Class 12 Chapter 6 Determinants

RD Sharma Solutions for Class 12 Maths Chapter 6-Determinants

Class 12: Maths Chapter 6 solutions. Complete Class 12 Maths Chapter 6 Notes.

RD Sharma Solutions for Class 12 Maths Chapter 6-Determinants

RD Sharma 12th Maths Chapter 6, Class 12 Maths Chapter 6 solutions
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

Exercise 6.1 Page No: 6.10

1. Write the minors and cofactors of each element of the first column of the following matrices and hence evaluate the determinant in each case:
(i) $A=\left[\begin{array}{ll}5 & 20 \\ 0 & -1\end{array}\right]$
(ii) $A=\left[\begin{array}{cc}-1 & 4 \\ 2 & 3\end{array}\right]$ (iii) $A=\left[\begin{array}{ccc}1 & -3 & 2 \\ 4 & -1 & 2 \\ 3 & 5 & 2\end{array}\right]$ (iv) $A=\left[\begin{array}{lll}1 & a & b c \\ 1 & b & c a \\ 1 & c & a b\end{array}\right]$
$(v) A=\left[\begin{array}{lll}0 & 2 & 6 \\ 1 & 5 & 0 \\ 3 & 7 & 1\end{array}\right]$ (vi) $A=\left[\begin{array}{lll}a & h & g \\ h & b & f \\ f & f & c\end{array}\right]$ (vii) $A=\left[\begin{array}{cccc}2 & -1 & 0 & 1 \\ -3 & 0 & 1 & -2 \\ 1 & 1 & -1 & 1 \\ 2 & -1 & 5 & 0\end{array}\right]$
Solution:

Solution:
(i) Let M_{ij} and C_{ij} represents the minor and co-factor of an element, where i and j represent the row and column. The minor of the matrix can be obtained for a particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed.

Also, $\mathrm{C}_{\mathrm{ij}}=(-1)^{\mathrm{i}+\mathrm{j}} \times \mathrm{M}_{\mathrm{ij}}$
Given,

$$
A=\left[\begin{array}{ll}
5 & 20 \\
0 & -1
\end{array}\right]
$$

From the given matrix we have,
$M_{11}=-1$
$M_{21}=20$
$C_{11}=(-1)^{1+1} \times \mathbf{M}_{11}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
$=1 \times-1$
$=-1$
$C_{21}=(-1)^{2+1} \times M_{21}$
$=20 \times-1$
$=-20$
Now expanding along the first column we get

$$
\begin{aligned}
& |A|=a_{11} \times C_{11}+a_{21} \times C_{21} \\
& =5 \times(-1)+0 \times(-20) \\
& =-5
\end{aligned}
$$

(ii) Let M_{ij} and C_{ij} represents the minor and co-factor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed.

Also, $\mathrm{C}_{\mathrm{ij}}=(-1)^{\mathrm{ifj}} \times \mathrm{M}_{\mathrm{ij}}$
Given

$$
A=\left[\begin{array}{cc}
-1 & 4 \\
2 & 3
\end{array}\right]
$$

From the above matrix we have

$$
\begin{aligned}
& M_{11}=3 \\
& M_{21}=4 \\
& C_{11}=(-1)^{1+1} \times M_{11} \\
& =1 \times 3 \\
& =3
\end{aligned}
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
$C_{21}=(-1)^{2+1} \times 4$
$=-1 \times 4$
$=-4$

Now expanding along the first column we get

$$
\begin{aligned}
& |A|=a_{11} \times C_{11}+a_{21} \times C_{21} \\
& =-1 \times 3+2 \times(-4) \\
& =-11
\end{aligned}
$$

(iii) Let M_{ij} and C_{ij} represents the minor and co-factor of an element, where i and j represent the row and column. The minor of the matrix can be obtained for a particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed.

Also, $\mathrm{C}_{\mathrm{ij}}=(-1)^{\mathrm{ijj}} \times \mathrm{M}_{\mathrm{ij}}$
Given,

$$
A=\left[\begin{array}{ccc}
1 & -3 & 2 \\
4 & -1 & 2 \\
3 & 5 & 2
\end{array}\right]
$$

From given matrix we have,

$$
\begin{aligned}
& \Rightarrow M_{11}=\left[\begin{array}{cc}
-1 & 2 \\
5 & 2
\end{array}\right] \\
& M_{11}=-1 \times 2-5 \times 2 \\
& M_{11}=-12 \\
& \Rightarrow M_{21}=\left[\begin{array}{cc}
-3 & 2 \\
5 & 2
\end{array}\right] \\
& M_{21}=-3 \times 2-5 \times 2 \\
& M_{21}=-16 \\
& \Rightarrow M_{31}=\left[\begin{array}{ll}
-3 & 2 \\
-1 & 2
\end{array}\right]
\end{aligned}
$$

$$
M_{31}=-3 \times 2-(-1) \times 2
$$

$$
M_{31}=-4
$$

$$
C_{11}=(-1)^{1+1} \times M_{11}
$$

$$
=1 \times-12
$$

$$
=-12
$$

$$
\mathrm{C}_{21}=(-1)^{2+1} \times \mathrm{M}_{21}
$$

$$
=-1 \times-16
$$

$$
=16
$$

$$
C_{31}=(-1)^{3+1} \times M_{31}
$$

$$
=1 \times-4
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
$=-4$
Now expanding along the first column we get
$|A|=a_{11} \times C_{11}+a_{21} \times C_{21}+a_{31} \times C_{31}$
$=1 \times(-12)+4 \times 16+3 \times(-4)$
$=-12+64-12$
$=40$
(iv) Let M_{ij} and C_{ij} represents the minor and co-factor of an element, where i and j represent the row and column. The minor of the matrix can be obtained for a particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed.

Also, $\mathrm{C}_{\mathrm{ij}}=(-1)^{\mathrm{i}+\mathrm{j}} \times \mathrm{M}_{\mathrm{ij}}$
Given,

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & a & b c \\
1 & b & c a \\
1 & c & a b
\end{array}\right] \\
& \Rightarrow M_{11}=\left[\begin{array}{ll}
b & c a \\
c & a b
\end{array}\right] \\
& M_{11}=b \times a b-c \times c a \\
& M_{11}=a b^{2}-a c^{2} \\
& \Rightarrow M_{21}=\left[\begin{array}{ll}
a & b c \\
c & a b
\end{array}\right] \\
& M_{21}=a \times a b-c \times b c \\
& M_{21}=a^{2} b-c^{2} b \\
& \Rightarrow M_{31}=\left[\begin{array}{ll}
a & b c \\
b & c a
\end{array}\right]
\end{aligned}
$$

$\mathbf{M}_{31}=\mathbf{a} \times \mathbf{c} \mathbf{a - b} \times \mathbf{b} \mathbf{c}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

$$
\begin{aligned}
& M_{31}=a^{2} c-b^{2} c \\
& C_{11}=(-1)^{1+1} \times M_{11} \\
& =1 \times\left(a b^{2}-a c^{2}\right) \\
& =a b^{2}-a c^{2} \\
& C_{21}=(-1)^{2+1} \times M_{21} \\
& =-1 \times\left(a^{2} b-c^{2} b\right) \\
& =c^{2} b-a^{2} b \\
& C_{31}=(-1)^{3+1} \times M_{31} \\
& =1 \times\left(a^{2} c-b^{2} c\right) \\
& =a^{2} c-b^{2} c
\end{aligned}
$$

Now expanding along the first column we get

$$
\begin{aligned}
& |A|=a_{11} \times C_{11}+a_{21} \times C_{21}+a_{31} \times C_{31} \\
& =1 \times\left(a b^{2}-a c^{2}\right)+1 \times\left(c^{2} b-a^{2} b\right)+1 \times\left(a^{2} c-b^{2} c\right) \\
& =a b^{2}-a c^{2}+c^{2} b-a^{2} b+a^{2} c-b^{2} c
\end{aligned}
$$

(v) Let M_{ij} and C_{ij} represents the minor and co-factor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed.

Also, $\mathrm{C}_{\mathrm{ij}}=(-1)^{\mathrm{i+j}} \times \mathrm{M}_{\mathrm{ij}}$
Given,

$$
A=\left[\begin{array}{lll}
0 & 2 & 6 \\
1 & 5 & 0 \\
3 & 7 & 1
\end{array}\right]
$$

From the above matrix we have,

$$
\begin{aligned}
& \Rightarrow \mathrm{M}_{11}=\left[\begin{array}{ll}
5 & 0 \\
7 & 1
\end{array}\right] \\
& \mathrm{M}_{11}=5 \times 1-7 \times 0 \\
& \mathrm{M}_{11}=5 \\
& \Rightarrow \mathrm{M}_{21}=\left[\begin{array}{ll}
2 & 6 \\
7 & 1
\end{array}\right] \\
& \mathrm{M}_{21}=2 \times 1-7 \times 6 \\
& \mathrm{M}_{21}=-40 \\
& \Rightarrow \mathrm{M}_{31}=\left[\begin{array}{ll}
2 & 6 \\
5 & 0
\end{array}\right]
\end{aligned}
$$

$$
M_{31}=2 \times 0-5 \times 6
$$

$$
M_{31}=-30
$$

$$
C_{11}=(-1)^{1+1} \times M_{11}
$$

$$
=1 \times 5
$$

$$
=5
$$

$$
C_{21}=(-1)^{2+1} \times M_{21}
$$

$$
=-1 \times-40
$$

$$
=40
$$

$$
C_{31}=(-1)^{3+1} \times M_{31}
$$

$$
=1 \times-30
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
$=-30$
Now expanding along the first column we get
$|A|=a_{11} \times C_{11}+a_{21} \times C_{21}+a_{31} \times C_{31}$
$=0 \times 5+1 \times 40+3 \times(-30)$
$=0+40-90$
$=50$
(vi) Let M_{ij} and C_{ij} represents the minor and co-factor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed.

Also, $\mathrm{C}_{\mathrm{ij}}=(-1)^{\mathrm{i}+\mathrm{j}} \times \mathrm{M}_{\mathrm{ij}}$
Given,

$$
A=\left[\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right]
$$

From the given matrices we have,

$$
\begin{aligned}
& \Rightarrow M_{11}=\left[\begin{array}{ll}
b & f \\
f & c
\end{array}\right] \\
& M_{11}=b \times c-f \times f \\
& M_{11}=b c-f^{2} \\
& \Rightarrow M_{21}=\left[\begin{array}{ll}
h & g \\
f & c
\end{array}\right]
\end{aligned}
$$

$$
M_{21}=h \times c-f \times g
$$

$$
\mathrm{M}_{21}=\mathrm{hc}-\mathrm{fg}
$$

$$
\Rightarrow \mathrm{M}_{31}=\left[\begin{array}{ll}
\mathrm{h} & \mathrm{~g} \\
\mathrm{~b} & \mathrm{f}
\end{array}\right]
$$

$$
\begin{aligned}
& M_{31}=h \times f-b \times g \\
& M_{31}=h f-b g \\
& C_{11}=(-1)^{1+1} \times M_{11} \\
& =1 \times\left(b c-f^{2}\right) \\
& =b c-f^{2} \\
& C_{21}=(-1)^{2+1} \times M_{21} \\
& =-1 \times(h c-f g) \\
& =f g-h c \\
& C_{31}=(-1)^{3+1} \times M_{31} \\
& =1 \times(h f-b g)
\end{aligned}
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
$=\mathbf{h f}-\mathrm{bg}$
Now expanding along the first column we get
$|A|=a_{11} \times C_{11}+a_{21} \times C_{21}+a_{31} \times C_{31}$
$=a \times\left(b c-f^{2}\right)+h \times(f g-h c)+g \times(h f-b g)$
$=a b c-a f^{2}+h g f-h^{2} c+g h f-\mathbf{b g}^{2}$
(vii) Let M_{ij} and C_{ij} represents the minor and co-factor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed.

Also, $\mathrm{C}_{\mathrm{ij}}=(-1)^{\mathrm{i+j}} \times \mathrm{M}_{\mathrm{ij}}$
Given,

ClndCareer

$A=\left[\begin{array}{cccc}2 & -1 & 0 & 1 \\ -3 & 0 & 1 & -2 \\ 1 & 1 & -1 & 1 \\ 2 & -1 & 5 & 0\end{array}\right]$
From the given matrix we have,
$\Rightarrow \mathrm{M}_{11}=\left[\begin{array}{ccc}0 & 1 & -2 \\ 1 & -1 & 1 \\ -1 & 5 & 0\end{array}\right]$
$\mathrm{M}_{11}=0(-1 \times 0-5 \times 1)-1(1 \times 0-(-1) \times 1)+(-2)(1 \times 5-(-1) \times(-1))$
$M_{11}=-9$
$\Rightarrow \mathrm{M}_{21}=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 1 & -1 & 1 \\ -1 & 5 & 0\end{array}\right]$
$\mathrm{M}_{21}=-1(-1 \times 0-5 \times 1)-0(1 \times 0-(-1) \times 1)+1(1 \times 5-(-1) \times(-1))$
$M_{21}=9$
$\Rightarrow M_{31}=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 0 & 1 & -2 \\ -1 & 5 & 0\end{array}\right]$
$M_{31}=-1(1 \times 0-5 \times(-2))-0(0 \times 0-(-1) \times(-2))+1(0 \times 5-(-1) \times 1)$
$M_{31}=-9$
$\Rightarrow M_{41}=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 0 & 1 & -2 \\ 1 & -1 & 1\end{array}\right]$
$M_{41}=-1(1 \times 1-(-1) \times(-2))-0(0 \times 1-1 \times(-2))+1(0 \times(-1)-1 \times 1)$
$M_{41}=0$
$\mathrm{C}_{11}=(-1)^{1+1} \times \mathrm{M}_{11}$
$=1 \times(-9)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer

$$
\begin{aligned}
& =-9 \\
& C_{21}=(-1)^{2+1} \times M_{21} \\
& =-1 \times 9 \\
& =-9 \\
& C_{31}=(-1)^{3+1} \times M_{31} \\
& =1 \times-9 \\
& =-9 \\
& C_{41}=(-1)^{4+1} \times M_{41} \\
& =-1 \times 0 \\
& =0
\end{aligned}
$$

Now expanding along the first column we get

$$
\begin{aligned}
& |A|=a_{11} \times C_{11}+a_{21} \times C_{21}+a_{31} \times C_{31}+a_{41} \times C_{41} \\
& =2 \times(-9)+(-3) \times-9+1 \times(-9)+2 \times 0 \\
& =-18+27-9 \\
& =0
\end{aligned}
$$

2. Evaluate the following determinants:
(i) $\left|\begin{array}{cc}x & -7 \\ x & 5 x+1\end{array}\right|$ (ii) $\left|\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|$ (iii) $\left|\begin{array}{cc}\cos 15^{0} & \sin 15^{0} \\ \sin 75^{0} & \cos 75^{0}\end{array}\right|$
(iv) $\left|\begin{array}{cc}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right|$

Solution:
(i) Given
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer

$$
\begin{aligned}
& \left|\begin{array}{cc}
x & -7 \\
x & 5 x+1
\end{array}\right| \\
& \Rightarrow|A|=x(5 x+1)-(-7) x \\
& |A|=5 x^{2}+8 x
\end{aligned}
$$

(ii) Given
$\left|\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|$
$\Rightarrow|A|=\cos \theta \times \cos \theta-(-\sin \theta) \times \sin \theta$
$|A|=\cos ^{2} \theta+\sin ^{2} \theta$
We know that $\cos ^{2} \theta+\sin ^{2} \theta=1$
$|A|=1$
(iii) Given
(iii) $\left|\begin{array}{ll}\cos 15^{0} & \sin 15^{0} \\ \sin 75^{0} & \cos 75^{0}\end{array}\right|$
$\Rightarrow|A|=\cos 15^{\circ} \times \cos 75^{\circ}+\sin 15^{\circ} \times \sin 75^{\circ}$
We know that $\cos (A-B)=\cos A \cos B+\operatorname{Sin} A \sin B$
By substituting this we get, $|A|=\cos (75-15)^{\circ}$
$|A|=\cos 60^{\circ}$
$|A|=0.5$
(iv) Given
$(i v)\left|\begin{array}{cc}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right|$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

CllndCareer

$\Rightarrow|A|=(a+i b)(a-i b)-(c+i d)(-c+i d)$
$=(a+i b)(a-i b)+(c+i d)(c-i d)$
$=a^{2}-i^{2} b^{2}+c^{2}-i^{2} d^{2}$
We know that $\mathrm{i}^{2}=-1$

$$
\begin{aligned}
& =a^{2}-(-1) b^{2}+c^{2}-(-1) d^{2} \\
& =a^{2}+b^{2}+c^{2}+d^{2}
\end{aligned}
$$

3. Evaluate:

$\left|\begin{array}{ccc}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{array}\right|^{2}$

Solution:

Since $|A B|=|A||B|$

$$
\begin{aligned}
& |A|=\left|\begin{array}{ccc}
2 & 3 & 7 \\
13 & 17 & 5 \\
15 & 20 & 12
\end{array}\right| \\
& |A|=2\left|\begin{array}{cc}
17 & 5 \\
20 & 12
\end{array}\right|-3\left|\begin{array}{cc}
13 & 5 \\
15 & 12
\end{array}\right|+7\left|\begin{array}{cc}
13 & 17 \\
15 & 20
\end{array}\right| \\
& =2(17 \times 12-5 \times 20)-3(13 \times 12-5 \times 15)+7(13 \times 20-15 \times 17) \\
& =2(204-100)-3(156-75)+7(260-255) \\
& =2 \times 104-3 \times 81+7 \times 5 \\
& =208-243+35 \\
& =0
\end{aligned}
$$

Now $|A|^{2}=|A| \times|A|$

$$
|A|^{2}=0
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

4. Show that

$\left|\begin{array}{cc}\sin 10^{\circ} & -\cos 10^{\circ} \\ \sin 80^{\circ} & \cos 80^{\circ}\end{array}\right|$

Solution:

Given
$\left|\begin{array}{cc}\sin 10^{\circ} & -\cos 10^{\circ} \\ \sin 80^{\circ} & \cos 80^{\circ}\end{array}\right|$

Let the given determinant as A
Using $\sin (A+B)=\sin A \times \cos B+\cos A \times \sin B$
$\Rightarrow|\mathrm{A}|=\sin 10^{\circ} \times \cos 80^{\circ}+\cos 10^{\circ} \times \sin 80^{\circ}$
$|A|=\sin (10+80)^{\circ}$
$|A|=\sin 90^{\circ}$
$|A|=1$
Hence Proved
5. Evaluate $\left|\begin{array}{ccc}2 & 3 & -5 \\ 7 & 1 & -2 \\ -3 & 4 & 1\end{array}\right|$ by two methods.

