin{array}{c}1+2 \mathrm{k} \\ 2+\mathrm{k}\end{array}\right]$
Hence, $|A|=0 \mathrm{z}=0$
Hence, the given equation doesn't satisfy.
4. Show that each one of the following systems of linear equations is consistent:
(i) $2 x+5 y=7$
$6 x+15 y=13$
(ii) $2 x+3 y=5$
$6 x+9 y=10$
(iii) $4 x-2 y=3$
$6 x-3 y=5$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/
(iv) $4 x-5 y-2 z=2$
$5 x-4 y+2 z=-2$
$2 x+2 y+8 z=-1$
(v) $3 x-y-2 z=2$
$2 y-z=-1$
$3 x-5 y=3$
(vi) $x+y-2 z=5$
$x-2 y+z=-2$
$-2 x+y+z=4$

Solution:

(i) Given $2 x+5 y=7$
$6 x+15 y=13$

The above system of equations can be written as
$\left[\begin{array}{cc}2 & 5 \\ 6 & 15\end{array}\right]\left[\begin{array}{l}\mathrm{X} \\ \mathrm{Y}\end{array}\right]=\left[\begin{array}{c}7 \\ 13\end{array}\right]$ Or $\mathrm{AX}=\mathrm{B}$
Where $A=\left[\begin{array}{cc}2 & 5 \\ 6 & 15\end{array}\right] B=\left[\begin{array}{c}7 \\ 13\end{array}\right]$ and $X=\left[\begin{array}{l}\mathrm{X} \\ \mathrm{Y}\end{array}\right]$
$|A|=30-30=0$
So, A is singular,
Now X will be consistence if $(\operatorname{Adj} A) \times B=0$
$C_{11}=(-1)^{1+1} 15=15$
$C_{12}=(-1)^{1+2} 6=-6$
$C_{21}=(-1)^{2+1} 5=-5$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/
elndCareer

ClndCareer

$C_{22}=(-1)^{2+2} 2=2$
$(\operatorname{Adj} A) \cdot B=\left[\begin{array}{cc}15 & -5 \\ -5 & 2\end{array}\right]\left[\begin{array}{c}7 \\ 13\end{array}\right]$
Also, adj $A=\left[\begin{array}{cc}15 & -6 \\ -5 & 2\end{array}\right]^{\mathrm{T}} \quad=\left[\begin{array}{c}105-65 \\ -35+26\end{array}\right]=\left[\begin{array}{c}40 \\ -16\end{array}\right]$
$=\left[\begin{array}{cc}15 & -5 \\ -5 & 2\end{array}\right]$
Hence, the given system is inconsistent.
(ii) Given $2 x+3 y=5$
$6 x+9 y=10$
The above system of equations can be written as
$\left[\begin{array}{ll}2 & 3 \\ 6 & 9\end{array}\right]\left[\begin{array}{l}\mathrm{X} \\ \mathrm{Y}\end{array}\right]=\left[\begin{array}{c}5 \\ 10\end{array}\right]$ Or $\mathrm{AX}=\mathrm{B}$
Where $\mathrm{A}=\left[\begin{array}{ll}2 & 3 \\ 6 & 9\end{array}\right] \mathrm{B}=\left[\begin{array}{c}5 \\ 10\end{array}\right]$ and $\mathrm{X}=\left[\begin{array}{l}\mathrm{X} \\ \mathrm{Y}\end{array}\right]$
$|A|=18-18=0$
So, A is singular,
Now X will be consistence if $(\operatorname{Adj} A) \times B=0$
$C_{11}=(-1)^{1+1} 9=9$
$C_{12}=(-1)^{1+2} 6=-6$
$C_{21}=(-1)^{2+1} 3=-3$
$C_{22}=(-1)^{2+2} 2=2$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

Also, $\operatorname{adj} \mathrm{A}=\left[\begin{array}{cc}9 & -6 \\ -3 & 2\end{array}\right]^{T}$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
9 & -3 \\
-6 & 2
\end{array}\right] \\
& (\operatorname{Adj} A) \cdot B=\left[\begin{array}{cc}
9 & -3 \\
-6 & 2
\end{array}\right]\left[\begin{array}{c}
5 \\
10
\end{array}\right] \\
& =\left[\begin{array}{c}
45-30 \\
-30+20
\end{array}\right]=\left[\begin{array}{c}
15 \\
-10
\end{array}\right]_{\neq 0}
\end{aligned}
$$

Hence, the given system is inconsistent.
(iii) Given $4 x-2 y=3$
$6 x-3 y=5$
The above system of equations can be written as

$$
\left[\begin{array}{ll}
4 & -2 \\
6 & -3
\end{array}\right]\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{Y}
\end{array}\right]=\left[\begin{array}{l}
3 \\
5
\end{array}\right] \text { Or } \mathrm{AX}=\mathrm{B}
$$

$$
\text { Where } \mathrm{A}=\left[\begin{array}{ll}
4 & -2 \\
6 & -3
\end{array}\right] \mathrm{B}=\left[\begin{array}{l}
3 \\
5
\end{array}\right] \text { and } \mathrm{X}=\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{Y}
\end{array}\right]
$$

$|A|=-12+12=0$
So, A is singular,
Now X will be consistence if $(\operatorname{Adj} A) \times B=0$
$C_{11}=(-1)^{1+1}-3=-3$
$C_{12}=(-1)^{1+2} 6=-6$
$C_{21}=(-1)^{2+1}-2=2$
$C_{22}=(-1)^{2+2} 4=4$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