Solution:

Given,

$$
|A|=\left|\begin{array}{ccc}
2 & 3 & -5 \\
7 & 1 & -2 \\
-3 & 4 & 1
\end{array}\right|
$$

Expanding along the first row

$$
|A|=2\left|\begin{array}{cc}
1 & -2 \\
4 & 1
\end{array}\right|-3\left|\begin{array}{cc}
7 & -2 \\
-3 & 1
\end{array}\right|-5\left|\begin{array}{cc}
7 & 1 \\
-3 & 4
\end{array}\right|
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClindCareer

$$
\begin{aligned}
& =2(1 \times 1-4 \times(-2))-3(7 \times 1-(-2) \times(-3))-5(7 \times 4-1 \times(-3)) \\
& =2(1+8)-3(7-6)-5(28+3) \\
& =2 \times 9-3 \times 1-5 \times 31 \\
& =18-3-155 \\
& =-140
\end{aligned}
$$

Now by expanding along the second column

$$
\begin{aligned}
& |A|=2\left|\begin{array}{cc}
1 & -2 \\
4 & 1
\end{array}\right|-7\left|\begin{array}{cc}
3 & -5 \\
4 & 1
\end{array}\right|-3\left|\begin{array}{cc}
3 & -5 \\
1 & -2
\end{array}\right| \\
& =2(1 \times 1-4 \times(-2))-7(3 \times 1-4 \times(-5))-3(3 \times(-2)-1 \times(-5)) \\
& =2(1+8)-7(3+20)-3(-6+5) \\
& =2 \times 9-7 \times 23-3 \times(-1) \\
& =18-161+3 \\
& =-140
\end{aligned}
$$

RD Sharma 12th Maths Chapter 6, Class 12 Maths Chapter 6 solutions
6. Evaluate $: \Delta=\left|\begin{array}{ccc}0 & \sin \alpha & -\cos \alpha \\ -\sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0\end{array}\right|$

Solution:

Given
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

$$
\Delta=\left|\begin{array}{ccc}
0 & \sin \alpha & -\cos \alpha \\
-\sin \alpha & 0 & \sin \beta \\
\cos \alpha & -\sin \beta & 0
\end{array}\right|
$$

Expanding along the first row
$|A|=0\left|\begin{array}{cc}0 & \sin \beta \\ -\sin \beta & 0\end{array}\right|-\sin \alpha\left|\begin{array}{cc}-\sin \alpha & \sin \beta \\ \cos \alpha & 0\end{array}\right|-\cos \alpha\left|\begin{array}{cc}-\sin \alpha & 0 \\ \cos \alpha & -\sin \beta\end{array}\right|$
$\Rightarrow|A|=0(0-\sin \beta(-\sin \beta))-\sin \alpha(-\sin \alpha \times 0-\sin \beta \cos \alpha)-\cos \alpha((-\sin \alpha)(-\sin \beta)-0 \times \cos \alpha)$
$|A|=0+\sin \alpha \sin \beta \cos \alpha-\cos \alpha \sin \alpha \sin \beta$
$|A|=0$
RD Sharma 12th Maths Chapter 6, Class 12 Maths Chapter 6 solutions
Exercise 6.2 Page No: 6.57

1. Evaluate the following determinant:
(i) $\left|\begin{array}{ccc}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{array}\right|$ (ii) $\left|\begin{array}{lll}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{array}\right|$ (iii) $\left|\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right|$ (iv) $\left|\begin{array}{ccc}1 & -3 & 2 \\ 4 & -1 & 2 \\ 3 & 5 & 2\end{array}\right|$
(v) $\left|\begin{array}{ccc}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{array}\right|$ (vi) $\left|\begin{array}{ccc}6 & 3 & -2 \\ 2 & -1 & 2 \\ -10 & 5 & 2\end{array}\right|$ (vii) $\left|\begin{array}{cccc}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{array}\right|$
(viii) $\left|\begin{array}{ccc}102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6\end{array}\right|$

Solution:

(i) Given

ClndCareer

$$
\text { Let, } \Delta=\left|\begin{array}{ccc}
1 & 3 & 5 \\
2 & 6 & 10 \\
31 & 11 & 38
\end{array}\right|=2\left|\begin{array}{ccc}
1 & 3 & 5 \\
1 & 3 & 5 \\
31 & 11 & 38
\end{array}\right|
$$

Now by applying, $R_{2} \rightarrow R_{2}-R_{1}$, we get,
(i) $\left|\begin{array}{ccc}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{array}\right| \begin{aligned} & \text { So, } \Delta=2\left|\begin{array}{ccc}1 & 3 & 5 \\ 0 & 0 & 0 \\ 31 & 11 & 38\end{array}\right|=0 \\ & \text { S }\end{aligned}$
(ii) Given
$\left|\begin{array}{lll}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{array}\right|$

Let, $\Delta=\left|\begin{array}{lll}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{array}\right|$
By applying column operation $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-4 \mathrm{C}_{3}$, we get,
$\Rightarrow \Delta=\left|\begin{array}{ccc}4 & 19 & 21 \\ -3 & 13 & 14 \\ -3 & 24 & 26\end{array}\right|$
Again by applying row operation, $R_{1} \rightarrow R_{1}+R_{2}$ and $R_{3} \rightarrow R_{3}-R_{2}$, we get
$\Rightarrow \Delta=\left|\begin{array}{ccc}1 & 32 & 35 \\ -3 & 13 & 14 \\ 0 & 11 & 12\end{array}\right|$
Now, applying $R_{2} \rightarrow R_{2}+3 R_{1}$, we get,
$\Rightarrow \Delta=\left|\begin{array}{ccc}1 & 32 & 35 \\ 0 & 109 & 119 \\ 0 & 11 & 12\end{array}\right|$
$=1[(109)(12)-(119)(11)]$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClindCareer

ClndCareer

= $1308-1309$
$=-1$
So, $\Delta=-1$
(iii) Given,
$\left|\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right|$
Let, $\Delta=\left|\begin{array}{lll}\mathrm{a} & \mathrm{h} & \mathrm{g} \\ \mathrm{h} & \mathrm{b} & \mathrm{f} \\ \mathrm{g} & \mathrm{f} & \mathrm{c}\end{array}\right|$
$=a\left(b c-f^{2}\right)-h(h c-f g)+g(h f-b g)$
$=a b c-a f^{2}-c h^{2}+f g h+f g h-b g^{2}$
$=a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}$
So, $\Delta=a b c+2 f g h-a f^{2}-\mathrm{bg}^{2}-\mathrm{ch}^{2}$
(iv) Given
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
$=\left|\begin{array}{ccc}1 & -3 & 2 \\ 4 & -1 & 2 \\ 3 & 5 & 2\end{array}\right|$
Let, $\Delta=\left|\begin{array}{ccc}1 & -\left[\begin{array}{c}(\mathrm{Etrln}) \\ 4 \\ 3\end{array}\right. & -1 \\ 3 & 5 & 2\end{array}\right|$
By taking 2 as common we get,
$\Rightarrow \Delta=2\left|\begin{array}{ccc}1 & -3 & 1 \\ 4 & -1 & 1 \\ 3 & 5 & 1\end{array}\right|$
Now by applying, row operation $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we get
$\Rightarrow \Delta=2\left|\begin{array}{ccc}1 & -3 & 1 \\ 3 & 2 & 0 \\ 2 & 8 & 0\end{array}\right|$
$=2[1(24-4)]=40$
So, $\Delta=40$
(v) Given
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClindCareer

$$
\text { Let, } \Delta=\left|\begin{array}{ccc}
1 & 4 & 9 \\
4 & 9 & 16 \\
9 & 16 & 25
\end{array}\right|
$$

By applying column operation $C_{3} \rightarrow C_{3}-C_{2}$, we get,

$$
\Rightarrow \Delta=\left|\begin{array}{ccc}
1 & 4 & 5 \\
4 & 9 & 7 \\
9 & 16 & 9
\end{array}\right|
$$

Again by applying column operation $C_{2} \rightarrow C_{2}+C_{1}$, we get,

$$
\Rightarrow \Delta=\left|\begin{array}{ccc}
1 & 5 & 5 \\
4 & 13 & 7 \\
9 & 25 & 9
\end{array}\right|
$$

Now by applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-5 \mathrm{C}_{1}$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-5 \mathrm{C}_{1}$ we get,
Let, $\Delta=\left|\begin{array}{ccc}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{array}\right| \Rightarrow \Delta=\left|\begin{array}{ccc}1 & 0 & 0 \\ 4 & -7 & -13 \\ 9 & -20 & -36\end{array}\right|$
$=1[(-7)(-36)-(-20)(-13)]$
$=252-260$
$=-8$
So, $\Delta=-8$
(vi) Given,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
$\left|\begin{array}{ccc}6 & -3 & 2 \\ 2 & -1 & 2 \\ -10 & 5 & 2\end{array}\right|$
Let, $\Delta=\left|\begin{array}{ccc}6 & -3 & 2 \\ 2 & -1 & 2 \\ -10 & 5 & 2\end{array}\right|$
Applying row operations, $R_{1} \rightarrow R_{1}-3 R_{2}$ and $R_{3} \rightarrow R_{3}+5 R_{2}$ we get,
$\Rightarrow \Delta=\left|\begin{array}{ccc}0 & 0 & -4 \\ 2 & -1 & 2 \\ 0 & 0 & 12\end{array}\right|=0$
So, $\Delta=0$
(vii) Given
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

$$
\begin{aligned}
& \left|\begin{array}{cccc}
1 & 3 & 9 & 27 \\
3 & 9 & 27 & 1 \\
9 & 27 & 1 & 3 \\
27 & 1 & 3 & 9
\end{array}\right| \\
& \text { Let, } \Delta=\left|\begin{array}{cccc}
1 & 3 & 9 & 27 \\
3 & 9 & 27 & 1 \\
9 & 27 & 1 & 3 \\
27 & 1 & 3 & 9
\end{array}\right| \\
& \Rightarrow \Delta=\left|\begin{array}{cccc}
1 & 3 & 3^{2} & 3^{3} \\
3 & 3^{2} & 3^{3} & 1 \\
3^{2} & 3^{3} & 1 & 3 \\
3^{3} & 1 & 3 & 3^{2}
\end{array}\right|
\end{aligned}
$$

Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}+C_{4}$, we get,

$$
\Rightarrow \Delta=\left|\begin{array}{cccc}
1+3+3^{2}+3^{3} & 3 & 3^{2} & 3^{3} \\
1+3+3^{2}+3^{3} & 3^{2} & 3^{3} & 1 \\
1+3+3^{2}+3^{3} & 3^{3} & 1 & 3 \\
1+3+3^{2}+3^{3} & 1 & 3 & 3^{2}
\end{array}\right|
$$

$$
\Rightarrow \Delta=\left(1+3+3^{2}+3^{3}\right)\left|\begin{array}{cccc}
1 & 3 & 3^{2} & 3^{3} \\
1 & 3^{2} & 3^{3} & 1 \\
1 & 3^{3} & 1 & 3 \\
1 & 1 & 3 & 3^{2}
\end{array}\right|
$$

ClindCareer

Now, applying $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}, R_{4} \rightarrow R_{4}-R_{1}$, we get
$\Rightarrow \Delta=\left(1+3+3^{2}+3^{3}\right)\left|\begin{array}{cccc}1 & 3 & 3^{2} & 3^{3} \\ 0 & 3^{2}-3 & 3^{3}-3^{2} & 1-3^{3} \\ 0 & 3^{3}-3 & 1-3^{2} & 3-3^{3} \\ 0 & 1-3 & 3-3^{2} & 3^{2}-3^{3}\end{array}\right|$
$\Rightarrow \Delta=\left(1+3+3^{2}+3^{3}\right)\left|\begin{array}{ccc}6 & 18 & -26 \\ 24 & -8 & -24 \\ -2 & -6 & -18\end{array}\right|$
$\Rightarrow \Delta=\left(1+3+3^{2}+3^{3}\right) 2^{3}\left|\begin{array}{ccc}3 & -9 & 13 \\ 12 & 4 & 12 \\ -1 & 3 & 9\end{array}\right|$
Now, applying $R_{1} \rightarrow R_{1}+3 R_{3}$
$\Rightarrow \Delta=\left(1+3+3^{2}+3^{3}\right) 2^{3}\left|\begin{array}{ccc}0 & 0 & 40 \\ 12 & 4 & 12 \\ -1 & 3 & 9\end{array}\right|$
Now, applying $R_{1} \rightarrow R_{1}+3 R_{3}$
$\Rightarrow \Delta=\left(1+3+3^{2}+3^{3}\right) 2^{3}\left|\begin{array}{ccc}0 & 0 & 40 \\ 12 & 4 & 12 \\ -1 & 3 & 9\end{array}\right|$
$=\left(1+3+3^{2}+3^{3}\right) 2^{3}[40(36-(-4))]$
$=(40)(8)(40)(40)=512000$
So, $\Delta=512000$
(viii) Given,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
elndCareer

$$
\begin{aligned}
& \left|\begin{array}{ccc}
102 & 18 & 36 \\
1 & 3 & 4 \\
17 & 3 & 6
\end{array}\right| \\
& \text { Let, } \Delta=\left|\begin{array}{ccc}
102 & 18 & 36 \\
1 & 3 & 4 \\
17 & 3 & 6
\end{array}\right| \\
& \Rightarrow \Delta=6\left|\begin{array}{ccc}
17 & 3 & 6 \\
1 & 3 & 4 \\
17 & 3 & 6
\end{array}\right|
\end{aligned}
$$

Applying $R_{3} \rightarrow R_{3}-R_{1}$, we get,
$\Rightarrow \Delta=6\left|\begin{array}{ccc}17 & 3 & 6 \\ 1 & 3 & 4 \\ 0 & 0 & 0\end{array}\right|=0$
So, $\Delta=0$
RD Sharma 12th Maths Chapter 6, Class 12 Maths Chapter 6 solutions
2. Without expanding, show that the value of each of the following determinants is zero:
(i) $\left|\begin{array}{ccc}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{array}\right|$ (ii) $\left|\begin{array}{ccc}6 & 3 & -2 \\ 2 & -1 & 2 \\ -10 & 5 & 2\end{array}\right|$ (iii) $\left|\begin{array}{ccc}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{array}\right|$ (iv) $\left|\begin{array}{lll}\frac{1}{a} & a^{2} & b c \\ \frac{1}{b} & b^{2} & a c \\ \frac{1}{c} & c^{2} & a b\end{array}\right|$
(v) $\left|\begin{array}{ccc}a+b & 2 a+b & 3 a+b \\ 2 a+b & 3 a+b & 4 a+b \\ 4 a+b & 5 a+b & 6 a+b\end{array}\right|$ (vi) $\left|\begin{array}{lll}1 & a & a^{2}-b c \\ 1 & b & b^{2}-a c \\ 1 & c & c^{2}-a b\end{array}\right|$ (vii) $\left|\begin{array}{lll}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{array}\right|$
(viii) $\left|\begin{array}{ccc}0 & x & y \\ -x & 0 & z \\ -y & -z & 0\end{array}\right|$ (ix) $\left|\begin{array}{lll}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{array}\right|(x)\left|\begin{array}{llll}1^{2} & 2^{2} & 3^{2} & 4^{2} \\ 2^{2} & 3^{2} & 4^{2} & 5^{2} \\ 3^{2} & 4^{2} & 5^{2} & 6^{2} \\ 4^{2} & 5^{2} & 6^{2} & 7^{2}\end{array}\right|$

Clnd Career

(xi) $\left|\begin{array}{ccc}a & b & c \\ a+2 x & b+2 y & c+2 z \\ x & y & z\end{array}\right|$ (xii) $\left|\begin{array}{ccc}\left(2^{x}+2^{-x}\right)^{2} & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ \left(3^{x}+3^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ \left(4^{x}+4^{-x}\right)^{2} & \left(4^{x}-4^{-x}\right)^{2} & 1\end{array}\right|$
(xiii) $\left|\begin{array}{ccc}\sin \alpha & \cos \alpha & \cos (\alpha+\delta) \\ \sin \beta & \cos \beta & \cos (\beta+\delta) \\ \sin \gamma & \cos \gamma & \cos (\gamma+\delta)\end{array}\right|$ (xiv) $\left|\begin{array}{ccc}\sin ^{2} 23^{\circ} & \sin ^{2} 67^{\circ} & \cos 180^{\circ} \\ -\sin ^{2} 67^{\circ} & -\sin ^{2} 23^{\circ} & \cos 2^{2} 180^{\circ} \\ \cos 180^{\circ} & \sin ^{2} 23^{\circ} & \sin ^{2} 67^{\circ}\end{array}\right|$
$(x v)\left|\begin{array}{ccc}\cos (x+y) & -\sin (x+y) & \cos 2 y \\ \sin x & \cos x & \sin y \\ -\cos x & \sin x & -\cos y\end{array}\right|$
(xvi) $\left|\begin{array}{ccc}\sqrt{23}+\sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15}+\sqrt{46} & 5 & \sqrt{10} \\ 3+\sqrt{115} & \sqrt{15} & 5\end{array}\right|$
(xvii) $\left|\begin{array}{lll}\sin ^{2} A & \cot A & 1 \\ \sin ^{2} B & \cot B & 1 \\ \sin ^{2} C & \cot C & 1\end{array}\right|$, where A, B, C are the angles of $\triangle A B C$

Solution:

(i) Given,
$\left|\begin{array}{ccc}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{array}\right|$
Let, $\Delta=\left|\begin{array}{ccc}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{array}\right|$
Now by applying row operation $R_{3} \rightarrow R_{3}-R_{2}$, we get
$\Rightarrow \Delta=\left|\begin{array}{ccc}8 & 2 & 7 \\ 12 & 3 & 5 \\ 4 & 1 & -2\end{array}\right|$
Again apply row operations $R_{2} \rightarrow R_{2}-R_{1}$, we get
$\Rightarrow \Delta=\left|\begin{array}{ccc}8 & 2 & 7 \\ 4 & 1 & -2 \\ 4 & 1 & -2\end{array}\right|$
As, $R_{2}=R_{3}$, therefore the value of the determinant is zero.
(ii) Given,

$$
\text { Let, } \Delta=\left|\begin{array}{ccc}
6 & -3 & 2 \\
2 & -1 & 2 \\
-10 & 5 & 2
\end{array}\right|
$$

Taking (-2) common from C_{1} in above matrix we get,
Let, $\Delta=\left|\begin{array}{ccc}6 & -3 & 2 \\ 2 & -1 & 2 \\ -10 & 5 & 2\end{array}\right|$$\quad \begin{gathered}\Rightarrow \Delta=\left|\begin{array}{ccc}-3 & -3 & 2 \\ -1 & -1 & 2 \\ 5 & 5 & 2\end{array}\right| \\ \text { As, } C_{1}=C_{2} \text {, hence the value of the determinant is zero. }\end{gathered}$
(iii) Given,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
$\left|\begin{array}{ccc}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{array}\right|$
Let, $\Delta=\left|\begin{array}{ccc}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{array}\right|$

Now by applying column operation $C_{3} \rightarrow C_{3}-C_{2}$, we get
$\Rightarrow \Delta=\left|\begin{array}{ccc}2 & 3 & 7 \\ 13 & 17 & 5 \\ 2 & 3 & 7\end{array}\right|$
As, $R_{1}=R_{3}$, so value so determinant is zero.
(iv) Given,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
$\left|\begin{array}{lll}1 / a & a^{2} & b c \\ 1 / b & b^{2} & a c \\ 1 / c & c^{2} & a b\end{array}\right|$
Let, $\Delta=\left|\begin{array}{ccc}1 / \mathrm{a} & \mathrm{a}^{2} & \mathrm{bc} \\ 1 / \mathrm{b} & \mathrm{b}^{2} & \mathrm{ac} \\ 1 / \mathrm{c} & \mathrm{c}^{2} & \mathrm{ab}\end{array}\right|$
Multiplying R_{1}, R_{2} and R_{3} with a, b and c respectively we get,
$\Rightarrow \Delta=\left|\begin{array}{lll}1 & \mathrm{a}^{3} & \mathrm{abc} \\ 1 & \mathrm{~b}^{3} & \mathrm{abc} \\ 1 & \mathrm{c}^{3} & \mathrm{abc}\end{array}\right|$
Now by taking, abc common from C_{3} gives,
$\Rightarrow \Delta=\left|\begin{array}{lll}1 & \mathrm{a}^{3} & 1 \\ 1 & \mathrm{~b}^{3} & 1 \\ 1 & \mathrm{c}^{3} & 1\end{array}\right|$
As, $C_{1}=C_{3}$ hence the value of determinant is zero.
$\Rightarrow \Delta=\left|\begin{array}{lll}1 & \mathrm{a}^{3} & \mathrm{abc} \\ 1 & \mathrm{~b}^{3} & \mathrm{abc} \\ 1 & \mathrm{c}^{3} & \mathrm{abc}\end{array}\right|$
Now by taking, abc common from C_{3} gives,
$\Rightarrow \Delta=\left|\begin{array}{lll}1 & \mathrm{a}^{3} & 1 \\ 1 & \mathrm{~b}^{3} & 1 \\ 1 & \mathrm{c}^{3} & 1\end{array}\right|$
As, $C_{1}=C_{3}$ hence the value of determinant is zero.
(v) Given,

ClndCareer

$\left|\begin{array}{ccc}a+b & 2 a+b & 3 a+b \\ 2 a+b & 3 a+b & 4 a+b \\ 4 a+b & 5 a+b & 6 a+b\end{array}\right|$

Let, $\Delta=\left|\begin{array}{ccc}\mathrm{a}+\mathrm{b} & 2 \mathrm{a}+\mathrm{b} & 3 \mathrm{a}+\mathrm{b} \\ 2 \mathrm{a}+\mathrm{b} & 3 \mathrm{a}+\mathrm{b} & 4 \mathrm{a}+\mathrm{b} \\ 4 \mathrm{a}+\mathrm{b} & 5 \mathrm{a}+\mathrm{b} & 6 \mathrm{a}+\mathrm{b}\end{array}\right|$
Now by applying column operation $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{2}$, we get,
$\Rightarrow \Delta=\left|\begin{array}{ccc}a+b & 2 a+b & a \\ 2 a+b & 3 a+b & a \\ 4 a+b & 5 a+b & a\end{array}\right|$
Again applying column operation $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$ gives,
$\Rightarrow \Delta=\left|\begin{array}{ccc}\mathrm{a}+\mathrm{b} & \mathrm{a} & \mathrm{a} \\ 2 \mathrm{a}+\mathrm{b} & \mathrm{a} & \mathrm{a} \\ 4 \mathrm{a}+\mathrm{b} & \mathrm{a} & \mathrm{a}\end{array}\right|$
As, $C_{2}=C_{3}$, so the value of the determinant is zero.
(vi) Given,

$$
\begin{aligned}
& \left|\begin{array}{lll}
1 & \mathrm{a} & \mathrm{a}^{2}-\mathrm{bc} \\
1 & \mathrm{~b} & \mathrm{~b}^{2}-\mathrm{ac} \\
1 & \mathrm{c} & \mathrm{c}^{2}-\mathrm{ab}
\end{array}\right| \\
& \text { Let, } \Delta=\left|\begin{array}{lll}
1 & \mathrm{a} & \mathrm{a}^{2}-\mathrm{bc} \\
1 & \mathrm{~b} & \mathrm{~b}^{2}-\mathrm{ac} \\
1 & \mathrm{c} & \mathrm{c}^{2}-\mathrm{ab}
\end{array}\right| \\
& \Rightarrow \Delta=\left|\begin{array}{lll}
1 & \mathrm{a} & \mathrm{a}^{2} \\
1 & \mathrm{~b} & \mathrm{~b}^{2} \\
1 & \mathrm{c} & \mathrm{c}^{2}
\end{array}\right|-\left|\begin{array}{ccc}
1 & \mathrm{a} & \mathrm{bc} \\
1 & \mathrm{~b} & \mathrm{ac} \\
1 & \mathrm{c} & \mathrm{ab}
\end{array}\right|
\end{aligned}
$$

Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we get,
$\Rightarrow \Delta=\left|\begin{array}{ccc}1 & \mathrm{a} & \mathrm{a}^{2} \\ 0 & \mathrm{~b}-\mathrm{a} & \mathrm{b}^{2}-\mathrm{a}^{2} \\ 0 & \mathrm{c}-\mathrm{a} & \mathrm{c}^{2}-\mathrm{a}^{2}\end{array}\right|-\left|\begin{array}{ccc}1 & \mathrm{a} & \mathrm{bc} \\ 0 & \mathrm{~b}-\mathrm{a} & (\mathrm{a}-\mathrm{b}) \mathrm{c} \\ 0 & \mathrm{c}-\mathrm{a} & (\mathrm{a}-\mathrm{c}) \mathrm{b}\end{array}\right|$
Taking ($b-a$) and $(c-a)$ common from R_{2} and R_{3} respectively,
$\Rightarrow \Delta=(b-a)(c-a)\left|\begin{array}{ccc}1 & a & a^{2} \\ 0 & 1 & b+a \\ 0 & 1 & c+a\end{array}\right|-(b-a)(c-a)\left|\begin{array}{ccc}1 & a & b c \\ 0 & 1 & -c \\ 0 & 1 & -b\end{array}\right|$
$=[(b-a)(c-a)][(c+a)-(b+a)-(-b+c)]$
$=[(b-a)(c-a)][c+a+b-a-b-c]$
$=[(b-a)(c-a)][0]=0$
(vii) Given,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer
$\left|\begin{array}{lll}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{array}\right|$

Let, $\Delta=\left|\begin{array}{lll}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{array}\right|$
Now by applying column operation, $C_{1} \rightarrow C_{1}-8 C_{3}$ we get
$\Rightarrow \Delta=\left|\begin{array}{lll}1 & 1 & 6 \\ 7 & 7 & 4 \\ 2 & 2 & 3\end{array}\right|$
As, $C_{1}=C_{2}$ hence, the determinant is zero.
(viii) Given,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
$\left|\begin{array}{ccc}0 & x & y \\ -x & 0 & z \\ -y & -z & 0\end{array}\right|$
Let, $\Delta=\left|\begin{array}{ccc}0 & x & y \\ -x & 0 & z \\ -y & -z & 0\end{array}\right|$
Multiplying $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} with z, y and x respectively we get,
$\Rightarrow \Delta=\left(\frac{1}{x y z}\right)\left|\begin{array}{ccc}0 & x y & y x \\ -x z & 0 & z x \\ -y z & -z y & 0\end{array}\right|$
Now, taking y, x and z common from R_{1}, R_{2} and R_{3} gives,
$\Rightarrow \Delta=\left(\frac{1}{\mathrm{xyz}}\right)\left|\begin{array}{ccc}0 & \mathrm{x} & \mathrm{x} \\ -\mathrm{z} & 0 & \mathrm{z} \\ -\mathrm{y} & -\mathrm{y} & 0\end{array}\right|$
Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{3}$ gives,
$\Rightarrow \Delta=\left(\frac{1}{\mathrm{xyz}}\right)\left|\begin{array}{ccc}0 & \mathrm{x} & \mathrm{x} \\ -\mathrm{z} & -\mathrm{z} & \mathrm{z} \\ -\mathrm{y} & -\mathrm{y} & 0\end{array}\right|$
As, $C_{1}=C_{2}$, therefore determinant is zero.
(ix) Given,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
$\left|\begin{array}{lll}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{array}\right|$

Let, $\Delta=\left|\begin{array}{lll}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}-7 C_{3}$, we get
$\Rightarrow \Delta=\left|\begin{array}{lll}1 & 1 & 6 \\ 7 & 7 & 4 \\ 3 & 3 & 2\end{array}\right|$
As, $C_{1}=C_{2}$, hence determinant is zero.
As, $\mathrm{C}_{1}=\mathrm{C}_{2}$, hence determinant is zero
(x) Given,

ClindCareer

$\left|\begin{array}{llll}1^{2} & 2^{2} & 3^{2} & 4^{2} \\ 2^{2} & 3^{2} & 4^{2} & 5^{2} \\ 3^{2} & 4^{2} & 5^{2} & 6^{2} \\ 4^{2} & 5^{2} & 6^{2} & 7^{2}\end{array}\right|$

Let, $\Delta=\left|\begin{array}{llll}1^{2} & 2^{2} & 3^{2} & 4^{2} \\ 2^{2} & 3^{2} & 4^{2} & 5^{2} \\ 3^{2} & 4^{2} & 5^{2} & 6^{2} \\ 4^{2} & 5^{2} & 6^{2} & 7^{2}\end{array}\right|$
Now we have to apply the column operation $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{2}$, and $\mathrm{C}_{4} \rightarrow \mathrm{C}_{4}-\mathrm{C}_{1}$, then we get,
$\Rightarrow \Delta=\left|\begin{array}{llll}1^{2} & 2^{2} & 3^{2}-2^{2} & 4^{2}-1^{2} \\ 2^{2} & 3^{2} & 4^{2}-3^{2} & 5^{2}-2^{2} \\ 3^{2} & 4^{2} & 5^{2}-4^{2} & 6^{2}-3^{2} \\ 4^{2} & 5^{2} & 6^{2}-5^{2} & 7^{2}-4^{2}\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{cccc}1^{2} & 2^{2} & 5 & 15 \\ 2^{2} & 3^{2} & 7 & 21 \\ 3^{2} & 4^{2} & 9 & 27 \\ 4^{2} & 5^{2} & 11 & 33\end{array}\right|$
Taking 3 common from C_{4} we get,
$\Rightarrow \Delta=3\left|\begin{array}{cccc}1^{2} & 2^{2} & 5 & 5 \\ 2^{2} & 3^{2} & 7 & 7 \\ 3^{2} & 4^{2} & 9 & 9 \\ 4^{2} & 5^{2} & 11 & 11\end{array}\right|$
As, C3 = C4 so, the determinant is zero.
(xi) Given,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

Let, $\Delta=\left|\begin{array}{ccc}a & b & c \\ a+2 x & b+2 y & c+2 z \\ x & y & z\end{array}\right|$
Let, $\Delta=\left|\begin{array}{ccc}a & b & c \\ a+2 x & b+2 y & c+2 z \\ x & y & z\end{array}\right|$
Now by applying, $C_{2} \rightarrow C_{2}+C_{1}$ and $C_{3} \rightarrow C_{3}+C_{1}$, we get
$\Rightarrow \Delta=\left|\begin{array}{ccc}a & b & c \\ 2 a+2 x & 2 b+2 y & 2 c+2 z \\ a+x & b+y & c+z\end{array}\right|$
Taking 2 common from R_{2} we get,
$\Rightarrow \Delta=2\left|\begin{array}{ccc}a & b & c \\ a+x & b+y & c+z \\ a+x & b+y & c+z\end{array}\right|$
As, $R_{2}=R_{3}$, hence value of determinant is zero.
(xii) Given,

ClndCareer

$$
\begin{aligned}
& \left|\begin{array}{lll}
\left(2^{x}+2^{-x}\right)^{2} & \left(2^{x}-2^{-x}\right)^{2} & 1 \\
\left(3^{x}+3^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & 1 \\
\left(4^{x}+4^{-x}\right)^{2} & \left(4^{x}-4^{-x}\right)^{2} & 1
\end{array}\right| \\
& \text { Let, } \Delta=\left|\begin{array}{lll}
\left(2^{x}+2^{-x}\right)^{2} & \left(2^{x}-2^{-x}\right)^{2} & 1 \\
\left(3^{x}+3^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & 1 \\
\left(4^{x}+4^{-x}\right)^{2} & \left(4^{x}-4^{-x}\right)^{2} & 1
\end{array}\right| \\
& \Rightarrow \Delta=\left|\begin{array}{lll}
2^{2 x}+2^{-2 x}+2 & 2^{2 x}+2^{-2 x}-2 & 1 \\
3^{2 x}+3^{-2 x}+2 & 3^{2 x}+3^{-2 x}-2 & 1 \\
4^{2 x}+4^{-2 x}+2 & 4^{2 x}+4^{-2 x}-2 & 1
\end{array}\right|
\end{aligned}
$$

By applying, column operation $C_{1} \rightarrow C_{1}-C_{2}$, we get
$\Rightarrow \Delta=\left|\begin{array}{lll}4 & 2^{2 x}+2^{-2 x}-2 & 1 \\ 4 & 3^{2 x}+3^{-2 x}-2 & 1 \\ 4 & 4^{2 x}+4^{-2 x}-2 & 1\end{array}\right|$
$\Rightarrow \Delta=4\left|\begin{array}{lll}1 & 2^{2 x}+2^{-2 x}-2 & 1 \\ 1 & 3^{2 x}+3^{-2 x}-2 & 1 \\ 1 & 4^{2 x}+4^{-2 x}-2 & 1\end{array}\right|$
As $C_{1}=C_{3}$ hence determinant is zero.
(xiii) Given,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer

ClindCareer

$\left|\begin{array}{ccc}\sin \alpha & \cos \alpha & \cos (\alpha+\delta) \\ \sin \beta & \cos \beta & \cos (\beta+\delta) \\ \sin \gamma & \cos \gamma & \cos (\gamma+\delta)\end{array}\right|$
Let, $\Delta=\left|\begin{array}{lll}\sin \alpha & \cos \alpha & \cos (\alpha+\delta) \\ \sin \beta & \cos \beta & \cos (\beta+\delta) \\ \sin \gamma & \cos \gamma & \cos (\gamma+\delta)\end{array}\right|$
Multiplying C_{1} with $\sin \delta, C_{2}$ with $\cos \delta$, we get
$\Rightarrow \Delta=\frac{1}{\sin \delta \cos \delta}\left|\begin{array}{lll}\sin \alpha \sin \delta & \cos \alpha \cos \delta & \cos (\alpha+\delta) \\ \sin \beta \sin \delta & \cos \beta \cos \delta & \cos (\beta+\delta) \\ \sin \gamma \sin \delta & \cos \gamma \cos \delta & \cos (\gamma+\delta)\end{array}\right|$
Now, by applying column operation, $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$, we get,
$\Rightarrow \Delta=\frac{1}{\sin \delta \cos \delta}\left|\begin{array}{lll}\sin \alpha \sin \delta & \cos \alpha \cos \delta-\sin \alpha \sin \delta & \cos (\alpha+\delta) \\ \sin \beta \sin \delta & \cos \beta \cos \delta-\sin \beta \sin \delta & \cos (\beta+\delta) \\ \sin \gamma \sin \delta & \cos \gamma \cos \delta-\sin \gamma \sin \delta & \cos (\gamma+\delta)\end{array}\right|$
$\Rightarrow \Delta=\frac{1}{\sin \delta \cos \delta}\left|\begin{array}{lll}\sin \alpha \sin \delta & \cos (\alpha+\delta) & \cos (\alpha+\delta) \\ \sin \beta \sin \delta & \cos (\beta+\delta) & \cos (\beta+\delta) \\ \sin \gamma \sin \delta & \cos (\gamma+\delta) & \cos (\gamma+\delta)\end{array}\right|$
As $C_{2}=C_{3}$ hence determinant is zero.
(xv) Given,

ClndCareer

$$
\begin{aligned}
& \left|\begin{array}{ccc}
\cos (x+y) & -\sin (x+y) & \cos 2 y \\
\sin x & \cos x & \sin y \\
-\cos x & \sin x & -\cos y
\end{array}\right| \\
& \text { Let, } \Delta=\left|\begin{array}{ccc}
\cos (x+y) & -\sin (x+y) & \cos 2 y \\
\sin x & \cos x & \sin y \\
-\cos x & \sin x & -\cos y
\end{array}\right|
\end{aligned}
$$

Multiplying R_{2} with $\sin y$ and R_{3} with $\cos y$ we get,
$\Rightarrow \Delta=\frac{1}{\sin \mathrm{y} \cos \mathrm{y}}\left|\begin{array}{ccc}\cos (\mathrm{x}+\mathrm{y}) & -\sin (\mathrm{x}+\mathrm{y}) & \cos 2 \mathrm{y} \\ \sin \mathrm{x} \sin \mathrm{y} & \cos \mathrm{sin} \mathrm{y} & \sin ^{2} \mathrm{y} \\ -\cos \mathrm{x} \cos \mathrm{y} & \sin \mathrm{x}^{2} \cos \mathrm{y} & -\cos ^{2} \mathrm{y}\end{array}\right|$
Now, by applying row operation $R_{2} \rightarrow R_{2}+R_{3}$, we get,

$$
=\frac{1}{\sin y \cos y}\left|\begin{array}{ccc}
\cos (x+y) & -\sin (x+y) & \cos 2 y \\
\sin x \sin y-\cos x \cos y & \cos x \sin y+\sin x \cos y & \sin ^{2} y-\cos ^{2} y \\
-\cos x \cos y & \sin x \cos y & -\cos ^{2} y
\end{array}\right|
$$

Taking (-1) common from R_{2}, we get
Taking (-1) common from R_{2}, we get

$$
\begin{aligned}
& =\frac{-1}{\sin \mathrm{y} \cos \mathrm{y}}\left|\begin{array}{ccc}
\cos (\mathrm{x}+\mathrm{y}) & -\sin (\mathrm{x}+\mathrm{y}) & \cos 2 \mathrm{y} \\
-\sin \mathrm{x} \sin \mathrm{y}+\cos \mathrm{x} \cos \mathrm{y} & -(\cos \mathrm{sin} \mathrm{y}+\sin \mathrm{x} \cos \mathrm{y}) & -\sin ^{2} \mathrm{y}+\cos ^{2} \mathrm{y} \\
-\cos \mathrm{x} \cos \mathrm{y} & \sin \mathrm{x} \cos \mathrm{y} & -\cos ^{2} \mathrm{y}
\end{array}\right| \\
& \Rightarrow \Delta=\frac{-1}{\sin \mathrm{y} \cos \mathrm{y}}\left|\begin{array}{ccc}
\cos (\mathrm{x}+\mathrm{y}) & -\sin (\mathrm{x}+\mathrm{y}) & \cos 2 \mathrm{y} \\
\cos (\mathrm{x}+\mathrm{y}) & -\sin (\mathrm{x}+\mathrm{y}) & \cos 2 \mathrm{y} \\
-\cos \mathrm{x} \cos \mathrm{y} & \sin \mathrm{x} \cos \mathrm{y} & -\cos ^{2} \mathrm{y}
\end{array}\right|
\end{aligned}
$$

As $R_{1}=R_{2}$ hence determinant is zero.
(xvi) Given,

ClndCareer

$\left|\begin{array}{ccc}\sqrt{23}+\sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15}+\sqrt{46} & 5 & \sqrt{10} \\ 3+\sqrt{115} & \sqrt{15} & 5\end{array}\right|$
Let, $\Delta=\left|\begin{array}{ccc}\sqrt{23}+\sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15}+\sqrt{46} & 5 & \sqrt{10} \\ 3+\sqrt{115} & \sqrt{15} & 5\end{array}\right|$
Multiplying C_{2} with $\sqrt{ } 3$ and C_{3} with $\sqrt{ } 23$ we get,
$\Rightarrow \Delta=\left|\begin{array}{ccc}\sqrt{23}+\sqrt{3} & \sqrt{15} & \sqrt{115} \\ \sqrt{15}+\sqrt{46} & 5 \sqrt{3} & \sqrt{230} \\ 3+\sqrt{115} & \sqrt{45} & 5 \sqrt{23}\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{ccc}\sqrt{23}+\sqrt{3} & \sqrt{5}(\sqrt{3}) & \sqrt{5}(\sqrt{23}) \\ \sqrt{15}+\sqrt{46} & \sqrt{5}(\sqrt{15}) & \sqrt{5}(\sqrt{46}) \\ 3+\sqrt{115} & \sqrt{5}(3) & \sqrt{5}(\sqrt{115})\end{array}\right|$
Now taking V 5 common from C_{2} and C_{3} we get,
$\Rightarrow \Delta=\sqrt{5} \sqrt{5}\left|\begin{array}{ccc}\sqrt{23}+\sqrt{3} & (\sqrt{3}) & (\sqrt{23}) \\ \sqrt{15}+\sqrt{46} & (\sqrt{15}) & (\sqrt{46}) \\ 3+\sqrt{115} & (3) & (\sqrt{115})\end{array}\right|$
Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}+\mathrm{C}_{3}$
Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}+\mathrm{C}_{3}$
$\Rightarrow \Delta=5\left|\begin{array}{ccc}\sqrt{23}+\sqrt{3} & \sqrt{23}+\sqrt{3} & (\sqrt{23}) \\ \sqrt{15}+\sqrt{46} & \sqrt{15}+\sqrt{46} & (\sqrt{46}) \\ 3+\sqrt{115} & 3+\sqrt{115} & (\sqrt{115})\end{array}\right|$
As $C_{1}=C_{2}$ hence determinant is zero.
(xvii) Given,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer

$$
\begin{aligned}
& \left|\begin{array}{lll}
\sin ^{2} \mathrm{~A} & \cot \mathrm{~A} & 1 \\
\sin ^{2} \mathrm{~B} & \cot \mathrm{~B} & 1 \\
\sin ^{2} \mathrm{C} & \cot \mathrm{C} & 1
\end{array}\right| \\
& \text { Let, } \Delta=\left|\begin{array}{lll}
\sin ^{2} \mathrm{~A} & \cot \mathrm{~A} & 1 \\
\sin ^{2} \mathrm{~B} & \cot \mathrm{~B} & 1 \\
\sin ^{2} \mathrm{C} & \cot \mathrm{C} & 1
\end{array}\right|
\end{aligned}
$$