Also, adj $A=\left[\begin{array}{cc}-3 & -2 \\ -6 & 4\end{array}\right]^{T}$
$=\left[\begin{array}{ll}-3 & 2 \\ -6 & 4\end{array}\right]$
$(\operatorname{Adj} A) \cdot B=\left[\begin{array}{ll}-3 & 2 \\ -6 & 4\end{array}\right]\left[\begin{array}{l}3 \\ 5\end{array}\right]$
$=\left[\begin{array}{c}-9+10 \\ -18+20\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
Hence, the given system is inconsistent.
(iv) Given $4 x-5 y-2 z=2$
$5 x-4 y+2 z=-2$
$2 x+2 y+8 z=-1$
$\left[\begin{array}{ccc}4 & -5 & -2 \\ 5 & -4 & 2 \\ 2 & 2 & 8\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}2 \\ -2 \\ -1\end{array}\right]$
$|A|=4(-36)+5(36)-2(18)$
$|A|=0$
Cofactors of A are:
$C_{11}=(-1)^{1+1}-32-4=-36$
$C_{21}=(-1)^{2+1}-40+4=-36$
$C_{31}=(-1)^{3+1}-10-8=-18$
$C_{12}=(-1)^{1+2} 40-4=-36$
$C_{22}=(-1)^{2+1} 32+4=36$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/
ClndCareer
$C_{32}=(-1)^{3+1} 8+10=-18$
$C_{13}=(-1)^{1+2} 10+8=18$
$C_{23}=(-1)^{2+1} 8+10=-18$
$C_{33}=(-1)^{3+1}-16+25=9$

Adj $A=\left[\begin{array}{ccc}-36 & -34 & 18 \\ 36 & 36 & -18 \\ -18 & -18 & 9\end{array}\right]^{\mathrm{T}}$
$=\left[\begin{array}{ccc}-36 & 36 & -18 \\ -36 & 36 & -18 \\ 18 & -18 & 9\end{array}\right]$
Adj $A \times B=\left[\begin{array}{ccc}-36 & 36 & -18 \\ -36 & 36 & -18 \\ 18 & -18 & 9\end{array}\right]\left[\begin{array}{c}2 \\ -2 \\ -1\end{array}\right]$
$=\left[\begin{array}{c}-72-72+18 \\ -72-72+18 \\ 36+36-9\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
Hence, the above system is inconsistent.
(v) Given $3 x-y-2 z=2$
$2 y-z=-1$
$3 x-5 y=3$

$$
\left[\begin{array}{ccc}
3 & -1 & -2 \\
0 & 2 & -1 \\
3 & -5 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right]
$$

$|A|=3(-5)+1(3)-2(-6)$
$|A|=0$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClndCareer

Cofactors of A are

$$
\begin{aligned}
& C_{11}=(-1)^{1+1} 0-5=-5 \\
& C_{21}=(-1)^{2+1} 0-10=10 \\
& C_{31}=(-1)^{3+1} 1+4=5 \\
& C_{12}=(-1)^{1+2} 0+3=-3 \\
& C_{22}=(-1)^{2+1} 0+6=6 \\
& C_{32}=(-1)^{3+1}-3-0=3 \\
& C_{13}=(-1)^{1+2} 0-6=-6 \\
& C_{23}=(-1)^{2+1}-15+3=12 \\
& C_{33}=(-1)^{3+1} 6-0=6 \\
& \text { Adj } A=\left[\begin{array}{ccc}
-5 & 3 & -6 \\
10 & 6 & 12 \\
5 & 3 & 6
\end{array}\right]^{\mathrm{T}} \\
& =\left[\begin{array}{ccc}
-5 & 10 & 5 \\
3 & 6 & 3 \\
-6 & 12 & 6
\end{array}\right] \\
& \operatorname{Adj} A \times B=\left[\begin{array}{ccc}
-5 & 10 & 5 \\
3 & 6 & 3 \\
-6 & 12 & 6
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right] \\
& =\left[\begin{array}{c}
-10-10+15 \\
6-6+9 \\
-12-12+18
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Hence, the above system is inconsistent.
(vi) Given $x+y-2 z=5$
$x-2 y+z=-2$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

$$
-2 x+y+z=4
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 1 & -2 \\
1 & -2 & 1 \\
-2 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
5 \\
-2 \\
4
\end{array}\right]} \\
& |A|=1(-3)-1(3)-2(-3)=-3-3+6 \\
& |A|=0
\end{aligned}
$$

Cofactors of A are:
$C_{11}=(-1)^{1+1}-2-1=-3$
$C_{21}=(-1)^{2+1} 1+2=-3$
$C_{31}=(-1)^{3+1} 1-4=-3$
$C_{12}=(-1)^{1+2} 1+2=-3$
$C_{22}=(-1)^{2+1} 1-4=-3$
$C_{32}=(-1)^{3+1} 1+2=-3$
$C_{13}=(-1)^{1+2} 1-4=-3$
$C_{23}=(-1)^{2+1} 1+2=-3$
$C_{33}=(-1)^{3+1}-2-1=-3$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClndCareer

$$
\begin{aligned}
& \text { Adj } A=\left[\begin{array}{lll}
-3 & -3 & -3 \\
-3 & -3 & -3 \\
-3 & -3 & -3
\end{array}\right]^{\mathrm{T}} \\
& =\left[\begin{array}{lll}
-3 & -3 & -3 \\
-3 & -3 & -3 \\
-3 & -3 & -3
\end{array}\right] \\
& \text { Adj } A \times B=\left[\begin{array}{lll}
-3 & -3 & -3 \\
-3 & -3 & -3 \\
-3 & -3 & -3
\end{array}\right]\left[\begin{array}{c}
5 \\
-2 \\
4
\end{array}\right] \\
& =\left[\begin{array}{l}
-15+6-12 \\
-15+6-12 \\
-15+6-12
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Hence, the above system is inconsistent.
5. If $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & 1 & -5\end{array}\right]$ are two square matrices.

Find $A B$ and hence solve the system of linear equations :
$x-y=3,2 x+3 y+4 z=17, y+2 z=7$

Solution:

CllndCareer

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right]_{\mathrm{B}}=\left[\begin{array}{ccc}
2 & 2 & -4 \\
-4 & 2 & -4 \\
2 & -1 & 5
\end{array}\right] \\
& \mathrm{AB}=\left[\begin{array}{cccc}
2+4+0+0 & 2-2+0 & -4+4+0 \\
4-12+8 & 4+6-4 & -8-12+20 \\
0-4+4 & 0+2-2 & 0-4+10
\end{array}\right] \\
& \mathrm{AB}=\left[\begin{array}{lll}
6 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 6
\end{array}\right]
\end{aligned}
$$

ClndCareer

Now, we can see that it is $A B=6$ I. Where I is the unit Matrix
Or, $\mathrm{A}^{-1}=\frac{1}{6}\left[\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5\end{array}\right]$
Now the given equation can be written as:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
3 \\
17 \\
7
\end{array}\right]} \\
& \mathrm{AX}=\mathrm{B} \\
& \text { Or, } \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B} \\
& \frac{1}{6}\left[\begin{array}{ccc}
2 & 2 & -4 \\
-4 & 2 & -4 \\
2 & -1 & 5
\end{array}\right]\left[\begin{array}{c}
3 \\
17 \\
7
\end{array}\right] \\
& {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\frac{1}{6}\left[\begin{array}{c}
6+34-28 \\
-12+34-28 \\
6-17+35
\end{array}\right]} \\
& \frac{1}{6}\left[\begin{array}{c}
12 \\
-6 \\
24
\end{array}\right] \\
& X=\left[\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right]
\end{aligned}
$$

Hence, $x=2, y=-1$ and $z=4$
6. If $A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]$, find A^{-1} and hence solve the system of linear equations :

$$
2 x-3 y+5 z=11,3 x+2 y-4 z=-5, x+y-2 z=-3 .
$$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right] \\
& |A|=2(0)+3(-2)+5(1) \\
& =-1
\end{aligned}
$$

Now, the cofactors of A

$$
\begin{aligned}
& C_{11}=(-1)^{1+1}-4+4=0 \\
& C_{21}=(-1)^{2+1} 6-5=-1 \\
& C_{31}=(-1)^{3+1} 12-10=2 \\
& C_{12}=(-1)^{1+2}-6+4=2 \\
& C_{22}=(-1)^{2+1}-4-5=-9 \\
& C_{32}=(-1)^{3+1}-8-15=23 \\
& C_{13}=(-1)^{1+2} 3-2=1 \\
& C_{23}=(-1)^{2+1} 2+3=-5 \\
& C_{33}=(-1)^{3+1} 4+9=13
\end{aligned}
$$

ClndCareer

$\operatorname{Adj} \mathrm{A}=\left[\begin{array}{ccc}0 & 2 & 1 \\ -1 & -9 & -5 \\ 2 & 23 & 13\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13\end{array}\right]$
$A^{-1}=\frac{1}{|A|} \operatorname{adj} A$
$A^{-1}=\frac{1}{-1}\left[\begin{array}{llc}0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13\end{array}\right]$
$A^{-1}=\left[\begin{array}{ccc}0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13\end{array}\right]$
Now the given equation can be written as:

$$
\begin{array}{ll}
{\left[\begin{array}{ccc}
2 & -3 & 5 \\
3 & 2 & -4 \\
-1 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
11 \\
-5 \\
-3
\end{array}\right]} & \text { Or, } \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B} \\
\mathrm{AX}=\mathrm{B} & {\left[\begin{array}{ccc}
0 & 1 & -2 \\
-2 & 9 & -23 \\
-1 & 5 & -13
\end{array}\right]\left[\begin{array}{c}
11 \\
-5 \\
-3
\end{array}\right]} \\
{\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
0-5+6 \\
-22+45+69 \\
-11-25+39
\end{array}\right]} & \\
X=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
\end{array}
$$

$$
\text { Hence, } x=1, y=2 \text { and } z=3
$$

7. Find A^{-2}, if $A=\left[\begin{array}{ccc}1 & 2 & 5 \\ 1 & -1 & -1 \\ 2 & 3 & -1\end{array}\right]$. Hence solve the following system of linear equations : $x+2 y+5 z=10, x-y-z=-2,2 x+3 y-z=-11$.