Now,

$$
\Delta=\sin ^{2} \mathrm{~A}(\cot \mathrm{~B}-\cot \mathrm{C})-\cot \mathrm{A}\left(\sin ^{2} \mathrm{~B}-\sin ^{2} \mathrm{C}\right)+1\left(\sin ^{2} \mathrm{~B} \cot \mathrm{C}-\cot \mathrm{B} \sin ^{2} \mathrm{C}\right.
$$

As A, B and C are angles of a triangle,
$A+B+C=180^{\circ}$
$\Delta=\sin ^{2} \mathrm{~A} \cot \mathrm{~B}-\sin ^{2} \mathrm{~A} \cot \mathrm{C}-\cot \mathrm{A} \sin ^{2} \mathrm{~B}+\cot \mathrm{A} \sin ^{2} \mathrm{C}+\sin ^{2} \mathrm{~B} \cot \mathrm{C}-\cot \mathrm{B}$ $\sin ^{2} \mathrm{C}$

By using formulae, we get

$$
\begin{aligned}
& \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=k \\
& \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}, \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}, \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
\end{aligned}
$$

$$
\Delta=0
$$

Hence proved.
RD Sharma 12th Maths Chapter 6, Class 12 Maths Chapter 6 solutions
Evaluate the following (3-9):
3. $\left|\begin{array}{lll}a & b+c & a^{2} \\ b & c+a & b^{2} \\ c & a+b & c^{2}\end{array}\right|$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

Solution:

Given,
$\left|\begin{array}{lll}a & b+c & a^{2} \\ b & c+a & b^{2} \\ c & a+b & c^{2}\end{array}\right|$
Let, $\Delta=\left|\begin{array}{lll}a & b+c & a^{2} \\ b & c+a & b^{2} \\ c & a+b & c^{2}\end{array}\right|$
Now by applying column operation $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}+\mathrm{C}_{1}$
$\Rightarrow \Delta=\left|\begin{array}{lll}a & b+c+a & a^{2} \\ b & c+a+b & b^{2} \\ c & a+b+c & c^{2}\end{array}\right|$
Taking, $(a+b+c)$ common,
$\Rightarrow \Delta=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left|\begin{array}{lll}\mathrm{a} & 1 & \mathrm{a}^{2} \\ \mathrm{~b} & 1 & \mathrm{~b}^{2} \\ \mathrm{c} & 1 & \mathrm{c}^{2}\end{array}\right|$
Again by applying row operation $R_{2} \rightarrow R_{2}-R_{1}$, and $R_{3} \rightarrow R_{3}-R_{1}$
$\Rightarrow \Delta=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left|\begin{array}{ccc}\mathrm{a} & 1 & \mathrm{a}^{2} \\ \mathrm{~b}-\mathrm{a} & 0 & \mathrm{~b}^{2}-\mathrm{a}^{2} \\ \mathrm{c}-\mathrm{a} & 0 & \mathrm{c}^{2}-\mathrm{a}^{2}\end{array}\right|$
Taking, $(b-c)$ and $(c-a)$ common,
$\Rightarrow \Delta=(\mathrm{a}+\mathrm{b}+\mathrm{c})(\mathrm{b}-\mathrm{a})(\mathrm{c}-\mathrm{a})\left|\begin{array}{ccc}\mathrm{a} & 1 & \mathrm{a}^{2} \\ 1 & 0 & \mathrm{~b}+\mathrm{a} \\ 1 & 0 & \mathrm{c}+\mathrm{a}\end{array}\right|$
$=(a+b+c)(b-a)(c-a)(b-c)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer

ClndCareer

So, $\Delta=(a+b+c)(b-a)(c-a)(b-c)$

RD Sharma 12th Maths Chapter 6, Class 12 Maths Chapter 6 solutions
4. $\left|\begin{array}{lll}1 & a & b c \\ 1 & b & c a \\ 1 & c & a b\end{array}\right|$

Solution:

Given,
$\left|\begin{array}{lll}1 & \mathrm{a} & \mathrm{bc} \\ 1 & \mathrm{~b} & \mathrm{ca} \\ 1 & \mathrm{c} & \mathrm{ab}\end{array}\right|$
Let, $\Delta=\left|\begin{array}{lll}1 & \mathrm{a} & \mathrm{bc} \\ 1 & \mathrm{~b} & \mathrm{ca} \\ 1 & \mathrm{c} & \mathrm{ab}\end{array}\right|$
Now by applying row operation, $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$ we get,
$\Rightarrow \Delta=\left|\begin{array}{ccc}1 & \mathrm{a} & \mathrm{bc} \\ 0 & \mathrm{~b}-\mathrm{a} & \mathrm{ca}-\mathrm{bc} \\ 0 & \mathrm{c}-\mathrm{a} & \mathrm{ab}-\mathrm{bc}\end{array}\right|$
$=\left|\begin{array}{ccc}1 & a & b c \\ 0 & b-a & c(a-b) \\ 0 & c-a & b(a-c)\end{array}\right|$
Taking ($a-b$) and $(a-c)$ common we get,
$\Rightarrow \Delta=(\mathrm{a}-\mathrm{b})(\mathrm{a}-\mathrm{c})\left|\begin{array}{ccc}1 & \mathrm{a} & \mathrm{bc} \\ 0 & -1 & \mathrm{c} \\ 0 & -1 & \mathrm{~b}\end{array}\right|$
$=(a-b)(c-a)(b-c)$
So, $\Delta=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})$
5. $\left|\begin{array}{ccc}x+\lambda & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda\end{array}\right|$

Solution:

Given,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer

ClindCareer

$$
\begin{aligned}
& \left|\begin{array}{ccc}
\mathrm{x}+\lambda & \mathrm{x} & \mathrm{x} \\
\mathrm{x} & \mathrm{x}+\lambda & \mathrm{x} \\
\mathrm{x} & \mathrm{x} & \mathrm{x}+\lambda
\end{array}\right| \\
& \text { Let, } \Delta=\left|\begin{array}{ccc}
\mathrm{x}+\lambda & \mathrm{x} & \mathrm{x} \\
\mathrm{x} & \mathrm{x}+\lambda & \mathrm{x} \\
\mathrm{x} & \mathrm{x} & \mathrm{x}+\lambda
\end{array}\right|
\end{aligned}
$$

Applying, $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we have,

$$
\Rightarrow \Delta=\left|\begin{array}{ccc}
3 x+\lambda & x & x \\
3 x+\lambda & x+\lambda & x \\
3 x+\lambda & x & x+\lambda
\end{array}\right|
$$

Taking, $(3 x+\lambda)$ common, we get
$\Rightarrow \Delta=(3 x+\lambda)\left|\begin{array}{ccc}1 & x & x \\ 1 & x+\lambda & x \\ 1 & x & x+\lambda\end{array}\right|$
Applying, $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$, we get,
$\Rightarrow \Delta=(3 \mathrm{x}+\lambda)\left|\begin{array}{lll}1 & \mathrm{x} & \mathrm{x} \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda\end{array}\right|$
$=\lambda^{2}(3 x+\lambda)$
So, $\Delta=\lambda^{2}(3 x+\lambda)$
6. $\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$

Solution:

Given,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
$\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$
Let, $\Delta=\left|\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{c} & \mathrm{a} & \mathrm{b} \\ \mathrm{b} & \mathrm{c} & \mathrm{a}\end{array}\right|$
Now we have to apply column operation, $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get,
$\Rightarrow \Delta=\left|\begin{array}{lll}\mathrm{a}+\mathrm{b}+\mathrm{c} & \mathrm{b} & \mathrm{c} \\ \mathrm{a}+\mathrm{b}+\mathrm{c} & \mathrm{a} & \mathrm{b} \\ \mathrm{a}+\mathrm{b}+\mathrm{c} & \mathrm{c} & \mathrm{a}\end{array}\right|$
Taking, $(a+b+c)$ we get,
$\Rightarrow \Delta=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left|\begin{array}{lll}1 & \mathrm{~b} & \mathrm{c} \\ 1 & \mathrm{a} & \mathrm{b} \\ 1 & \mathrm{c} & \mathrm{a}\end{array}\right|$
Now by applying row operation, $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$, we get,
$\Rightarrow \Delta=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left|\begin{array}{ccc}1 & \mathrm{~b} & \mathrm{c} \\ 0 & \mathrm{a}-\mathrm{b} & \mathrm{b}-\mathrm{c} \\ 0 & \mathrm{c}-\mathrm{b} & \mathrm{a}-\mathrm{c}\end{array}\right|$
$=(a+b+c)[(a-b)(a-c)-(b-c)(c-b)]$
$=(a+b+c)\left[a^{2}-a c-a b+b c+b^{2}+c^{2}-2 b c\right]$
$=(a+b+c)\left[a^{2}+b^{2}+c^{2}-a c-a b-b c\right]$
So, $\Delta=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left[\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{ac}-\mathrm{ab}-\mathrm{bc}\right]$
7. $\left|\begin{array}{ccc}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{array}\right|$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer

ClindCareer

Given,

$$
\begin{aligned}
& \left|\begin{array}{ccc}
\mathrm{x} & 1 & 1 \\
1 & \mathrm{x} & 1 \\
1 & 1 & \mathrm{x}
\end{array}\right| \\
& \text { Let, } \Delta=\left|\begin{array}{lll}
\mathrm{x} & 1 & 1 \\
1 & \mathrm{x} & 1 \\
1 & 1 & \mathrm{x}
\end{array}\right|
\end{aligned}
$$

Now by applying column operation, $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get,
$\Rightarrow \Delta=\left|\begin{array}{lll}2+\mathrm{x} & 1 & 1 \\ 2+\mathrm{x} & \mathrm{x} & 1 \\ 2+\mathrm{x} & 1 & \mathrm{x}\end{array}\right|$
$\Rightarrow \Delta=(2+\mathrm{x})\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & \mathrm{x} & 1 \\ 1 & 1 & \mathrm{x}\end{array}\right|$
Again by applying row operation, $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$, we get,
$\Rightarrow \Delta=(2+\mathrm{x})\left|\begin{array}{ccc}1 & 1 & 1 \\ 0 & \mathrm{x}-1 & 0 \\ 0 & 0 & \mathrm{x}-1\end{array}\right|$
$=(2+x)(x-1)^{2}$
So, $\Delta=(2+x)(x-1)^{2}$

RD Sharma 12th Maths Chapter 6, Class 12 Maths Chapter 6 solutions
8. $\left|\begin{array}{ccc}0 & x y^{2} & x z^{2} \\ x^{2} y & 0 & y z^{2} \\ x z^{2} & z y^{2} & 0\end{array}\right|$

Solution:

Given,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer
$\left|\begin{array}{ccc}0 & x y^{2} & x z^{2} \\ x^{2} y & 0 & y^{2} \\ x^{2} z & z y^{2} & 0\end{array}\right|$
Let, $\Delta=\left|\begin{array}{ccc}0 & x^{2} & x z^{2} \\ x^{2} y & 0 & y z^{2} \\ x^{2} z & z y^{2} & 0\end{array}\right|$
On simplification we get,

$$
\begin{aligned}
& =0\left(0-y^{3} z^{3}\right)-x y^{2}\left(0-x^{2} y z^{3}\right)+x z^{2}\left(x^{2} y^{3} z-0\right) \\
& =0+x^{3} y^{3} z^{3}+x^{3} y^{3} z^{3} \\
& =2 x^{3} y^{3} z^{3}
\end{aligned}
$$

So, $\Delta=2 x^{3} y^{3} z^{3}$
9. $\left|\begin{array}{ccc}a+x & y & z \\ x & a+y & z \\ x & y & a+z\end{array}\right|$

Solution:

Given,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

$$
\begin{aligned}
& \left|\begin{array}{ccc}
a+x & y & z \\
x & a+y & z \\
x & y & a+z
\end{array}\right| \\
& \text { Let, } \Delta=\left|\begin{array}{ccc}
a+x & y & z \\
x & a+y & z \\
x & y & a+z
\end{array}\right|
\end{aligned}
$$

Now by applying row operation we get $R_{1} \rightarrow R_{1}-R_{2}$ and $R_{3} \rightarrow R_{3}-R_{2}$
$\Rightarrow \Delta=\left|\begin{array}{ccc}\mathrm{a} & -\mathrm{a} & 0 \\ \mathrm{x} & \mathrm{a}+\mathrm{y} & \mathrm{z} \\ 0 & -\mathrm{a} & \mathrm{a}\end{array}\right|$
Again by applying column operation, $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$

$$
\begin{aligned}
& \Rightarrow \Delta=\left|\begin{array}{ccc}
a & 0 & 0 \\
\mathrm{x} & \mathrm{a}+\mathrm{x}+\mathrm{y} & \mathrm{z} \\
0 & -\mathrm{a} & \mathrm{a}
\end{array}\right| \\
& =a[a(a+x+y)+a z]+0+0 \\
& =a^{2}(a+x+y+z)
\end{aligned}
$$

$$
\text { So, } \Delta=a^{2}(a+x+y+z)
$$

$$
\Rightarrow \Delta=\left|\begin{array}{ccc}
\mathrm{a} & 0 & 0 \\
\mathrm{x} & \mathrm{a}+\mathrm{x}+\mathrm{y} & \mathrm{z} \\
0 & -\mathrm{a} & \mathrm{a}
\end{array}\right|
$$

$$
=a[a(a+x+y)+a z]+0+0
$$

RD Sharma 12th Maths Chapter 6, Class 12 Maths Chapter 6 solutions
$=a^{2}(a+x+y+z)$
10. If $\Delta=\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|, \Delta_{1}=\left|\begin{array}{ccc}1 & 1 & 1 \\ y z & z x & x y \\ x & y & z\end{array}\right|$, then prove that $\Delta+\Delta_{1}=0$

So, $\Delta=a^{2}(a+x+y+z)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

Solution:

Let, $\Delta=\left|\begin{array}{lll}1 & \mathrm{x} & \mathrm{x}^{2} \\ 1 & \mathrm{y} & \mathrm{y}^{2} \\ 1 & \mathrm{z} & \mathrm{z}^{2}\end{array}\right|+\left|\begin{array}{ccc}1 & 1 & 1 \\ y z & z x & x y \\ \mathrm{x} & \mathrm{y} & \mathrm{z}\end{array}\right|$
As $|A|=|A|^{\top}$
$\Rightarrow \Delta=\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|+\left|\begin{array}{ccc}1 & y z & x \\ 1 & z x & y \\ 1 & x y & z\end{array}\right|$
If any two rows or columns of the determinant are interchanged, then determinant changes its sign
$\Rightarrow \Delta=\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|-\left|\begin{array}{ccc}1 & x & y z \\ 1 & y & z x \\ 1 & z & x y\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{lll}0 & 0 & x^{2}-\mathrm{yz} \\ 0 & 0 & \mathrm{y}^{2}-\mathrm{zx} \\ 0 & 0 & \mathrm{z}^{2}-\mathrm{xy}\end{array}\right|=0$
So, $\Delta=0$
Hence the proof

Prove the following identities (11-45):
11. $\left|\begin{array}{ccc}a & b & c \\ a-b & b-c & c-a \\ b+c & c+a & a+b\end{array}\right|=a^{3}+b^{3}+c^{3}-3 a b c$

Solution:

Given,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

$\left|\begin{array}{ccc}a & b & c \\ a-b & b-c & c-a \\ b+c & c+a & a+b\end{array}\right|$
L.H.S $=\left|\begin{array}{ccc}a & b & c \\ a-b & b-c & c-a \\ b+c & c+a & a+b\end{array}\right|$

Apply $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$
$=\left|\begin{array}{ccc}a+b+c & b & c \\ 0 & b-c & c-a \\ 2(a+b+c) & c+a & a+b\end{array}\right|$
Taking $(a+b+c)$ common from C_{1} we get,
$=(a+b+c)\left|\begin{array}{ccc}1 & b & c \\ 0 & b-c & c-a \\ 2 & c+a & a+b\end{array}\right|$
Applying, $R_{3} \rightarrow R_{3}-2 R_{1}$
$=(a+b+c)\left|\begin{array}{ccc}1 & b & c \\ 0 & b-c & c-a \\ 0 & c+a-2 b & a+b-2 c\end{array}\right|$
$=(a+b+c)[(b-c)(a+b-2 c)-(c-a)(c+a-2 b)]$
$=a^{3}+b^{3}+c^{3}-3 a b c$
As, L.H.S = R.H.S
Hence, the proof.
12. $\left|\begin{array}{lll}b+c & a-b & a \\ c+a & b-c & b \\ a+b & c-a & c\end{array}\right|=3 a b c-a^{3}-b^{3}-c^{3}$

Solution:

Consider,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer

ElndCareer

L.H.S $=\left|\begin{array}{lll}b+c & a-b & a \\ c+a & b-c & b \\ a+b & c-a & c\end{array}\right|$

As $|A|=|A|^{\top}$
So, $\left|\begin{array}{ccc}b+c & c+a & a+b \\ a-b & b-c & c-a \\ a & b & c\end{array}\right|$
If any two rows or columns of the determinant are interchanged, then determinant changes its sign

$$
-\left|\begin{array}{ccc}
a & b & c \\
a-b & b-c & c-a \\
b+c & c+a & a+b
\end{array}\right|
$$

Apply $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$
$=-\left|\begin{array}{ccc}a+b+c & b & c \\ 0 & b-c & c-a \\ 2(a+b+c) & c+a & a+b\end{array}\right|$
Taking $(a+b+c)$ common from C_{1} we get,

$$
=-(a+b+c)\left|\begin{array}{ccc}
1 & b & c \\
0 & b-c & c-a \\
2 & c+a & a+b
\end{array}\right|
$$

Applying, $R_{3} \rightarrow R_{3}-2 R_{1}$

$$
\begin{aligned}
& =-(a+b+c)\left|\begin{array}{ccc}
1 & b & c \\
0 & b-c & c-a \\
0 & c+a-2 b & a+b-2 c
\end{array}\right| \\
& =-(a+b+c)[(b-c)(a+b-2 c)-(c-a)(c+a-2 b)] \\
& =3 a b c-a^{3}-b^{3}-c^{3}
\end{aligned}
$$

ClndCareer

Therefore, L.H.S = R.H.S,
Hence the proof.
RD Sharma 12th Maths Chapter 6, Class 12 Maths Chapter 6 solutions
13. $\left|\begin{array}{lll}a+b & b+c & c+a \\ b+c & c+a & a+b \\ c+a & a+b & b+c\end{array}\right|=2\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$

Solution:

Given,

ClndCareer

$$
\left|\begin{array}{lll}
a+b & b+c & c+a \\
b+c & c+a & a+b \\
c+a & a+b & b+c
\end{array}\right|=2\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|
$$

L.H.S $=\left|\begin{array}{lll}a+b & b+c & c+a \\ b+c & c+a & a+b \\ c+a & a+b & b+c\end{array}\right|$

Now by applying, $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$

$$
\begin{aligned}
& =\left|\begin{array}{lll}
2(a+b+c) & b+c & c+a \\
2(a+b+c) & c+a & a+b \\
2(a+b+c) & a+b & b+c
\end{array}\right| \\
& =2\left|\begin{array}{lll}
(a+b+c) & b+c & c+a \\
(a+b+c) & c+a & a+b \\
(a+b+c) & a+b & b+c
\end{array}\right|
\end{aligned}
$$

Again apply, $C_{2} \rightarrow C_{2}-C_{1}$, and $C_{3} \rightarrow C_{3}-C_{1}$, we have

$$
\begin{aligned}
& =2\left|\begin{array}{lll}
(a+b+c) & -a & -b \\
(a+b+c) & -b & -c \\
(a+b+c) & -c & -a
\end{array}\right| \\
& =2\left|\begin{array}{lll}
(a+b+c) & a & b \\
(a+b+c) & b & c \\
(a+b+c) & c & a
\end{array}\right|
\end{aligned}
$$

By expanding, we get
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClindCareer

$=2\left|\begin{array}{lll}(a+b+c) & -a & -b \\ (a+b+c) & -b & -c \\ (a+b+c) & -c & -a\end{array}\right|$
$=2\left|\begin{array}{lll}(\mathrm{a}+\mathrm{b}+\mathrm{c}) & \mathrm{a} & \mathrm{b} \\ (\mathrm{a}+\mathrm{b}+\mathrm{c}) & \mathrm{b} & \mathrm{c} \\ (\mathrm{a}+\mathrm{b}+\mathrm{c}) & \mathrm{c} & \mathrm{a}\end{array}\right|$
By expanding, we get
$=2\left(\left|\begin{array}{lll}c & a & b \\ a & b & c \\ b & c & a\end{array}\right|+\left|\begin{array}{lll}a & a & b \\ b & b & c \\ c & c & a\end{array}\right|+\left|\begin{array}{lll}b & a & b \\ c & b & c \\ a & c & a\end{array}\right|\right)$
As in second and third determinant both have same column and its value is zero

Therefore,
$=2\left|\begin{array}{lll}\mathrm{c} & \mathrm{a} & \mathrm{b} \\ \mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{b} & \mathrm{c} & \mathrm{a}\end{array}\right|$
$=2\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=$ R.H.S
Hence, the proof.