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClindCareer

Given

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 2 & 5 \\
1 & -1 & -1 \\
2 & 3 & -1
\end{array}\right] \\
& |A|=1(1+3)+2(-1+2)+5(3+2) \\
& =4+2+25 \\
& =27
\end{aligned}
$$

Now, the cofactors of A
$C_{11}=(-1)^{1+1} 1+3=4$
$C_{21}=(-1)^{2+1}-2-15=17$
$C_{31}=(-1)^{3+1}-2+5=3$
$C_{12}=(-1)^{1+2}-1+2=-1$
$C_{22}=(-1)^{2+1}-1-10=-11$
$C_{32}=(-1)^{3+1}-1-5=6$
$C_{13}=(-1)^{1+2} 3+2=5$
$C_{23}=(-1)^{2+1} 3-4=1$
$C_{33}=(-1)^{3+1}-1-2=-3$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClndCareer

Adj $\mathrm{A}=\left[\begin{array}{ccc}4 & -1 & 5 \\ 17 & -11 & 1 \\ 3 & 6 & -3\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}4 & 17 & 3 \\ -1 & -11 & 6 \\ 5 & 1 & -3\end{array}\right]$
$A^{-1}=\frac{1}{|A|} \operatorname{adj} A$
$\mathrm{A}^{-1}=\frac{1}{27}\left[\begin{array}{ccc}4 & 17 & 3 \\ -1 & -11 & 6 \\ 5 & 1 & -3\end{array}\right]$
Now the given equation can be written as:

$$
\left[\begin{array}{ccc}
1 & 2 & 5 \\
1 & -1 & -1 \\
2 & 3 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
10 \\
-2 \\
-11
\end{array}\right]
$$

$A X=B$
Or, $X=A^{-1} B$
$={ }^{2}\left[\begin{array}{ccc}27 & 17 & 3 \\ -1 & -11 & 6 \\ 5 & 1 & -3\end{array}\right]\left[\begin{array}{c}10 \\ -2 \\ -11\end{array}\right]$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{27}\left[\begin{array}{c}40-34-33 \\ -10+22-66 \\ 50-2+33\end{array}\right]$
$\mathrm{X}=\frac{1}{27}\left[\begin{array}{c}-27 \\ -54 \\ 81\end{array}\right]$
$\mathrm{X}=\left[\begin{array}{c}-1 \\ -2 \\ 3\end{array}\right]$
Hence, $x=-1, y=-2$ and $z=3$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClindCareer

8. (i) If $A=\left[\begin{array}{ccc}1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1\end{array}\right]$, find $A^{-1} . U \operatorname{sing} A^{-1}$, solve thesy stem of linear equations :
$x-2 y=10,2 x+y+3 z=8,-2 y+z=7$

Solution:

Given

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & 1 & 3 \\
0 & -2 & 1
\end{array}\right] \\
& |A|=1(1+6)+2(2-0)+0 \\
& =7+4 \\
& =11
\end{aligned}
$$

Now, the cofactors of A
$C_{11}=(-1)^{1+1} 1+6=7$
$C_{21}=(-1)^{2+1}-2-0=2$
$C_{31}=(-1)^{3+1}-6-0=-6$
$C_{12}=(-1)^{1+2} 2-0=-2$
$C_{22}=(-1)^{2+1} 1-0=1$
$C_{32}=(-1)^{3+1} 3-0=-3$
$C_{13}=(-1)^{1+2}-4-0=-4$
$C_{23}=(-1)^{2+1}-2-0=2$
$C_{33}=(-1)^{3+1} 1+4=5$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClndCareer

$$
\begin{array}{rlr}
\text { Adj } \mathrm{A}=\left[\begin{array}{ccc}
7 & 2 & -4 \\
-2 & 1 & -3 \\
-6 & 2 & 5
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}
7 & -2 & -6 \\
2 & 1 & 2 \\
-4 & -3 & 5
\end{array}\right] & \\
& \begin{array}{l}
\frac{1}{11}\left[\begin{array}{ccc}
7 & -2 & -6 \\
2 & 1 & 2 \\
-4 & -3 & 5
\end{array}\right]\left[\begin{array}{c}
10 \\
8 \\
7
\end{array}\right] \\
\mathrm{A}^{-1}=\frac{1}{|A|} \operatorname{adj} \mathrm{A} \\
\mathrm{~A}^{-1}=\frac{1}{11}\left[\begin{array}{ccc}
7 & -2 & -6 \\
2 & 1 & 2 \\
-4 & -3 & 5
\end{array}\right]
\end{array} & {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\frac{1}{11}\left[\begin{array}{c}
70+16-42 \\
-20+8-21 \\
-40+16+35
\end{array}\right]}
\end{array}
$$

Now the given equation can be written as:

$$
\mathrm{X}={ }^{\frac{1}{11}}\left[\begin{array}{c}
44 \\
-33 \\
11
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & -2 & 0 \\
2 & -1 & 3 \\
0 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
10 \\
8 \\
7
\end{array}\right]} \\
& \mathrm{AX}=\mathrm{B} \\
& \text { Or, } \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}
\end{aligned}
$$

$$
X=\left[\begin{array}{c}
4 \\
-3 \\
1
\end{array}\right]
$$

$$
\text { Hence, } x=4, y=-3 \text { and } z=1
$$

(ii) $A=\left[\begin{array}{ccc}3 & -4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1\end{array}\right]$, find A^{-1} and hence solve thesystem of linear equations : $3 x-4 y+2 z=-1,2 x+3 y+5 z=7, x+z=2$

Solution:

Given

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{ccc}
3 & -4 & 2 \\
2 & 3 & 5 \\
1 & 0 & 1
\end{array}\right] \\
& |\mathrm{A}|=3(3-0)+4(2-5)+2(0-3) \\
& =9-12-6 \\
& =-9
\end{aligned}
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClndCareer

Now, the cofactors of A

$$
\begin{aligned}
& C_{11}=(-1)^{1+1} 3-0=3 \\
& C_{21}=(-1)^{2+1}-4-0=4 \\
& C_{31}=(-1)^{3+1}-20-6=-26 \\
& C_{12}=(-1)^{1+2} 2-5=3 \\
& C_{22}=(-1)^{2+1} 3-2=1 \\
& C_{32}=(-1)^{3+1} 15-4=-11 \\
& C_{13}=(-1)^{1+2} 0-3=-3 \\
& C_{23}=(-1)^{2+1} 0+4=-4 \\
& C_{33}=(-1)^{3+1} 9+8=17
\end{aligned}
$$

ClndCareer

$\operatorname{Adj} \mathrm{A}=\left[\begin{array}{ccc}3 & 3 & -3 \\ 4 & 1 & -4 \\ -26 & -4 & 27\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}3 & 4 & -26 \\ 3 & 1 & -11 \\ -3 & -4 & 17\end{array}\right]$
$A^{-1}=\frac{1}{|A|} \operatorname{adj} A$
$A^{-1}=\frac{1}{-9}\left[\begin{array}{ccc}3 & 4 & -26 \\ 3 & 1 & -11 \\ -3 & -4 & 17\end{array}\right]$
Now the given equation can be written as:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
3 & -4 & 2 \\
2 & 3 & 5 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-1 \\
7 \\
2
\end{array}\right]} \\
& A X=B \\
& \text { Or, } \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B} \\
& \frac{1}{-9}\left[\begin{array}{ccc}
3 & 4 & -26 \\
3 & 1 & 11 \\
-3 & -4 & 17
\end{array}\right]\left[\begin{array}{c}
-1 \\
7 \\
2
\end{array}\right] \\
& {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\frac{1}{-9}\left[\begin{array}{c}
-3+28-52 \\
21+7+22 \\
3-28+34
\end{array}\right]} \\
& \mathrm{X}=\frac{1}{-9}\left[\begin{array}{c}
-27 \\
-18 \\
9
\end{array}\right] \\
& \mathrm{X}=\left[\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right]
\end{aligned}
$$

$$
\text { Hence, } x=3, y=2 \text { and } z=-1
$$

ClndCareer

(iii) $A=\left[\begin{array}{ccc}1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1\end{array}\right]$, and $B=\left[\begin{array}{ccc}7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 2 & 5\end{array}\right]$ find $A B$. Hence solve thesystem of linear equations :
$x-2 y=10,2 x+y+3 z=8$ and $-2 y+z=7$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClndCareer

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & 1 & 3 \\
0 & -2 & 1
\end{array}\right]_{\mathrm{B}}=\left[\begin{array}{ccc}
7 & 2 & -6 \\
-2 & 1 & -3 \\
-4 & 2 & 5
\end{array}\right] \\
& \mathrm{AB}=\left[\begin{array}{ccc}
7+4-0 & 2-2+0 & -6+6+0 \\
14-2-12 & 4+1+6 & -12-3+15 \\
0-4+4 & 0-2+2 & 0+6+5
\end{array}\right]
\end{aligned}
$$

$A B=\left[\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right]$
Now, we can see that it is $A B=11 I$. Where I is the unit Matrix
Or, $\mathrm{A}^{-1}={ }^{\frac{1}{11}}\left[\begin{array}{ccc}7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 2 & 5\end{array}\right]$
Now the given equation can be written as:

$$
\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & 1 & 3 \\
0 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
10 \\
8 \\
7
\end{array}\right]
$$

$$
A X=B
$$

$$
\text { Or, } \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}
$$

$$
=\frac{1}{11}\left[\begin{array}{ccc}
7 & 2 & -6 \\
-2 & 1 & -3 \\
-4 & 2 & 5
\end{array}\right]\left[\begin{array}{c}
10 \\
8 \\
7
\end{array}\right]
$$

$$
\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\frac{1}{11}\left[\begin{array}{c}
70+16-42 \\
-20+8-21 \\
-40+16+35
\end{array}\right]
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

$$
\begin{aligned}
& =\frac{1}{11}\left[\begin{array}{c}
44 \\
-33 \\
11
\end{array}\right] \\
& X=\left[\begin{array}{c}
4 \\
-3 \\
1
\end{array}\right]
\end{aligned}
$$

$$
\text { Hence, } x=4, y=-3 \text { and } z=1
$$

(iv) If $A=\left[\begin{array}{ccc}1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1\end{array}\right]$, find $A^{-1} . U \operatorname{sing} A^{-1}$ solve the system of linearequations :
$x-2 y=10,2 x-y-z=8,-2 y+z=7$

Solution:

Given
$A=\left[\begin{array}{ccc}1 & 2 & 0 \\ -2 & -1 & -1 \\ 0 & -1 & 1\end{array}\right]$
$|A|=1(-1-1)-2(-2-0)+0$
$=-2+4$
$=2$
Now, the cofactors of A
$C_{11}=(-1)^{1+1}-1-1=-2$
$C_{21}=(-1)^{2+1} 2-0=2$
$C_{31}=(-1)^{3+1}-2-0=-2$
$C_{12}=(-1)^{1+2} 2-0=-2$
$C_{22}=(-1)^{2+1} 1-0=1$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClndCareer

$$
\begin{aligned}
& C_{32}=(-1)^{3+1}-1-0=1 \\
& C_{13}=(-1)^{1+2}-2-0=-2 \\
& C_{23}=(-1)^{2+1}-1-0=1 \\
& C_{33}=(-1)^{3+1}-1+4=3
\end{aligned}
$$

$$
\operatorname{Adj} A=\left[\begin{array}{ccc}
-2 & -2 & -2 \\
2 & 1 & 1 \\
-2 & 1 & 3
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}
-2 & 2 & -2 \\
-2 & 1 & 1 \\
-2 & 1 & 3
\end{array}\right]
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClndCareer

$A^{-1}=\frac{1}{|A|} \operatorname{adj} \mathrm{A}$

$$
\mathrm{A}^{-1}=\frac{1}{2}\left[\begin{array}{ccc}
-2 & 2 & -2 \\
-2 & 1 & 1 \\
-2 & 1 & 3
\end{array}\right]
$$

Now the given equation can be written as:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & -1 & -1 \\
0 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
10 \\
8 \\
7
\end{array}\right]} \\
& \mathrm{AX}=\mathrm{B} \\
& \mathrm{Or}, \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B} \\
& \frac{1}{2}\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & -1 & -1 \\
0 & -2 & 1
\end{array}\right]\left[\begin{array}{c}
10 \\
8 \\
7
\end{array}\right] \\
& {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
10-16+0 \\
20-8-7 \\
0-16+7
\end{array}\right]} \\
& \mathrm{X}=\frac{1}{2}=\left[\begin{array}{c}
-6 \\
5 \\
-9
\end{array}\right]
\end{aligned}
$$

$$
\text { Hence, } x=-3, y=2.5 \text { and } z=-4.5
$$

(v) Given $A=\left[\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5\end{array}\right], \quad B=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{array}\right]$
find $B A$ and Use this to solve the system of linear equations $y+2 z=$ $7, x-y=3,2 x+3 y+4 z=17$

Solution:

Given
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClndCareer

$\mathrm{B}=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{array}\right]_{\mathrm{A}}=\left[\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 4 & -1 & 5\end{array}\right]$
$\mathrm{BA}=\left[\begin{array}{ccc}2+4-0 & 2-2+0 & -4+4+0 \\ -4-12+16 & 4+6-4 & -8-12+20 \\ 0-4+8 & 0-2+2 & 0-4+10\end{array}\right]$
$B A=\left[\begin{array}{lll}6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6\end{array}\right]$
Now, we can see that it is $B A=6 I$. Where I is the unit Matrix
Or, $\mathrm{B}^{-1}=\frac{\frac{1}{6}}{\frac{1}{6}}\left[\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 4 & -1 & 5\end{array}\right]$
Now the given equation can be written as:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & 1 & 2 \\
1 & -1 & 0 \\
2 & 3 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
7 \\
3 \\
17
\end{array}\right]} \\
& \mathrm{AX}=\mathrm{B} \\
& \mathrm{Or}, \mathrm{X}=\mathrm{B}^{-1} \mathrm{~A} \\
& \frac{1}{6}\left[\begin{array}{ccc}
2 & 2 & -4 \\
-4 & 2 & -4 \\
4 & -1 & 5
\end{array}\right]\left[\begin{array}{c}
7 \\
3 \\
17
\end{array}\right] \\
& {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\frac{1}{6}\left[\begin{array}{c}
14+6-68 \\
-28+6-68 \\
28-3+85
\end{array}\right]}
\end{aligned}
$$

$=\frac{1}{6}\left[\begin{array}{l}-48 \\ -90 \\ 110\end{array}\right]$
$X=\left[\begin{array}{c}-8 \\ -15 \\ \frac{110}{6}\end{array}\right]$
Hence, $x=-8, y=-15$ and $z=\frac{110}{6}$
9. The sum of three numbers is 2 . If twice the second number is added to the sum of first and third, the sum is 1 . By adding second and third number to five times the first number, we get 6 . Find the three numbers by using matrices.

Solution:
Let the numbers are $\mathrm{x}, \mathrm{y}, \mathrm{z}$
$x+y+z=2$
\qquad
Also, $2 \mathrm{y}+(\mathrm{x}+\mathrm{z})+1$
$x+2 y+z=1$
Again,
$x+z+5(x)=6$
$5 x+y+z=6$
$A X=B$
$|A|=1(1)-1(-4)+1(-9)$
$=1+4-9$
$=-4$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClindCareer

Hence, the unique solution given by $x=A^{-1} B$
$C_{11}=(-1)^{1+1}(2-1)=1$
$C_{12}=(-1)^{1+2}(1-5)=4$
$C_{13}=(-1)^{1+3}(1-10)=-9$
$C_{21}=(-1)^{2+1}(1-1)=0$
$C_{22}=(-1)^{2+2}(1-5)=-4$
$C_{23}=(-1)^{2+3}(1-5)=4$
$C_{31}=(-1)^{3+1}(1-2)=-1$
$C_{32}=(-1)^{3+2}(1-1)=0$
$C_{33}=(-1)^{3+3}(2-1)=1$

$$
\begin{aligned}
& X=\frac{1}{-4}\left[\begin{array}{ccc}
1 & 0 & -1 \\
4 & -4 & 0 \\
-9 & 4 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
6
\end{array}\right] \\
& X=\frac{1}{-4}\left[\begin{array}{c}
2-6 \\
8-4 \\
-18+4+6
\end{array}\right] \\
& =\frac{1}{-4}\left[\begin{array}{c}
-4 \\
4 \\
-8
\end{array}\right]
\end{aligned}
$$

$X=A^{-1} B=\frac{1}{|A|}(\operatorname{adj} A) B$
Hence, $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ -2 \\ 2\end{array}\right]$
10. An amount of $₹ 10,000$ is put into three investments at the rate of 10,12 and 15% per annum. The combined incomes are ₹ 1310 and the combined income of first and second

ClindCareer

investment is ₹ 190 short of the income from the third. Find the investment in each using matrix method.