RD Sharma 12th Maths Chapter 6, Class 12 Maths Chapter 6 solutions
14. $\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|=2(a+b+c)^{3}$

Solution:

Consider,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer

ClndCareer

L.H.S $=\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|$
R.H.S $=2(a+b+c)^{2}$

Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we have
$=\left|\begin{array}{ccc}2(a+b+c) & a & b \\ 2(a+b+c) & b+c+2 a & b \\ 2(a+b+c) & a & c+a+2 b\end{array}\right|$
Taking, $2(a+b+c)$ common we get,

$$
=2(a+b+C)\left|\begin{array}{ccc}
1 & a & b \\
1 & b+c+2 a & b \\
1 & a & c+a+2 b
\end{array}\right|
$$

Now, applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we get,

$$
=2(a+b+C)\left|\begin{array}{ccc}
1 & a & b \\
0 & b+c+a & 0 \\
0 & 0 & c+a+b
\end{array}\right|
$$

Thus, we have
L.H.S $=2(a+b+c)\left[1(a+b+c)^{2}\right]$
$=2(a+b+c)^{3}=$ R.H.S
15. $\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|=(a+b+c)^{3}$

Solution:

Consider,
L.H.S =
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer

ClindCareer

$$
\left|\begin{array}{ccc}
a-b-c & 2 a & 2 a \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|
$$

Now by applying, $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$, we get,

$$
=\left|\begin{array}{ccc}
a+b+c & a+b+c & a+b+c \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|
$$

Taking $(a+b+c)$ common we get,
$=(a+b+c)\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1}$, we get,
$=(a+b+c)\left|\begin{array}{ccc}1 & 0 & 0 \\ 2 b & -b-c-a & 0 \\ 2 c & 0 & -c-a-b\end{array}\right|$
$=(a+b+c)\left|\begin{array}{ccc}1 & 0 & 0 \\ 2 b & b+c+a & 0 \\ 2 c & 0 & b+c+a\end{array}\right|$
$=(\mathrm{a}+\mathrm{b}+\mathrm{c})^{3}=$ R.H.S
Hence, proved.
16. $\left|\begin{array}{lll}1 & b+c & b^{2}+c^{2} \\ 1 & c+a & c^{2}+a^{2} \\ 1 & a+b & a^{2}+b^{2}\end{array}\right|=(a-b)(b-c)(c-a)$

Solution:

Consider,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

L.H.S $=\left|\begin{array}{lll}1 & b+c & b^{2}+c^{2} \\ 1 & c+a & c^{2}+a^{2} \\ 1 & a+b & a^{2}+b^{2}\end{array}\right|$

Now by applying, $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we get,

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
1 & b+c & b^{2}+c^{2} \\
0 & a-b & a^{2}-b^{2} \\
0 & a-c & a^{2}-c^{2}
\end{array}\right| \\
& =(a-b)(a-c)\left|\begin{array}{ccc}
1 & b+c & b^{2}+c^{2} \\
0 & 1 & a+b \\
0 & 1 & a+c
\end{array}\right|
\end{aligned}
$$

Again by applying $R_{3} \rightarrow R_{3}-R_{2}$, we get,
$=(a-b)(a-c)\left|\begin{array}{ccc}1 & b+c & b^{2}+c^{2} \\ 0 & 1 & a+b \\ 0 & 0 & c-a\end{array}\right|$
$=(a-b)(a-c)(b-c)=$ R.H.S
Hence, the proof.
17. $\left|\begin{array}{ccc}a & a+b & a+2 b \\ a+2 b & a & a+b \\ a+b & a+2 b & a\end{array}\right|=9(a+b) b^{2}$

Solution:

Consider,

ClndCareer

L.H.S $=\left|\begin{array}{ccc}a & a+b & a+2 b \\ a+2 b & a & a+b \\ a+b & a+2 b & a\end{array}\right|$

Applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$, we get,
$=\left|\begin{array}{ccc}3 a+3 b & 3 a+3 b & 3 a+3 b \\ a+2 b & a & a+b \\ a+b & a+2 b & a\end{array}\right|$
Taking, ($3 \mathrm{a}+2 \mathrm{~b}$) common we get,
$=(3 a+3 b)\left|\begin{array}{ccc}1 & 1 & 1 \\ a+2 b & a & a+b \\ a+b & a+2 b & a\end{array}\right|$
Applying, $C_{1} \rightarrow C_{1}-C_{2}$ and $C_{3} \rightarrow C_{3}-C_{2}$, we get,
$=(3 a+3 b)\left|\begin{array}{ccc}0 & 1 & 0 \\ 2 b & a & b \\ -b & a+2 b & -2 b\end{array}\right|$
$=(3 a+3 b) b^{2}\left|\begin{array}{ccc}0 & 1 & 0 \\ 2 & a & 1 \\ -1 & a+2 b & -2\end{array}\right|$
$=3(a+b) b^{2}(3)=9(a+b) b^{2}$
= R.H.S
Hence, proved.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

$$
\begin{aligned}
& =(3 a+3 b)\left|\begin{array}{ccc}
0 & 1 & 0 \\
2 b & a & b \\
-b & a+2 b & -2 b
\end{array}\right| \\
& =(3 a+3 b) b^{2}\left|\begin{array}{ccc}
0 & 1 & 0 \\
2 & a & 1 \\
-1 & a+2 b & -2
\end{array}\right| \\
& =3(a+b) b^{2}(3)=9(a+b) b^{2} \\
& =\text { R.H.S } \\
& \text { Hence, the proof. }
\end{aligned}
$$

Solution:

Consider,
L.H.S $=\left|\begin{array}{lll}1 & \mathrm{a} & \mathrm{bc} \\ 1 & \mathrm{~b} & \mathrm{ca} \\ 1 & \mathrm{c} & \mathrm{ab}\end{array}\right|$

Now by applying, $R_{1} \rightarrow a R_{1}, R_{2} \rightarrow b R_{2}, R_{3} \rightarrow c R_{3}$
We get,

$$
\begin{aligned}
& =\left(\frac{1}{a b c}\right)\left|\begin{array}{lll}
a & a^{2} & a b c \\
b & b^{2} & c a b \\
c & c^{2} & a b c
\end{array}\right| \\
& =\left(\frac{a b c}{a b c}\right)\left|\begin{array}{lll}
a & a^{2} & 1 \\
b & b^{2} & 1 \\
c & c^{2} & 1
\end{array}\right| \\
& =-\left|\begin{array}{lll}
\mathrm{a} & 1 & a^{2} \\
\mathrm{~b} & 1 & \mathrm{~b}^{2} \\
c & 1 & c^{2}
\end{array}\right| \\
& =\left|\begin{array}{lll}
1 & \mathrm{a} & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right|
\end{aligned}
$$

Hence, the proof.

$$
=\left|\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right|
$$

Hence, the proof.
19. $\left|\begin{array}{ccc}z & x & y \\ z^{2} & x^{2} & y^{2} \\ z^{4} & x^{4} & y^{4}\end{array}\right|=\left|\begin{array}{ccc}x & y & z \\ x^{2} & y^{2} & z^{2} \\ x^{4} & y^{4} & z^{4}\end{array}\right|=\left|\begin{array}{ccc}x^{2} & y^{2} & z^{2} \\ x^{4} & y^{4} & z^{4} \\ x & y & z\end{array}\right|=x y z(x-y)(y-z)(z-x)(x+y+z)$

Solution:

Given,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

$$
\begin{aligned}
\left|\begin{array}{ccc}
z & x & y \\
z^{2} & x^{2} & y^{2} \\
z^{4} & x^{4} & y^{4}
\end{array}\right| & =\left|\begin{array}{ccc}
x & y & z \\
x^{2} & y^{2} & z^{2} \\
x^{4} & y^{4} & z^{4}
\end{array}\right|=\left|\begin{array}{ccc}
x^{2} & y^{2} & z^{2} \\
x^{4} & y^{4} & z^{4} \\
x & y & z
\end{array}\right| \\
& =x y z(x-y)(y-z)(z-x)(x+y+z)
\end{aligned}
$$

Consider,

$$
\left|\begin{array}{ccc}
x & y & z \\
x^{2} & y^{2} & z^{2} \\
x^{4} & y^{4} & z^{4}
\end{array}\right|
$$

By taking xyz common

$$
\begin{aligned}
& =x y z\left|\begin{array}{ccc}
1 & 1 & 1 \\
x & y & z \\
x^{3} & y^{3} & z^{3}
\end{array}\right| \\
& =x y z\left|\begin{array}{ccc}
0 & 1 & 0 \\
x-y & y & z-y \\
x^{3}-y^{3} & y^{3} & z^{3}-y^{3}
\end{array}\right|
\end{aligned}
$$

$$
=x y z(x-y)(z-y)\left|\begin{array}{ccc}
0 & 1 & 0 \\
1 & y & 1 \\
x^{2}+y^{2}+x y & y^{3} & z^{2}+y^{2}+z y
\end{array}\right|
$$

$$
=-x y z(x-y)(z-y)\left[z^{2}+y^{2}+z y-x^{2}-y^{2}-x y\right]
$$

$$
=-x y z(x-y)(z-y)[(z-x)(z+x 0+y(z-x)]
$$

$$
=-x y z(x-y)(z-y)(z-x)(x+y+z)
$$

= R.H.S

Hence, the proof.
20. $\left|\begin{array}{lll}(b+c)^{2} & a^{2} & b c \\ (c+a)^{2} & b^{2} & c a \\ (a+b)^{2} & c^{4} & a b\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

Solution:

Consider,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

L.H.S $=\left|\begin{array}{lll}(b+c)^{2} & a^{2} & b c \\ (c+a)^{2} & b^{2} & c a \\ (a+b)^{2} & c^{2} & a b\end{array}\right|$

Applying, $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}-2 \mathrm{C}_{3}$

$$
\begin{aligned}
& =\left|\begin{array}{lll}
(b+c)^{2}-a^{2}-2 b c & a^{2} & b c \\
(c+a)^{2}-b^{2}-2 c a & b^{2} & c a \\
(a+b)^{2}-c^{2}-2 a b & c^{2} & a b
\end{array}\right| \\
& =\left|\begin{array}{lll}
a^{2}+b^{2}+c^{2} & a^{2} & b c \\
a^{2}+b^{2}+c^{2} & b^{2} & c a \\
a^{2}+b^{2}+c^{2} & c^{2} & a b
\end{array}\right|
\end{aligned}
$$

Taking $\left(a^{2}+b^{2}+c^{2}\right)$, common, we get,

$$
=\left(a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{lll}
1 & a^{2} & b c \\
1 & b^{2} & c a \\
1 & c^{2} & a b
\end{array}\right|
$$

Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we get,

$$
=\left(a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{ccc}
1 & a^{2} & b c \\
0 & b^{2}-a^{2} & c a-b c \\
0 & c^{2}-a^{2} & a b-b c
\end{array}\right|
$$

$$
=\left(a^{2}+b^{2}+c^{2}\right)(b-a)(c-a)\left|\begin{array}{ccc}
1 & a^{2} & b c \\
0 & b+a & -c \\
0 & c+a & -b
\end{array}\right|
$$

$$
=\left(a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{ccc}
1 & a^{2} & b c \\
0 & b^{2}-a^{2} & c a-b c \\
0 & c^{2}-a^{2} & a b-b c
\end{array}\right|
$$

$$
=\left(a^{2}+b^{2}+c^{2}\right)(b-a)(c-a)\left|\begin{array}{ccc}
1 & a^{2} & b c \\
0 & b+a & -c \\
0 & c+a & -b
\end{array}\right|
$$

$$
=\left(a^{2}+b^{2}+c^{2}\right)(b-a)(c-a)[(b+a)(-b)-(-c)(c+a)]
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer

ClndCareer

$=\left(a^{2}+b^{2}+c^{2}\right)(a-b)(c-a)(b-c)(a+b+c)$
= R.H.S
Hence, the proof.

Solution:

Consider,
L.H. $S=\left|\begin{array}{lll}(a+1)(a+2) & a+2 & 1 \\ (a+2)(a+3) & a+3 & 1 \\ (a+3)(a+4) & a+4 & 1\end{array}\right|$

Now by applying row operation, $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}$
$=\left|\begin{array}{ccc}(a+1)(a+2) & a+2 & 1 \\ (a+2)(a+3) & a+3 & 1 \\ (a+3) 2 & 1 & 0\end{array}\right|$
Again by applying, $R_{2} \rightarrow R_{2}-R_{1}$
$=\left|\begin{array}{ccc}(a+1)(a+2) & a+2 & 1 \\ (a+2) 2 & 1 & 0 \\ (a+3) 2 & 1 & 0\end{array}\right|$
$=[(2 a+4)(1)-(1)(2 a+6)]$
$=-2$
= R.H.S
Hence, the proof.
A
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
elndCareer

ClndCareer

Solution:

Consider,
L.H.S $=\left|\begin{array}{lll}a^{2} & a^{2}-(b-c)^{2} & b c \\ b^{2} & b^{2}-(c-a)^{2} & c a \\ c^{2} & c-(a-b)^{2} & a b\end{array}\right|$

Applying, $C_{2} \rightarrow C_{2}-2 C_{1}-2 C_{3}$, we get,

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
a^{2} & a^{2}-(b-c)^{2}-2 a^{2}-2 b c & b c \\
b^{2} & b^{2}-(c-a)^{2} a^{2}-(b-c)^{2}-2 b^{2}-2 c a & c a \\
c^{2} & c-(a-b)^{2} a^{2}-(b-c)^{2}-2 c^{2}-2 a b & a b
\end{array}\right| \\
& =\left|\begin{array}{lll}
a^{2} & -\left(a^{2}+b^{2}+c^{2}\right) & b c \\
b^{2} & -\left(a^{2}+b^{2}+c^{2}\right) & c a \\
c^{2} & -\left(a^{2}+b^{2}+c^{2}\right) & a b
\end{array}\right|
\end{aligned}
$$

Taking, $-\left(a^{2}+b^{2}+c^{2}\right)$ common from C_{2} we get,
$=-\left(a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{lll}a^{2} & 1 & b c \\ b^{2} & 1 & c a \\ c^{2} & 1 & a b\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we get
$=-\left(a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{ccc}a^{2} & 1 & b c \\ b^{2}-a^{2} & 0 & c a-b c \\ c^{2}-a^{2} & 0 & a b-b c\end{array}\right|$
$=-\left(a^{2}+b^{2}+c^{2}\right)(a-b)(c-a)\left|\begin{array}{ccc}a^{2} & 1 & b c \\ -(b+a) & 0 & c \\ c+a & 0 & -b\end{array}\right|$
$=-\left(a^{2}+b^{2}+c^{2}\right)(a-b)(c-a)[(-(b+a))(-b)-(c)(c+a)]$
$=(a-b)(b-c)(c-a)(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)$
= R.H.S
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer

Hence, the proof.
23. $\left|\begin{array}{ccc}1 & a^{2}+b c & a^{3} \\ 1 & b^{2}+c a & b^{3} \\ 1 & c^{2}+a b & c^{3}\end{array}\right|=-(a-b)(b-c)(c-a)\left(a^{2}+b^{2}+c^{2}\right)$

Solution:

Consider,
L.H.S $=\left|\begin{array}{lll}1 & a^{2}+b c & a^{3} \\ 1 & b^{2}+c a & b^{3} \\ 1 & c^{2}+a b & c^{3}\end{array}\right|$

Applying, $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$, and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
1 & a^{2}+b c & a^{3} \\
0 & b^{2}+c a-a^{2}-b c & b^{3}-a^{3} \\
0 & c^{2}+a b-a^{2}-b c & c^{3}-a^{3}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1 & a^{2}+b c & a^{3} \\
0 & b^{2}-a^{2}-c(b-a) & b^{3}-a^{3} \\
0 & c^{2}-a^{2}+b(c-a) & c^{3}-a^{3}
\end{array}\right| \\
& =(b-a)(c-a)\left|\begin{array}{ccc}
1 & a^{2}+b c & a^{3} \\
0 & b+a-c & b^{2}+a^{2}+a b \\
0 & c+a+b & c^{2}+a^{2}+a c
\end{array}\right| \\
& =(b-a)(c-a)\left[((b+a-c))\left(c^{2}+a^{2}+a c\right)-\left(b^{2}+a^{2}+a b\right)\left(c^{2}+a^{2}+a c\right)\right] \\
& =-(a-b)(c-a)(b-c)\left(a^{2}+b^{2}+c^{2}\right) \\
& =\text { R.H.S }
\end{aligned}
$$

Hence, proved.
= R.H.S
Hence, the proof.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer

ClndCareer

Solution:

Consider,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

L.H.S $=\left|\begin{array}{ccc}a^{2} & b c & a c+c^{2} \\ a^{2}+a b & b^{2} & a c \\ a b & b^{2}+b c & c^{2}\end{array}\right|$

Taking, a, b, c common from C_{1}, C_{2}, C_{3} respectively we get,
$=a b c\left|\begin{array}{ccc}a & c & a+c \\ a+b & b & a \\ b & b+c & c\end{array}\right|$
Applying, $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get,
$=a b c\left|\begin{array}{ccc}2(a+c) & c & a+c \\ 2(a+b) & b & a \\ 2(b+c) & b+c & c\end{array}\right|$
$=2 a b c\left|\begin{array}{ccc}(a+c) & c & a+c \\ (a+b) & b & a \\ (b+c) & b+c & c\end{array}\right|$
Applying, $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1}$, we get,
$=2 a b c\left|\begin{array}{ccc}(a+c) & -a & 0 \\ (a+b) & -a & -b \\ (b+c) & 0 & -b\end{array}\right|$
Applying, $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get,
$=2 a b c\left|\begin{array}{ccc}c & -a & 0 \\ 0 & -a & -b \\ c & 0 & -b\end{array}\right|$

ClindCareer

$=2 a b c\left|\begin{array}{ccc}c & -a & 0 \\ 0 & -a & -b \\ c & 0 & -b\end{array}\right|$
Taking c, a, b common from $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ respectively, we get,
$=2 a^{2} b^{2} c^{2}\left|\begin{array}{ccc}1 & -1 & 0 \\ 0 & -1 & -1 \\ 1 & 0 & -1\end{array}\right|$
Applying, $R_{3} \rightarrow R_{3}-R_{1}$, we have
$=2 a^{2} b^{2} c^{2}\left|\begin{array}{ccc}1 & -1 & 0 \\ 0 & -1 & -1 \\ 0 & 1 & -1\end{array}\right|$
$=2 a^{2} b^{2} c^{2}(2)$
$=4 a^{2} b^{2} c^{2}=$ R.H.S
Hence, proved.
25. $\left|\begin{array}{ccc}x+4 & x & x \\ x & x+4 & x \\ x & x & x+4\end{array}\right|=16(3 x+4)$

Solution:

Consider,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

L.H.S $=\left|\begin{array}{ccc}x+4 & x & x \\ x & x+4 & x \\ x & x & x+4\end{array}\right|$

Applying, $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get,
$=\left|\begin{array}{ccc}3 x+4 & x & x \\ 3 x+4 & x+4 & x \\ 3 x+4 & x & x+4\end{array}\right|$
Taking $(3 x+4)$ common we get,
$=(3 x+4)\left|\begin{array}{ccc}1 & x & x \\ 1 & x+4 & x \\ 1 & x & x+4\end{array}\right|$
Now by applying, $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we get,
$=(3 x+4)\left|\begin{array}{lll}1 & x & x \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right|$
$=16(3 x+4)$
Hence the proof.

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

$\Delta=\left|\begin{array}{ccc}1 & 1+p & 1+p+q \\ 2 & 3+2 p & 4+3 p+2 q \\ 3 & 6+3 p & 10+6 p+3 q\end{array}\right|$
We know that the value of a determinant remains same if we apply the operation $R_{i} \rightarrow R_{i}+k R_{j}$ or $C_{i} \rightarrow C_{i}+k C_{j}$.

Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{pC}_{1}$, we get
$\Delta=\left|\begin{array}{ccc}1 & 1+p-p(1) & 1+p+q \\ 2 & 3+2 p-p(2) & 4+3 p+2 q \\ 3 & 6+3 p-p(3) & 10+6 p+3 q\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{ccc}1 & 1 & 1+p+q \\ 2 & 3 & 4+3 p+2 q \\ 3 & 6 & 10+6 p+3 q\end{array}\right|$
Applying $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{qC}_{1}$, we get
$\Delta=\left|\begin{array}{ccc}1 & 1 & 1+p+q-q(1) \\ 2 & 3 & 4+3 p+2 q-q(2) \\ 3 & 6 & 10+6 p+3 q-q(3)\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{ccc}1 & 1 & 1+\mathrm{p} \\ 2 & 3 & 4+3 \mathrm{p} \\ 3 & 6 & 10+6 \mathrm{p}\end{array}\right|$
Applying $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{pC}_{2}$, we get
$\Delta=\left|\begin{array}{ccc}1 & 1 & 1+\mathrm{p}-\mathrm{p}(1) \\ 2 & 3 & 4+3 \mathrm{p}-\mathrm{p}(3) \\ 3 & 6 & 10+6 \mathrm{p}-\mathrm{p}(6)\end{array}\right|$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

$$
\begin{aligned}
& \Delta=\left|\begin{array}{ccc}
1 & 1 & 1+p+q-q(1) \\
2 & 3 & 4+3 p+2 q-q(2) \\
3 & 6 & 10+6 p+3 q-q(3)
\end{array}\right| \\
& \Rightarrow \Delta=\left|\begin{array}{ccc}
1 & 1 & 1+p \\
2 & 3 & 4+3 p \\
3 & 6 & 10+6 p
\end{array}\right|
\end{aligned}
$$

$$
\text { Applying } \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{pC}_{2} \text {, we get }
$$

$$
\Delta=\left|\begin{array}{ccc}
1 & 1 & 1+p-p(1) \\
2 & 3 & 4+3 p-p(3) \\
3 & 6 & 10+6 p-p(6)
\end{array}\right|
$$

$$
\Rightarrow \Delta=\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & 4 \\
3 & 6 & 10
\end{array}\right|
$$

Applying $C_{2} \rightarrow C_{2}-C_{1}$, we get
$\Delta=\left|\begin{array}{ccc}1 & 1-1 & 1 \\ 2 & 3-2 & 4 \\ 3 & 6-3 & 10\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{ccc}1 & 0 & 1 \\ 2 & 1 & 4 \\ 3 & 3 & 10\end{array}\right|$
Applying $C_{3} \rightarrow C_{3}-C_{1}$, we get
$\Delta=\left|\begin{array}{ccc}1 & 0 & 1-1 \\ 2 & 1 & 4-2 \\ 3 & 3 & 10-3\end{array}\right|$

$$
\begin{aligned}
& \Rightarrow \Delta=\left|\begin{array}{lll}
1 & 1 & 1 \\
2 & 3 & 4 \\
3 & 6 & 10
\end{array}\right| \\
& \Rightarrow \Delta=\left|\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 2 \\
3 & 3 & 7
\end{array}\right|
\end{aligned}
$$

Expanding the determinant along R_{1}, we have
$\Delta=1[(1)(7)-(3)(2)]-0+0$
$\therefore \Delta=7-6=1$
Thus,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

Clnd Career

$$
\left|\begin{array}{ccc}
1 & 1+p & 1+p+q \\
2 & 3+2 p & 4+3 p+2 q \\
3 & 6+3 p & 10+6 p+3 q
\end{array}\right|=1
$$

Hence the proof.
Exercise 6.3 Page No: 6.71

1. Find the area of the triangle with vertices at the points:
(i) $(3,8),(-4,2)$ and $(5,-1)$
(ii) $(2,7),(1,1)$ and $(10,8)$
(iii) (-1, -8), (-2, -3) and (3, 2)
(iv) $(0,0),(6,0)$ and $(4,3)$

Solution:

(i) Given $(3,8),(-4,2)$ and $(5,-1)$ are the vertices of the triangle.

We know that, if vertices of a triangle are $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$, then the area of the triangle is given by:
$\Delta=\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{X}_{3} & \mathrm{y}_{3} & 1\end{array}\right|$
Now, substituting given value in above formula
$\Delta=\frac{1}{2}\left|\begin{array}{ccc}3 & 8 & 1 \\ -4 & 2 & 1 \\ 5 & -1 & 1\end{array}\right|$
Expanding along R_{1}
$=\frac{1}{2}\left[3\left|\begin{array}{cc}2 & 1 \\ -1 & 1\end{array}\right|-8\left|\begin{array}{cc}-4 & 1 \\ 5 & 1\end{array}\right|+1\left|\begin{array}{cc}-4 & 2 \\ 5 & -1\end{array}\right|\right]$
$=\frac{1}{2}[3(3)-8(-9)+1(-6)]$
$=\frac{1}{2}[9+72-6]$
$=\frac{75}{2}$ Square units
Thus area of triangle is $\frac{75}{2}$ square units
(ii) Given $(2,7),(1,1)$ and $(10,8)$ are the vertices of the triangle.

We know that if vertices of a triangle are $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$, then the area of the triangle is given by:
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
$\Delta=\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1\end{array}\right|$
Now, substituting given value in above formula
$\Delta=\frac{1}{2}\left|\begin{array}{ccc}2 & 7 & 1 \\ 1 & 1 & 1 \\ 10 & 8 & 1\end{array}\right|$
Expanding along R_{1}
$=\frac{1}{2}\left[2\left|\begin{array}{ll}1 & 1 \\ 8 & 1\end{array}\right|-7\left|\begin{array}{cc}1 & 1 \\ 10 & 1\end{array}\right|+1\left|\begin{array}{cc}1 & 1 \\ 10 & 8\end{array}\right|\right]$
$=\frac{1}{2}[2(-7)-7(-9)+1(-2)]$
$=\frac{1}{2}[-14+63-2]$
$=\frac{47}{2}$ Square units
Thus area of triangle is $\frac{47}{2}$ square units
(iii) Given $(-1,-8),(-2,-3)$ and $(3,2)$ are the vertices of the triangle.

We know that if vertices of a triangle are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$, then the area of the triangle is given by:
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
$\Delta=\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1\end{array}\right|$
Now, substituting given value in above formula

$$
\Delta=\frac{1}{2}\left|\begin{array}{ccc}
-1 & -8 & 1 \\
-2 & -3 & 1 \\
3 & 2 & 1
\end{array}\right|
$$

Expanding along R_{1}

$$
\begin{aligned}
& =\frac{1}{2}\left[\begin{array}{cc}
\left.-1\left|\begin{array}{cc}
-3 & 1 \\
2 & 1
\end{array}\right|-8\left|\begin{array}{cc}
-2 & 1 \\
3 & 1
\end{array}\right|+1\left|\begin{array}{cc}
-2 & -3 \\
3 & 2
\end{array}\right|\right] \\
=\frac{1}{2}[-1(-5)-8(-5)+1(5)] \\
=\frac{1}{2}[5-40+5] \\
=\frac{-30}{2} \text { Square units }
\end{array}\right. \text { (-5)}
\end{aligned}
$$

$$
=\frac{1}{2}\left[-1\left|\begin{array}{cc}
-3 & 1 \\
2 & 1
\end{array}\right|-8\left|\begin{array}{cc}
-2 & 1 \\
3 & 1
\end{array}\right|+1\left|\begin{array}{cc}
-2 & -3 \\
3 & 2
\end{array}\right|\right]
$$

$$
=\frac{1}{2}[-1(-5)-8(-5)+1(5)]
$$

$$
=\frac{1}{2}[5-40+5]
$$

$$
=\frac{-30}{2} \text { Square units }
$$

As we know area cannot be negative. Therefore, 15 square unit is the area

Thus area of triangle is 15 square units
(iv) Given $(-1,-8),(-2,-3)$ and $(3,2)$ are the vertices of the triangle.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

We know that if vertices of a triangle are $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$, then the area of the triangle is given by:

$$
\Delta=\frac{1}{2}\left|\begin{array}{lll}
\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\
\mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\
\mathrm{x}_{3} & \mathrm{y}_{3} & 1
\end{array}\right|
$$

Now, substituting given value in above formula
$\Delta=\frac{1}{2}\left|\begin{array}{lll}0 & 0 & 1 \\ 6 & 0 & 1 \\ 4 & 3 & 1\end{array}\right|$
Expanding along R_{1}

$$
\begin{aligned}
& =\frac{1}{2}\left[0\left|\begin{array}{ll}
0 & 1 \\
3 & 1
\end{array}\right|-0\left|\begin{array}{ll}
6 & 1 \\
4 & 1
\end{array}\right|+1\left|\begin{array}{ll}
6 & 0 \\
4 & 3
\end{array}\right|\right] \\
& =\frac{1}{2}[0-0+1(18)] \\
& =\frac{1}{2}[18] \\
& =9 \text { square units }
\end{aligned}
$$

Thus area of triangle is 9 square units
2. Using the determinants show that the following points are collinear:
(i) $(5,5),(-5,1)$ and $(10,7)$
(ii) $(1,-1),(2,1)$ and $(10,8)$
(iii) $(3,-2),(8,8)$ and $(5,2)$
(iv) $(2,3),(-1,-2)$ and (5, 8)

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClindCareer

(i) Given (5, 5), (-5, 1) and (10, 7)

We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are ($\mathrm{x}_{1}, \mathrm{y}_{1}$), $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and ($\mathrm{x}_{3}, \mathrm{y}_{3}$), then the area of the triangle is given by

$$
\Delta=\frac{1}{2}\left|\begin{array}{lll}
\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\
\mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\
\mathrm{x}_{3} & \mathrm{y}_{3} & 1
\end{array}\right|=0
$$

Now, substituting given value in above formula
$\Delta=\frac{1}{2}\left|\begin{array}{ccc}5 & 5 & 1 \\ -5 & 1 & 1 \\ 10 & 7 & 1\end{array}\right|=0$
$\frac{1}{2}\left|\begin{array}{ccc}5 & 5 & 1 \\ -5 & 1 & 1 \\ 10 & 7 & 1\end{array}\right|$
Expanding along R_{1}

$$
\begin{aligned}
& =\frac{1}{2}\left[5\left|\begin{array}{ll}
1 & 1 \\
7 & 1
\end{array}\right|-5\left|\begin{array}{cc}
-5 & 1 \\
10 & 1
\end{array}\right|+1\left|\begin{array}{cc}
-5 & 1 \\
10 & 7
\end{array}\right|\right] \\
& =\frac{1}{2}[5(-6)-5(-15)+1(-45)] \\
& =\frac{1}{2}[-35+75-45] \\
& =0
\end{aligned}
$$

Since, Area of triangle is zero
Hence, points are collinear
(ii) Given (1, -1), $(2,1)$ and (10, 8)
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are ($\mathrm{x}_{1}, \mathrm{y}_{1}$), $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and ($\mathrm{x}_{3}, \mathrm{y}_{3}$), then the area of the triangle is given by,

$$
\Delta=\frac{1}{2}\left|\begin{array}{lll}
\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\
\mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\
\mathrm{x}_{3} & \mathrm{y}_{3} & 1
\end{array}\right|=0
$$

Now, by substituting given value in above formula
$\Delta=\frac{1}{2}\left|\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & 1 \\ 4 & 5 & 1\end{array}\right|=0$
$\frac{1}{2}\left|\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & 1 \\ 4 & 5 & 1\end{array}\right|$
Expanding along R_{1}

$$
\begin{aligned}
& =\frac{1}{2}\left[1\left|\begin{array}{ll}
1 & 1 \\
5 & 1
\end{array}\right|+1\left|\begin{array}{ll}
2 & 1 \\
4 & 1
\end{array}\right|+1\left|\begin{array}{ll}
2 & 1 \\
4 & 5
\end{array}\right|\right] \\
& =\frac{1}{2}[1-5+2-4+10-4] \\
& =\frac{1}{2}[0] \\
& =0
\end{aligned}
$$

Since, Area of triangle is zero.
Hence, points are collinear.
(iii) Given (3, -2), $(8,8)$ and $(5,2)$

We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are ($\mathrm{x}_{1}, \mathrm{y}_{1}$), ($\mathrm{x}_{2}, \mathrm{y}_{2}$) and ($\mathrm{x}_{3}, \mathrm{y}_{3}$), then the area of the triangle is given by, https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
$\Delta=\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1\end{array}\right|=0$

Now, by substituting given value in above formula
$\Delta=\frac{1}{2}\left|\begin{array}{ccc}3 & -2 & 1 \\ 8 & 8 & 1 \\ 5 & 2 & 1\end{array}\right|=0$
$\frac{1}{2}\left|\begin{array}{ccc}3 & -2 & 1 \\ 8 & 8 & 1 \\ 5 & 2 & 1\end{array}\right|$

Expanding along R_{1}

$=\frac{1}{2}\left[3\left|\begin{array}{ll}8 & 1 \\ 2 & 1\end{array}\right|-2\left|\begin{array}{ll}8 & 1 \\ 5 & 1\end{array}\right|+1\left|\begin{array}{ll}8 & 8 \\ 5 & 2\end{array}\right|\right]$
$=\frac{1}{2}[3(6)-2(3)+1(-24)]$
$=\frac{1}{2}[0]$
$=0$

Since, Area of triangle is zero
Hence, points are collinear.
(iv) Given (2, 3), (-1, -2$)$ and $(5,8)$

We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are ($\mathrm{x}_{1}, \mathrm{y}_{1}$), $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and ($\mathrm{x}_{3}, \mathrm{y}_{3}$), then the area of the triangle is given by,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer

$$
\Delta=\frac{1}{2}\left|\begin{array}{lll}
\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\
\mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\
\mathrm{x}_{3} & \mathrm{y}_{3} & 1
\end{array}\right|=0
$$

Now, by substituting given value in above formula

$$
\begin{aligned}
& \Delta=\frac{1}{2}\left|\begin{array}{ccc}
2 & 3 & 1 \\
-1 & -2 & 1 \\
5 & 8 & 1
\end{array}\right|=0 \\
& \frac{1}{2}\left|\begin{array}{ccc}
2 & 3 & 1 \\
-1 & -2 & 1 \\
5 & 8 & 1
\end{array}\right|
\end{aligned}
$$

Expanding along R_{1}
$=\frac{1}{2}\left[2\left|\begin{array}{cc}-2 & 1 \\ 8 & 1\end{array}\right|-3\left|\begin{array}{cc}-1 & 1 \\ 5 & 1\end{array}\right|+1\left|\begin{array}{cc}-1 & -2 \\ 5 & 8\end{array}\right|\right]$
$=\frac{1}{2}[2(-10)-3(-1-5)+1(-8+10)]$
$=\frac{1}{2}[-20+18+2]$
$=0$
$=\frac{1}{2}\left[2\left|\begin{array}{cc}-2 & 1 \\ 8 & 1\end{array}\right|-3\left|\begin{array}{cc}-1 & 1 \\ 5 & 1\end{array}\right|+1\left|\begin{array}{cc}-1 & -2 \\ 5 & 8\end{array}\right|\right]$
$=\frac{1}{2}[2(-10)-3(-1-5)+1(-8+10)]$
$=\frac{1}{2}[-20+18+2]$
$=0$
Since, Area of triangle is zero
Hence, points are collinear.
3. If the points $(a, 0),(0, b)$ and $(1,1)$ are collinear, prove that $a+b=a b$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer

ClndCareer

Given (a, 0), (0, b) and (1, 1) are collinear
We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are ($\mathrm{x}_{1}, \mathrm{y}_{1}$), $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and ($\mathrm{x}_{3}, \mathrm{y}_{3}$), then the area of the triangle is given by,

$$
\Delta=\frac{1}{2}\left|\begin{array}{lll}
\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\
\mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\
\mathrm{x}_{3} & \mathrm{y}_{3} & 1
\end{array}\right|=0
$$

Thus

$$
\frac{1}{2}\left|\begin{array}{lll}
\mathrm{a} & 0 & 1 \\
0 & \mathrm{~b} & 1 \\
1 & 1 & 1
\end{array}\right|=0
$$

Expanding along R_{1}

$$
\begin{aligned}
& \Rightarrow 0=\frac{1}{2}\left[a\left|\begin{array}{ll}
\mathrm{b} & 1 \\
1 & 1
\end{array}\right|-0\left|\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right|+1\left|\begin{array}{ll}
0 & \mathrm{~b} \\
1 & 1
\end{array}\right|\right] \\
& \Rightarrow \frac{1}{2}[a(b-1)-0(-1)+1(-\mathrm{b})]=0 \\
& \Rightarrow \\
& \frac{1}{2}[a b-a-b]=0 \\
& \Rightarrow a+b=a b
\end{aligned}
$$

Hence Proved
4. Using the determinants prove that the points (a, b), (a^{\prime}, b^{\prime}) and ($\left.a-a^{\prime}, b-b\right)$ are collinear if $\mathbf{a} \mathbf{b}^{\prime}=\mathbf{a} \mathbf{a} \mathbf{b}$.

Solution:

Given (a, b), (a^{\prime}, b^{\prime}) and ($a-a^{\prime}, b-b$) are collinear

ClndCareer

We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are ($\mathrm{x}_{1}, \mathrm{y}_{1}$), $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and ($\mathrm{x}_{3}, \mathrm{y}_{3}$), then the area of the triangle is given by,

$$
\Delta=\frac{1}{2}\left|\begin{array}{lll}
\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\
\mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\
\mathrm{x}_{3} & \mathrm{y}_{3} & 1
\end{array}\right|=0
$$

Thus

$$
\frac{1}{2}\left|\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & 1 \\
\mathrm{a}^{\prime} & \mathrm{b}^{\prime} & 1 \\
\mathrm{a}-\mathrm{a}^{\prime} & \mathrm{b}-\mathrm{b}^{\prime} & 1
\end{array}\right|=0
$$

Expanding along R_{1}

$$
\begin{aligned}
& \Rightarrow 0=\frac{1}{2}\left[a\left|\begin{array}{cc}
b^{\prime} & 1 \\
b-b^{\prime} & 1
\end{array}\right|-b\left|\begin{array}{cc}
a^{\prime} & 1 \\
a-a^{\prime} & 1
\end{array}\right|+1\left|\begin{array}{cc}
a^{\prime} & b^{\prime} \\
a-a^{\prime} & b-b^{\prime}
\end{array}\right|\right] \\
& \Rightarrow \frac{1}{2}\left[a\left(b^{\prime}-b+b^{\prime}\right)-b\left(a^{\prime}-a+a^{\prime}\right)+1\left(a^{\prime} b-a^{\prime} b^{\prime}-a b^{\prime}+a^{\prime} b^{\prime}\right)\right]=0 \\
& \Rightarrow \frac{1}{2}\left[a^{\prime} b-a b+a b^{\prime}-a^{\prime} b+a b+a^{\prime} b+a^{\prime} b-a^{\prime} b^{\prime}-a b^{\prime}+a^{\prime} b^{\prime}\right]=0 \\
& \Rightarrow a b^{\prime}-a^{\prime} b=0 \\
& \Rightarrow a b b^{\prime}=a^{\prime} b
\end{aligned}
$$

Hence, the proof.