Solution:

Let the numbers are x, y, and z
$x+y+z=10,000$
Also,
$0.1 x+0.12 y+0.15 z=1310$
Again,
$0.1 x+0.12 y-0.15 z=-190 \ldots .$.
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 0.1 & 0.12 & 0.15 \\ 0.1 & 0.12 & -0.15\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right]=\left[\begin{array}{c}10000 \\ 1310 \\ -190\end{array}\right]$
$A X=B$
$|A|=1(-0.036)-1(-0.03)+1(0)$
$=-0.006$
Hence, the unique solution given by $x=A^{-1} B$
$C_{11}=-0.036$
$C_{12}=0.27$
$\mathrm{C}_{13}=0$
$\mathrm{C}_{21}=0.27$
$C_{22}=-0.25$
$C_{23}=-0.02$
$\mathrm{C}_{31}=0.03$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClindCareer

$C_{32}=-0.05$
$\mathrm{C}_{33}=0.02$
$X=A^{-1} B=\frac{1}{|A|}(\operatorname{adj} A) B$
Adj $A=\left[\begin{array}{ccc}-0.036 & 0.27 & 0.03 \\ 0.27 & -0.25 & -0.05 \\ 0.03 & -0.02 & 0.02\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}-0.036 & 0.27 & 0.03 \\ 0.03 & -0.25 & -0.05 \\ 0 & -0.02 & 0.02\end{array}\right]$
$X=\begin{gathered}1 \\ -0.006\end{gathered}\left[\begin{array}{ccc}-0.036 & 0.27 & 0.03 \\ 0.03 & -0.25 & -0.05 \\ 0 & -0.02 & 0.02\end{array}\right]\left[\begin{array}{c}10000 \\ 1310 \\ -190\end{array}\right]$
$X=\frac{1}{-0.006}\left[\begin{array}{l}-12 \\ -18 \\ -30\end{array}\right]$
$\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right]=\left[\begin{array}{l}2000 \\ 3000 \\ 5000\end{array}\right]$
Hence, $x=$ Rs 2000, $y=$ Rs 3000 and $z=$ Rs 5000

Exercise 8.2 Page No: 8.20
Solve the following systems of homogeneous linear equations by matrix method:

1. $2 x-y+z=0$
$3 x+2 y-z=0$
$x+4 y+3 z=0$

Solution:

Given
$2 x-y+z=0$
$3 x+2 y-z=0$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClindCareer

$X+4 y+3 z=0$
The system can be written as
$A X=0$
Now, $|A|=2(6+4)+1(9+1)+1(12-2)$
$|A|=2(10)+10+10$
$|A|=40 \neq 0$
Since, $|A| \neq 0$, hence $x=y=z=0$ is the only solution of this homogeneous equation.
2. $2 x-y+2 z=0$
$5 x+3 y-z=0$
$X+5 y-5 z=0$

Solution:

Given $2 x-y+2 z=0$
$5 x+3 y-z=0$
$X+5 y-5 z=0$
The system can be written as

$$
\left[\begin{array}{ccc}
2 & -1 & 2 \\
5 & 3 & -1 \\
1 & 5 & -5
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$A X=0$
Now, $|A|=2(-15+5)+1(-25+1)+2(25-3)$
$|A|=-20-24+44$
$|A|=0$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

Hence, the system has infinite solutions
Let $\mathrm{z}=\mathrm{k}$
$2 x-y=-2 k$
$5 x+3 y=k$
$\left[\begin{array}{cc}2 & -1 \\ 5 & 3\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\left[\begin{array}{c}-2 \mathrm{k} \\ \mathrm{k}\end{array}\right]$
$A X=B$
$|A|=6+5=11 \neq 0$ So, A^{-1} exist
Now adj $A=\left[\begin{array}{cc}3 & -5 \\ 1 & 2\end{array}\right]^{T}=\left[\begin{array}{cc}3 & 1 \\ -5 & 2\end{array}\right]$
$\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}=\frac{1}{|\mathrm{~A}|}(\operatorname{adj} \mathrm{A}) \mathrm{B}=\frac{1}{11}\left[\begin{array}{cc}3 & 1 \\ -5 & 2\end{array}\right]\left[\begin{array}{c}-2 \mathrm{k} \\ \mathrm{k}\end{array}\right]$
$X=\left[\begin{array}{c}\frac{-5 \mathrm{k}}{11} \\ \frac{12 \mathrm{k}}{11}\end{array}\right]$
Hence, $x=\frac{-5 k}{11}, y=\frac{12 k}{11}$ and $z=k$
3. $3 x-y+2 z=0$
$4 x+3 y+3 z=0$
$5 x+7 y+4 z=0$
Given $3 x-y+2 z=0$
$4 x+3 y+3 z=0$
$5 x+7 y+4 z=0$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