5. Find the value of λ so that the points (1,-5), (-4,5) and ($\lambda, 7$) are collinear.

Solution:

Given (1, -5), $(-4,5)$ and $(\lambda, 7)$ are collinear
We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are ($\mathrm{x}_{1}, \mathrm{y}_{1}$), ($\mathrm{x}_{2}, \mathrm{y}_{2}$) and ($\mathrm{x}_{3}, \mathrm{y}_{3}$), then the area of the triangle is given by,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

$$
\Delta=\frac{1}{2}\left|\begin{array}{lll}
\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\
\mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\
\mathrm{x}_{3} & \mathrm{y}_{3} & 1
\end{array}\right|=0
$$

Now, by substituting given value in above formula

$$
\left.\left.\left.\begin{array}{l}
\Delta=\frac{1}{2}\left|\begin{array}{ccc}
1 & -5 & 1 \\
-4 & 5 & 1 \\
\lambda & 7 & 1
\end{array}\right|=0 \\
\text { Expanding along } R_{1} \\
\Rightarrow \frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
7 & 1
\end{array}|+5|_{\lambda}^{-4}\right. \\
1
\end{array}|+1| \begin{array}{cc}
-4 & 5 \\
\lambda & 7
\end{array} \right\rvert\,\right]=001(-28-5 \lambda)\right]=0 .
$$

6. Find the value of x if the area of Δ is 35 square cms with vertices ($x, 4),(2,-6)$ and (5, 4).

Solution:

Given $(x, 4),(2,-6)$ and $(5,4)$ are the vertices of a triangle.
We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are ($\mathrm{x}_{1}, \mathrm{y}_{1}$), ($\mathrm{x}_{2}, \mathrm{y}_{2}$) and ($\mathrm{x}_{3}, \mathrm{y}_{3}$), then the area of the triangle is given by,
$\Delta=\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1\end{array}\right|$
Now, by substituting given value in above formula

$$
\left.\Rightarrow 35=\left|\frac{1}{2}\right| \begin{array}{ccc}
\mathrm{x} & 4 & 1 \\
2 & -6 & 1 \\
5 & 4 & 1
\end{array} \right\rvert\,
$$

Removing modulus

$$
\Rightarrow \quad \pm 2 \times 35=\left|\begin{array}{ccc}
\mathrm{x} & 4 & 1 \\
2 & -6 & 1 \\
5 & 4 & 1
\end{array}\right|
$$

Expanding along R_{1}

$$
\begin{aligned}
& \Rightarrow\left[\left.\begin{array}{cc}
\mathrm{x}
\end{array} \begin{array}{cc}
-6 & 1 \\
4 & 1
\end{array}|-4| \begin{array}{ll}
2 & 1 \\
5 & 1
\end{array}|+1| \begin{array}{cc}
2 & -6 \\
5 & 4
\end{array} \right\rvert\,\right]= \pm 70 \\
& \pm 2 \times 35=\left|\begin{array}{ccc}
\mathrm{x} & 4 & 1 \\
2 & -6 & 1 \\
5 & 4 & 1
\end{array}\right|
\end{aligned}
$$

Expanding along R_{1}
$\Rightarrow\left[\mathrm{x}\left|\begin{array}{cc}-6 & 1 \\ 4 & 1\end{array}\right|-4\left|\begin{array}{cc}2 & 1 \\ 5 & 1\end{array}\right|+1\left|\begin{array}{cc}2 & -6 \\ 5 & 4\end{array}\right|\right]= \pm 70$
$\Rightarrow[x(-10)-4(-3)+1(8-30)]= \pm 70$
$\Rightarrow[-10 \mathrm{x}+12+38]= \pm 70$
$\Rightarrow \pm 70=-10 x+50$
Taking positive sign, we get
$\Rightarrow+70=-10 x+50$
$\Rightarrow 10 x=-20$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

$\Rightarrow x=-2$
Taking -negative sign, we get
$\Rightarrow-70=-10 x+50$
$\Rightarrow 10 x=120$
$\Rightarrow x=12$
Thus $\mathrm{x}=-2,12$
Exercise 6.4 Page No: 6.84
Solve the following system of linear equations by Cramer's rule:

1. $x-2 y=4$
$-3 x+5 y=-7$

Solution:

Given $x-2 y=4$
$-3 x+5 y=-7$
Let there be a system of n simultaneous linear equations and with n unknown given by

ClndCareer

$\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1}$
$\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}$
: :
$\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
Let $D=\left|\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 1} & \ldots & a_{n n}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $j^{\text {th }}$ column by
$\left|\begin{array}{c}\mathrm{b}_{1} \\ \mathrm{~b}_{2} \\ \vdots \\ \mathrm{~b}_{\mathrm{n}}\end{array}\right|$
Then,

$$
\mathrm{x}_{1}=\frac{\mathrm{D}_{1}}{\mathrm{D}}, \mathrm{x}_{2}=\frac{\mathrm{D}_{2}}{\mathrm{D}}, \ldots, \mathrm{x}_{\mathrm{n}}=\frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{D}} \text { Provided that } \mathrm{D} \neq 0
$$

Now, here we have
$x-2 y=4$
$-3 x+5 y=-7$
So by comparing with the theorem, let's find $\mathrm{D}, \mathrm{D}_{1}$ and D_{2}

$$
\begin{aligned}
& \Rightarrow D=\left|\begin{array}{cc}
1 & -2 \\
-3 & 5
\end{array}\right| \\
& \Rightarrow D=\left|\begin{array}{cc}
1 & -2 \\
-3 & 5
\end{array}\right|
\end{aligned}
$$

Solving determinant, expanding along $1^{\text {st }}$ row

$$
\Rightarrow D=5(1)-(-3)(-2)
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
$\Rightarrow D=5-6$
$\Rightarrow \mathrm{D}=-1$
Again,
$\Rightarrow \quad D_{1}=\left|\begin{array}{cc}4 & -2 \\ -7 & 5\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=5(4)-(-7)(-2)$
$\Rightarrow D_{1}=20-14$
$\Rightarrow D_{1}=6$
And
$\Rightarrow \quad D_{2}=\left|\begin{array}{cc}1 & 4 \\ -3 & -7\end{array}\right|$

Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=1(-7)-(-3)(4)$
$\Rightarrow D_{2}=-7+12$
$\Rightarrow D_{2}=5$
Thus by Cramer's Rule, we have
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClindCareer

$$
\begin{aligned}
& \Rightarrow x=\frac{D_{1}}{D} \\
& \Rightarrow x=\frac{6}{-1} \\
& \Rightarrow x=-6
\end{aligned}
$$

And
$\Rightarrow \mathrm{y}=\frac{\mathrm{D}_{2}}{\mathrm{D}}$
$\Rightarrow \mathrm{y}=\frac{5}{-1}$
$\Rightarrow y=-5$
2. $2 x-y=1$
$7 x-2 y=-7$

Solution:

Given $2 x-y=1$ and
$7 x-2 y=-7$
Let there be a system of n simultaneous linear equations and with n unknown given by

ClindCareer

$\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1}$
$\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}$
: : :
$\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
Let $\mathrm{D}=\left|\begin{array}{cccc}\mathrm{a}_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 1} & \ldots & a_{n n}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $j^{\text {th }}$ column by
$\left|\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right|$
Then,
$x_{1}=\frac{D_{1}}{D}, x_{2}=\frac{D_{2}}{D}, \ldots, x_{n}=\frac{D_{n}}{D}$ Provided that $D \neq 0$
Now, here we have
$2 x-y=1$
$7 x-2 y=-7$
So by comparing with the theorem, let's find $\mathrm{D}, \mathrm{D}_{1}$ and D_{2}
$\Rightarrow \quad \mathrm{D}=\left|\begin{array}{ll}2 & -1 \\ 7 & -2\end{array}\right|$

Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=1(-2)-(-7)(-1)$
$\Rightarrow D_{1}=-2-7$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer
$\Rightarrow D_{1}=-9$
And
$\Rightarrow \quad D_{2}=\left|\begin{array}{cc}2 & 1 \\ 7 & -7\end{array}\right|$

Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=2(-7)-(7)(1)$
$\Rightarrow D_{2}=-14-7$
$\Rightarrow \mathrm{D}_{2}=-21$
Thus by Cramer's Rule, we have

$$
\begin{aligned}
& \Rightarrow x=\frac{D_{1}}{D} \\
& \Rightarrow x=\frac{-9}{3} \\
& \Rightarrow x=-3 \\
& \text { And } \Rightarrow y=\frac{D_{2}}{D} \\
& \Rightarrow y=\frac{-21}{3} \\
& \Rightarrow y=-7
\end{aligned}
$$

3. $2 x-y=17$
$3 x+5 y=6$

Solution:

Given $2 x-y=17$ and
$3 x+5 y=6$
Let there be a system of n simultaneous linear equations and with n unknown given by
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

$\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1}$
$\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}$
: : :
$\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
Let $\mathrm{D}=\left|\begin{array}{cccc}\mathrm{a}_{11} & a_{12} & \ldots & a_{1 \mathrm{n}} \\ \mathrm{a}_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{\mathrm{n} 1} & a_{\mathrm{n} 1} & \ldots & a_{\mathrm{nn}}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $\mathrm{j}^{\text {th }}$ column by
$\left|\begin{array}{c}\mathrm{b}_{1} \\ \mathrm{~b}_{2} \\ \vdots \\ \mathrm{~b}_{\mathrm{n}}\end{array}\right|$

Then,

$$
x_{1}=\frac{D_{1}}{D}, x_{2}=\frac{D_{2}}{D}, \ldots, x_{n}=\frac{D_{n}}{D} \text { Provided that } D \neq 0
$$

$\left|\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right|$
Then,
$\mathrm{x}_{1}=\frac{\mathrm{D}_{1}}{\mathrm{D}}, \mathrm{x}_{2}=\frac{\mathrm{D}_{2}}{\mathrm{D}}, \ldots, \mathrm{x}_{\mathrm{n}}=\frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{D}}$ Provided that $\mathrm{D} \neq 0$
Now, here we have
$2 x-y=17$
$3 x+5 y=6$
So by comparing with the theorem, let's find D, D_{1} and D_{2}
$\Rightarrow \mathrm{D}=\left|\begin{array}{cc}2 & -1 \\ 3 & 5\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=17(5)-(6)(-1)$
$\Rightarrow D_{1}=85+6$
$\Rightarrow D_{1}=91$
$\Rightarrow \quad D_{2}=\left|\begin{array}{cc}2 & 17 \\ 3 & 6\end{array}\right|$

Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=2(6)-(17)(3)$
$\Rightarrow D_{2}=12-51$
$\Rightarrow D_{2}=-39$
Thus by Cramer's Rule, we have
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

$$
\begin{aligned}
& \Rightarrow x=\frac{D_{1}}{D} \\
& \Rightarrow x=\frac{91}{13} \\
& \Rightarrow x=7 \\
& \text { And } \Rightarrow y=\frac{D_{2}}{D} \\
& \Rightarrow y=\frac{-39}{13} \\
& \Rightarrow y=-3
\end{aligned}
$$

4. $3 x+y=19$
$3 x-y=23$

Solution:

Let there be a system of n simultaneous linear equations and with n unknown given by

ClindCareer

$\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1}$
$\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}$
: : :
$\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
Let $\mathrm{D}=\left|\begin{array}{cccc}\mathrm{a}_{11} & a_{12} & \ldots & a_{1 \mathrm{n}} \\ \mathrm{a}_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{\mathrm{n} 1} & a_{\mathrm{n} 1} & \ldots & a_{\mathrm{nn}}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $\mathrm{j}^{\text {th }}$ column by
$\left|\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right|$
Then,

$$
x_{1}=\frac{D_{1}}{D}, x_{2}=\frac{D_{2}}{D}, \ldots, x_{n}=\frac{D_{n}}{D} \text { Provided that } D \neq 0
$$

Now, here we have
$3 x+y=19$
$3 x-y=23$
So by comparing with the theorem, let's find D, D_{1} and D_{2}
$\Rightarrow \quad \mathrm{D}=\left|\begin{array}{cc}3 & 1 \\ 3 & -1\end{array}\right|$

Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D=3(-1)-(3)(1)$
$\Rightarrow D=-3-3$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
$\Rightarrow \mathrm{D}=-6$
Again,
$\Rightarrow \quad D_{1}=\left|\begin{array}{cc}19 & 1 \\ 23 & -1\end{array}\right|$

Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=19(-1)-(23)(1)$
$\Rightarrow D_{1}=-19-23$
$\Rightarrow D_{1}=-42$
$\Rightarrow \quad D_{2}=\left|\begin{array}{ll}3 & 19 \\ 3 & 23\end{array}\right|$

Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=3(23)-(19)(3)$
$\Rightarrow D_{2}=69-57$
$\Rightarrow D_{2}=12$
Thus by Cramer's Rule, we have

$$
\begin{aligned}
& \Rightarrow x=\frac{D_{1}}{D} \\
& \Rightarrow x=\frac{-42}{-6} \\
& \Rightarrow x=7 \\
& \text { And } \Rightarrow y=\frac{D_{2}}{D} \\
& \Rightarrow y=\frac{12}{-6} \\
& \Rightarrow y=-2
\end{aligned}
$$

5. $2 x-y=-2$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

$3 x+4 y=3$

Solution:

Given $2 x-y=-2$ and
$3 x+4 y=3$
Let there be a system of n simultaneous linear equations and with n unknown given by

ClndCareer

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \vdots: \vdots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=b_{n} \\
& \text { Let } \mathrm{D}=\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 1} & \ldots & a_{n n}
\end{array}\right|
\end{aligned}
$$

Let D_{j} be the determinant obtained from D after replacing the $j^{\text {th }}$ column by $\left|\begin{array}{c}\mathrm{b}_{1} \\ \mathrm{~b}_{2} \\ \vdots \\ \mathrm{~b}_{\mathrm{n}}\end{array}\right|$

Then,

$$
\mathrm{x}_{1}=\frac{\mathrm{D}_{1}}{\mathrm{D}}, \mathrm{x}_{2}=\frac{\mathrm{D}_{2}}{\mathrm{D}}, \ldots, \mathrm{x}_{\mathrm{n}}=\frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{D}} \text { Provided that } \mathrm{D} \neq 0
$$

Now, here we have
$2 x-y=-2$
$3 x+4 y=3$
So by comparing with the theorem, let's find D, D_{1} and D_{2}
$\Rightarrow D=\left|\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow \mathrm{D}=2(4)-(3)(-1)$
$\Rightarrow \mathrm{D}=8+3$
$\Rightarrow \mathrm{D}=11$

Again,
$\Rightarrow D_{1}=\left|\begin{array}{cc}-2 & -1 \\ 3 & 4\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=-2(4)-(3)(-1)$
$\Rightarrow D_{1}=-8+3$
$\Rightarrow D_{1}=-5$
$\Rightarrow D_{2}=\left|\begin{array}{cc}2 & -2 \\ 3 & 3\end{array}\right|$

Solving determinant, expanding along $1^{1 \text { st }}$ row
$\Rightarrow \mathrm{D}_{2}=3(2)-(-2)(3)$
$\Rightarrow D_{2}=6+6$
$\Rightarrow D_{2}=12$

Thus by Cramer's Rule, we have

$$
\begin{aligned}
& \Rightarrow x=\frac{D_{1}}{D} \\
& \Rightarrow x=\frac{-5}{11} \\
& \text { And } \Rightarrow y=\frac{D_{2}}{D} \\
& \Rightarrow y=\frac{12}{11}
\end{aligned}
$$

6. $3 x+a y=4$

$2 x+a y=2, a \neq 0$

Solution:

Given $3 x+a y=4$ and
$2 x+a y=2, a \neq 0$
Let there be a system of n simultaneous linear equations and with n unknown given by https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClindCareer

$\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1}$
$\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}$
: :
$\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
Let $D=\left|\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 1} & \ldots & a_{n n}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $j^{\text {th }}$ column by

Then,
$\mathrm{x}_{1}=\frac{\mathrm{D}_{1}}{\mathrm{D}}, \mathrm{x}_{2}=\frac{\mathrm{D}_{2}}{\mathrm{D}}, \ldots, \mathrm{x}_{\mathrm{n}}=\frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{D}}$ Provided that $\mathrm{D} \neq 0$
$3 x+a y=4$
$2 x+a y=2, a \neq 0$
So by comparing with the theorem, let's find D, D_{1} and D_{2}
$\Rightarrow D=\left|\begin{array}{ll}3 & \mathrm{a} \\ 2 & \mathrm{a}\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D=3(a)-(2)(a)$
$\Rightarrow \mathrm{D}=3 \mathrm{a}-2 \mathrm{a}$
$\Rightarrow \mathrm{D}=\mathrm{a}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer

Again,
$\Rightarrow \quad D_{1}=\left|\begin{array}{ll}4 & a \\ 2 & a\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=4(a)-(2)(a)$
$\Rightarrow D=4 a-2 a$
$\Rightarrow D=2 a$
$\Rightarrow \quad D_{2}=\left|\begin{array}{ll}3 & 4 \\ 2 & 2\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=3(2)-(2)(4)$
$\Rightarrow D=6-8$
$\Rightarrow D=-2$
Thus by Cramer's Rule, we have

$$
\begin{aligned}
& \Rightarrow x=\frac{D_{1}}{D} \\
& \Rightarrow x=\frac{2 a}{a} \\
& \Rightarrow x=2 \\
& \Rightarrow y=\frac{D_{2}}{D} \\
& \Rightarrow y=\frac{-2}{a}
\end{aligned}
$$

7. $2 x+3 y=10$
$x+6 y=4$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

Let there be a system of n simultaneous linear equations and with n unknown given by

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \vdots \vdots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=b_{n} \\
& \text { Let } D=\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 1} & \ldots & a_{n n}
\end{array}\right|
\end{aligned}
$$

Let D_{j} be the determinant obtained from D after replacing the $\mathrm{j}^{\text {th }}$ column by

Then,
$x_{1}=\frac{D_{1}}{D}, x_{2}=\frac{D_{2}}{D}, \ldots, x_{n}=\frac{D_{n}}{D}$ Provided that $D \neq 0$
Now, here we have
$2 x+3 y=10$
$x+6 y=4$
So by comparing with the theorem, let's find $\mathrm{D}, \mathrm{D}_{1}$ and D_{2}
$\Rightarrow \mathrm{D}=\left|\begin{array}{ll}2 & 3 \\ 1 & 6\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D=2(6)-(3)(1)$
$\Rightarrow D=12-3$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer

ClndCareer

$\Rightarrow \mathrm{D}=9$
Again,
$\Rightarrow \quad D_{1}=\left|\begin{array}{cc}10 & 3 \\ 4 & 6\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=10(6)-(3)(4)$
$\Rightarrow D=60-12$
$\Rightarrow D=48$
$\Rightarrow \quad D_{2}=\left|\begin{array}{cc}2 & 10 \\ 1 & 4\end{array}\right|$

Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=2(4)-(10)(1)$
$\Rightarrow D_{2}=8-10$
$\Rightarrow D_{2}=-2$
Thus by Cramer's Rule, we have
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

$$
\begin{aligned}
& \Rightarrow \mathrm{x}=\frac{\mathrm{D}_{1}}{\mathrm{D}} \\
& \Rightarrow \mathrm{x}=\frac{48}{9} \\
& \Rightarrow \mathrm{x}=\frac{16}{3} \\
& \Rightarrow \mathrm{y}=\frac{\mathrm{D}_{2}}{\mathrm{D}} \\
& \Rightarrow \mathrm{y}=\frac{-2}{9} \\
& \Rightarrow \mathrm{y}=\frac{-2}{9}
\end{aligned}
$$

8. $5 x+7 y=-2$

$4 x+6 y=-3$

Solution:

Let there be a system of n simultaneous linear equations and with n unknown given by

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \vdots: \vdots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=b_{n} \\
& \text { Let } D=\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 1} & \ldots & a_{n n}
\end{array}\right|
\end{aligned}
$$

Let D_{j} be the determinant obtained from D after replacing the $j^{\text {th }}$ column by
$\left|\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right|$

Then,
$\mathrm{x}_{1}=\frac{\mathrm{D}_{1}}{\mathrm{D}}, \mathrm{x}_{2}=\frac{\mathrm{D}_{2}}{\mathrm{D}}, \ldots, \mathrm{X}_{\mathrm{n}}=\frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{D}}$ Provided that $\mathrm{D} \neq 0$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer

ClndCareer

Now, here we have
$5 x+7 y=-2$
$4 x+6 y=-3$

So by comparing with the theorem, let's find D, D_{1} and D_{2}
$\Rightarrow D=\left|\begin{array}{ll}5 & 7 \\ 4 & 6\end{array}\right|$

Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D=5(6)-(7)(4)$
$\Rightarrow D=30-28$
$\Rightarrow D=2$
Again,
$\Rightarrow \quad D_{1}=\left|\begin{array}{ll}-2 & 7 \\ -3 & 6\end{array}\right|$

Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=-2(6)-(7)(-3)$
$\Rightarrow D_{1}=-12+21$
$\Rightarrow D_{1}=9$
$\Rightarrow \quad D_{2}=\left|\begin{array}{ll}5 & -2 \\ 4 & -3\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=-3(5)-(-2)(4)$
$\Rightarrow D_{2}=-15+8$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

$\Rightarrow D_{2}=-7$
Thus by Cramer's Rule, we have

$$
\begin{array}{ll}
\Rightarrow x=\frac{D_{1}}{D} & \Rightarrow y=\frac{D_{2}}{D} \\
\Rightarrow x=\frac{9}{2} & \Rightarrow y=\frac{-7}{2} \\
\Rightarrow x=\frac{9}{2} & \Rightarrow y=\frac{-7}{2}
\end{array}
$$

9. $9 x+5 y=10$
$3 y-2 x=8$

Solution:

Let there be a system of n simultaneous linear equations and with n unknown given by

ClndCareer

$\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1}$
$\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}$
: :
$\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
Let $D=\left|\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 1} & \ldots & a_{n n}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $j^{\text {th }}$ column by $\left|\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right|$

Then,
$\mathrm{x}_{1}=\frac{\mathrm{D}_{1}}{\mathrm{D}}, \mathrm{X}_{2}=\frac{\mathrm{D}_{2}}{\mathrm{D}}, \ldots, \mathrm{X}_{\mathrm{n}}=\frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{D}}$ Provided that $\mathrm{D} \neq 0$
Now, here we have
$9 x+5 y=10$
$3 y-2 x=8$
So by comparing with the theorem, let's find D, D_{1} and D_{2}
$\Rightarrow D=\left|\begin{array}{cc}9 & 5 \\ -2 & 3\end{array}\right|$
$\Rightarrow D=\left|\begin{array}{cc}9 & 5 \\ -2 & 3\end{array}\right|$

Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D=3(9)-(5)(-2)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer
$\Rightarrow D=27+10$
$\Rightarrow D=37$
Again,
$\Rightarrow \quad D_{1}=\left|\begin{array}{cc}10 & 5 \\ 8 & 3\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=10(3)-(8)(5)$
$\Rightarrow D_{1}=30-40$
$\Rightarrow D_{1}=-10$
$\Rightarrow D_{2}=\left|\begin{array}{cc}9 & 10 \\ -2 & 8\end{array}\right|$

Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=9(8)-(10)(-2)$
$\Rightarrow \mathrm{D}_{2}=72+20$
$\Rightarrow D_{2}=92$
Thus by Cramer's Rule, we have
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

$$
\begin{aligned}
& \Rightarrow \mathrm{x}=\frac{\mathrm{D}_{1}}{\mathrm{D}} \\
& \Rightarrow \mathrm{x}=\frac{-10}{37} \\
& \Rightarrow \mathrm{x}=\frac{-10}{37} \\
& \Rightarrow \mathrm{y}=\frac{\mathrm{D}_{2}}{\mathrm{D}} \\
& \Rightarrow \mathrm{y}=\frac{92}{37} \\
& \Rightarrow \mathrm{y}=\frac{92}{37}
\end{aligned}
$$

10. $x+2 y=1$
$3 x+y=4$
Solution:
Let there be a system of n simultaneous linear equations and with n unknown given by

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \vdots \vdots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=b_{n} \\
& \text { Let } D=\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 1} & \ldots & a_{n n}
\end{array}\right|
\end{aligned}
$$

Let D_{j} be the determinant obtained from D after replacing the $j^{\text {th }}$ column by
$\left|\begin{array}{c}\mathrm{b}_{1} \\ \mathrm{~b}_{2} \\ \vdots \\ \mathrm{~b}_{\mathrm{n}}\end{array}\right|$

Then,

$$
\mathrm{x}_{1}=\frac{\mathrm{D}_{1}}{\mathrm{D}}, \mathrm{x}_{2}=\frac{\mathrm{D}_{2}}{\mathrm{D}}, \ldots, \mathrm{x}_{\mathrm{n}}=\frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{D}} \text { Provided that } \mathrm{D} \neq 0
$$

Now, here we have
$x+2 y=1$
$3 x+y=4$
So by comparing with theorem, now we have to find D, D_{1} and D_{2}
$\Rightarrow \mathrm{D}=\left|\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right|$

Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D=1(1)-(3)(2)$
$\Rightarrow D=1-6$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
$\Rightarrow \mathrm{D}=-5$
Again,
$\Rightarrow \quad D_{1}=\left|\begin{array}{ll}1 & 2 \\ 4 & 1\end{array}\right|$

Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=1(1)-(2)(4)$
$\Rightarrow D_{1}=1-8$
$\Rightarrow D_{1}=-7$
$\Rightarrow \quad D_{2}=\left|\begin{array}{ll}1 & 1 \\ 3 & 4\end{array}\right|$

Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=1(4)-(1)(3)$
$\Rightarrow D_{2}=4-3$
$\Rightarrow D_{2}=1$

Thus by Cramer's Rule, we have
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

$$
\begin{aligned}
& \Rightarrow x=\frac{D_{1}}{D} \\
& \Rightarrow x=\frac{-7}{-5} \\
& \Rightarrow x=\frac{7}{5} \\
& \Rightarrow y=\frac{D_{2}}{D} \\
& \Rightarrow y=\frac{1}{-5} \\
& \Rightarrow y=-\frac{1}{5}
\end{aligned}
$$

Solve the following system of linear equations by Cramer's rule:
11. $3 x+y+z=2$
$2 x-4 y+3 z=-1$
$4 x+y-3 z=-11$

Solution:

Let there be a system of n simultaneous linear equations and with n unknown given by

ClndCareer

$\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1}$
$\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}$
: :
$\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
Let $\mathrm{D}=\left|\begin{array}{ccccc}\mathrm{a}_{11} & \mathrm{a}_{12} & \ldots & a_{1 n} \\ \mathrm{a}_{21} & \mathrm{a}_{22} & \ldots & \mathrm{a}_{2 \mathrm{n}} \\ \vdots & \vdots & & \vdots \\ \mathrm{a}_{\mathrm{n} 1} & \mathrm{a}_{\mathrm{n} 1} & \ldots & a_{\mathrm{nn}}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $j^{\text {th }}$ column by $\left|\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right|$
Then,
$\mathrm{x}_{1}=\frac{\mathrm{D}_{1}}{\mathrm{D}}, \mathrm{x}_{2}=\frac{\mathrm{D}_{2}}{\mathrm{D}}, \ldots, \mathrm{x}_{\mathrm{n}}=\frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{D}}$ Provided that $\mathrm{D} \neq 0$

Now, here we have
$3 x+y+z=2$
$2 x-4 y+3 z=-1$
$4 x+y-3 z=-11$
So by comparing with the theorem, let's find D, D_{1}, D_{2} and D_{3}
$\Rightarrow D=\left|\begin{array}{ccc}3 & 1 & 1 \\ 2 & -4 & 3 \\ 4 & 1 & -3\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row

$$
\begin{aligned}
& \Rightarrow D=3[(-4)(-3)-(3)(1)]-1[(2)(-3)-12]+1[2-4(-4)] \\
& \Rightarrow D=3[12-3]-[-6-12]+[2+16] \\
& \Rightarrow D=27+18+18
\end{aligned}
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina

 nts/
ClndCareer

$\Rightarrow D=63$
Again,
$\Rightarrow \quad D_{1}=\left|\begin{array}{ccc}2 & 1 & 1 \\ -1 & -4 & 3 \\ -11 & 1 & -3\end{array}\right|$

Solving determinant, expanding along $1^{\text {st }}$ row

$$
\begin{aligned}
& \Rightarrow D_{1}=2[(-4)(-3)-(3)(1)]-1[(-1)(-3)-(-11)(3)]+1[(-1)-(-4)(-11)] \\
& \Rightarrow D_{1}=2[12-3]-1[3+33]+1[-1-44] \\
& \Rightarrow D_{1}=2[9]-36-45 \\
& \Rightarrow D_{1}=18-36-45 \\
& \Rightarrow D_{1}=-63
\end{aligned}
$$

Again

$$
\Rightarrow D_{2}=\left|\begin{array}{ccc}
3 & 2 & 1 \\
2 & -1 & 3 \\
4 & -11 & -3
\end{array}\right|
$$

Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=3[3+33]-2[-6-12]+1[-22+4]$
$\Rightarrow D_{2}=3[36]-2(-18)-18$
$\Rightarrow D_{2}=126$
\Rightarrow
$D_{3}=\left|\begin{array}{ccc}3 & 1 & 2 \\ 2 & -4 & -1 \\ 4 & 1 & -11\end{array}\right|$

Solving determinant, expanding along $1^{\text {st }}$ row
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer

CllndCareer

$\Rightarrow D_{3}=3[44+1]-1[-22+4]+2[2+16]$
$\Rightarrow D_{3}=3[45]-1(-18)+2(18)$
$\Rightarrow D_{3}=135+18+36$
$\Rightarrow D_{3}=189$
Thus by Cramer's Rule, we have
12. $x-4 y-z=11$
$2 x-5 y+2 z=39$
$-3 x+2 y+z=1$

Solution:

Given,
$x-4 y-z=11$
$2 x-5 y+2 z=39$
$-3 x+2 y+z=1$
Let there be a system of n simultaneous linear equations and with n unknown given by

ClindCareer

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \vdots \vdots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=b_{n} \\
& \text { Let } D=\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 1} & \ldots & a_{n n}
\end{array}\right|
\end{aligned}
$$

Let D_{j} be the determinant obtained from D after replacing the $\mathrm{j}^{\text {th }}$ column by
$\left|\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right|$

Then,

$$
x_{1}=\frac{D_{1}}{D}, x_{2}=\frac{D_{2}}{D}, \ldots, x_{n}=\frac{D_{n}}{D} \text { Provided that } D \neq 0
$$

Now, here we have
$x-4 y-z=11$
$2 x-5 y+2 z=39$
$-3 x+2 y+z=1$
So by comparing with theorem, now we have to find D, D_{1} and D_{2}
$\Rightarrow D=\left|\begin{array}{ccc}1 & -4 & -1 \\ 2 & -5 & 2 \\ -3 & 2 & 1\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

Clnd Career

$\Rightarrow D=1[(-5)(1)-(2)(2)]+4[(2)(1)+6]-1[4+5(-3)]$
$\Rightarrow D=1[-5-4]+4[8]-[-11]$
$\Rightarrow D=-9+32+11$
$\Rightarrow D=34$

Again,
$\Rightarrow D_{1}=\left|\begin{array}{ccc}11 & -4 & -1 \\ 39 & -5 & 2 \\ 1 & 2 & 1\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{1}=11[(-5)(1)-(2)(2)]+4[(39)(1)-(2)(1)]-1[2(39)-(-5)(1)]$
$\Rightarrow D_{1}=11[-5-4]+4[39-2]-1[78+5]$
$\Rightarrow D_{1}=11[-9]+4(37)-83$
$\Rightarrow D_{1}=-99-148-45$
$\Rightarrow D_{1}=-34$
Again
$\Rightarrow \quad D_{2}=\left|\begin{array}{ccc}1 & 11 & -1 \\ 2 & 39 & 2 \\ -3 & 1 & 1\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow D_{2}=1[39-2]-11[2+6]-1[2+117]$
$\Rightarrow D_{2}=1[37]-11(8)-119$
$\Rightarrow D_{2}=-170$
And,
\Rightarrow
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer

ClndCareer

Solving determinant, expanding along $1^{\text {st }}$ row
$\Rightarrow \mathrm{D}_{3}=1[-5-(39)(2)]-(-4)[2-(39)(-3)]+11[4-(-5)(-3)]$
$\Rightarrow D_{3}=1[-5-78]+4(2+117)+11(4-15)$
$\Rightarrow D_{3}=-83+4(119)+11(-11)$
$\Rightarrow D_{3}=272$
Thus by Cramer's Rule, we have

$$
\begin{aligned}
& \Rightarrow x=\frac{D_{1}}{D} \\
& \Rightarrow x=\frac{-34}{34} \\
& \Rightarrow x=-1
\end{aligned}
$$

Again,
$\Rightarrow \mathrm{y}=\frac{\mathrm{D}_{2}}{\mathrm{D}}$
$\Rightarrow \mathrm{y}=\frac{-170}{34}$
$\Rightarrow y=-5$
$\Rightarrow \mathrm{z}=\frac{\mathrm{D}_{3}}{\mathrm{D}}$
13. $6 x+y-3 z=5$
$x+3 y-2 z=5$
$2 x+y+4 z=8$

Solution:

Given
$6 x+y-3 z=5$
$x+3 y-2 z=5$
$2 x+y+4 z=8$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

Let there be a system of n simultaneous linear equations and with n unknown given by
$\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1}$
$\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}$
: : :
$\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
Let $\mathrm{D}=\left|\begin{array}{cccc}\mathrm{a}_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 1} & \ldots & a_{n n}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $\mathrm{j}^{\text {th }}$ column by

Then,

$$
x_{1}=\frac{D_{1}}{D}, x_{2}=\frac{D_{2}}{D}, \ldots, x_{n}=\frac{D_{n}}{D} \text { Provided that } D \neq 0
$$

Now, here we have
$6 x+y-3 z=5$
$x+3 y-2 z=5$
$2 x+y+4 z=8$
So by comparing with theorem, now we have to find D, D_{1} and D_{2}
$\Rightarrow D=\left|\begin{array}{ccc}6 & 1 & -3 \\ 1 & 3 & -2 \\ 2 & 1 & 4\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ Row https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer

ClindCareer

$\Rightarrow D=6[(4)(3)-(1)(-2)]-1[(4)(1)+4]-3[1-3(2)]$
$\Rightarrow D=6[12+2]-[8]-3[-5]$
$\Rightarrow D=84-8+15$
$\Rightarrow D=91$
Again, Solve D_{1} formed by replacing $1^{\text {st }}$ column by B matrices
Here

$$
\begin{aligned}
& B=\left|\begin{array}{l}
5 \\
5 \\
8
\end{array}\right| \\
& \Rightarrow D_{1}=\left|\begin{array}{ccc}
5 & 1 & -3 \\
5 & 3 & -2 \\
8 & 1 & 4
\end{array}\right|
\end{aligned}
$$

Solving determinant, expanding along $1^{\text {st }}$ Row
$\Rightarrow D_{1}=5[(4)(3)-(-2)(1)]-1[(5)(4)-(-2)(8)]-3[(5)-(3)(8)]$
$\Rightarrow D_{1}=5[12+2]-1[20+16]-3[5-24]$
$\Rightarrow D_{1}=5[14]-36-3(-19)$
$\Rightarrow D_{1}=70-36+57$
$\Rightarrow D_{1}=91$
Again, Solve D_{2} formed by replacing $1^{\text {st }}$ column by B matrices
Here

$$
\begin{aligned}
& B=\left|\begin{array}{l}
5 \\
5 \\
8
\end{array}\right| \\
& \Rightarrow D_{2}=\left|\begin{array}{ccc}
6 & 5 & -3 \\
1 & 5 & -2 \\
2 & 8 & 4
\end{array}\right|
\end{aligned}
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

Solving determinant

$$
\begin{aligned}
& \Rightarrow D_{2}=6[20+16]-5[4-2(-2)]+(-3)[8-10] \\
& \Rightarrow D_{2}=6[36]-5(8)+(-3)(-2) \\
& \Rightarrow D_{2}=182
\end{aligned}
$$

And, Solve D_{3} formed by replacing $1^{\text {st }}$ column by B matrices
Here

$$
\begin{aligned}
& \mathrm{B}=\left|\begin{array}{l}
5 \\
5 \\
8
\end{array}\right| \\
& \Rightarrow \mathrm{D}_{3}=\left|\begin{array}{lll}
6 & 1 & 5 \\
1 & 3 & 5 \\
2 & 1 & 8
\end{array}\right|
\end{aligned}
$$

Solving determinant, expanding along $1^{\text {st }}$ Row
$\Rightarrow D_{3}=6[24-5]-1[8-10]+5[1-6]$
$\Rightarrow D_{3}=6[19]-1(-2)+5(-5)$
$\Rightarrow D_{3}=114+2-25$
$\Rightarrow D_{3}=91$
Thus by Cramer's Rule, we have

ClndCareer

$$
\begin{aligned}
& \Rightarrow x=\frac{D_{1}}{D} \\
& \Rightarrow x=\frac{91}{91} \\
& \Rightarrow x=1 \\
& \Rightarrow y=\frac{D_{2}}{D} \\
& \Rightarrow y=\frac{182}{91} \\
& \Rightarrow y=2 \\
& \Rightarrow z=\frac{D_{3}}{D} \\
& \Rightarrow z=\frac{91}{91} \\
& \Rightarrow z=1
\end{aligned}
$$

14. $x+y=5$
$y+z=3$
$x+z=4$

Solution:

Given $x+y=5$
$y+z=3$
$x+z=4$
Let there be a system of n simultaneous linear equations and with n unknown given by
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClindCareer

$\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1}$
$\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}$
! :
$a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=b_{n}$
Let $D=\left|\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 1} & \ldots & a_{n n}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $j^{\text {jh }}$ column by

$$
\left|\begin{array}{c}
\mathrm{b}_{1} \\
\mathrm{~b}_{2} \\
\vdots \\
\mathrm{~b}_{\mathrm{n}}
\end{array}\right|
$$

Then,
$x_{1}=\frac{D_{1}}{D}, x_{2}=\frac{D_{2}}{D}, \ldots, x_{n}=\frac{D_{n}}{D}$ Provided that $D \neq 0$
Now, here we have
$x+y=5$
$y+z=3$
$x+z=4$
So by comparing with theorem, now we have to find $\mathrm{D}, \mathrm{D}_{1}$ and D_{2}
$\Rightarrow \mathrm{D}=\left|\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ Row
$\Rightarrow D=1[1]-1[-1]+0[-1]$
$\Rightarrow \mathrm{D}=1+1+0$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer
$\