elndCareer

The system can be written as

$$
\left[\begin{array}{ccc}
3 & -1 & 2 \\
4 & 3 & 3 \\
5 & 7 & 4
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$A X=0$
Now, $|A|=3(12-21)+1(16-15)+2(28-15)$
$|A|=-27+1+26$
$|A|=0$
Hence, the system has infinite solutions
Let $\mathrm{z}=\mathrm{k}$
$3 \mathrm{x}-\mathrm{y}=-2 \mathrm{k}$
$4 \mathrm{x}+3 \mathrm{y}=-3 \mathrm{k}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/
$\left[\begin{array}{cc}3 & -1 \\ 4 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-2 \mathrm{k} \\ -3 \mathrm{k}\end{array}\right]$
$A X=B$
$|A|=9+4=13 \neq 0$ So, A^{-1} exist
Now $\operatorname{adj} \mathrm{A}=\left[\begin{array}{cc}3 & -1 \\ 4 & 3\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{cc}3 & 1 \\ -4 & 3\end{array}\right]$
$X=A^{-1} B=\frac{1}{|A|}(\operatorname{adj} A) B=\frac{1}{13}\left[\begin{array}{cc}3 & 1 \\ -4 & 3\end{array}\right]\left[\begin{array}{l}-2 k \\ -3 \mathrm{k}\end{array}\right]$
$X=\left[\begin{array}{c}\frac{-9 k}{13} \\ \frac{-k}{13}\end{array}\right]$
Hence, $x=\frac{-9 k}{13}, y=\frac{-k}{13}$ and $z=k$
4. $x+y-6 z=0$
$x-y+2 z=0$
$-3 x+y+2 z=0$

Solution:

Given $x+y-6 z=0$
$x-y+2 z=0$
$-3 x+y+2 z=0$
The system can be written as

$$
\left[\begin{array}{ccc}
1 & 1 & -6 \\
1 & -1 & 2 \\
-3 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

ClindCareer

$A X=0$
Now, $|A|=1(-2-2)-1(2+6)-6(1-3)$
$|A|=-4-8+12$
$|A|=0$
Hence, the system has infinite solutions
Let $\mathrm{z}=\mathrm{k}$
$x+y=6 k$
$x-y=-2 k$
$\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\left[\begin{array}{c}6 \mathrm{k} \\ -2 \mathrm{k}\end{array}\right]$
$A X=B$
$|A|=-1-1=-2 \neq 0$ So, A^{-1} exist
Now adj $A=\left[\begin{array}{cc}-1 & -1 \\ -1 & 1\end{array}\right]^{T}=\left[\begin{array}{cc}-1 & -1 \\ -1 & 1\end{array}\right]$
$\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}=\frac{1}{|\mathrm{~A}|}(\operatorname{adj} \mathrm{A}) \mathrm{B}=\frac{1}{-2}\left[\begin{array}{cc}-1 & -1 \\ -1 & 1\end{array}\right]\left[\begin{array}{c}6 \mathrm{k} \\ -2 \mathrm{k}\end{array}\right]$
$X=\frac{1}{-2}\left[\begin{array}{c}-6 k+2 k \\ -6 k-2 k\end{array}\right]$
$X=\left[\begin{array}{c}-4 \mathrm{k} \\ -8 \mathrm{k}\end{array}\right]$
Hence, $x=2 k, y=4 k$ and $z=k$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-8-solution-of -simultaneous-linear-equations/

Chapterwise RD Sharma Solutions for Class 12 Maths :

- Chapter 1-Relation
- Chapter 2-Functions
- Chapter 3-Binary Operations
- Chapter 4-Inverse Trigonometric Functions
- Chapter 5-Algebra of Matrices
- Chapter 6-Determinants
- Chapter 7-Adjoint and Inverse of a Matrix
- Chapter 8-Solution of Simultaneous Linear Equations
- Chapter 9-Continuity
- Chapter 10-Differentiability
- Chapter 11-Differentiation
- Chapter 12-Higher Order Derivatives
- Chapter 13-Derivatives as a Rate Measurer
- Chapter 14-Differentials, Errors and Approximations
- Chapter 15-Mean Value Theorems
- Chapter 16-Tangents and Normals
- Chapter 17-Increasing and Decreasing Functions
- Chapter 18-Maxima and Minima
- Chapter 19-Indefinite Integrals

ClndCareer

About RD Sharma

RD Sharma isn't the kind of author you'd bump into at lit fests. But his bestselling books have helped many CBSE students lose their dread of maths. Sunday Times profiles the tutor turned internet star

He dreams of algorithms that would give most people nightmares. And, spends every waking hour thinking of ways to explain concepts like 'series solution of linear differential equations'. Meet Dr Ravi Dutt Sharma mathematics teacher and author of 25 reference books - whose name evokes as much awe as the subject he teaches. And though students have used his thick tomes for the last 31 years to ace the dreaded maths exam, it's only recently that a spoof video turned the tutor into a YouTube star.

R D Sharma had a good laugh but said he shared little with his on-screen persona except for the love for maths. "I like to spend all my time thinking and writing about maths problems. I find it relaxing," he says. When he is not writing books explaining mathematical concepts for classes 6 to 12 and engineering students, Sharma is busy dispensing his duty as vice-principal and head of department of science and humanities at Delhi government's Guru Nanak Dev Institute of Technology.

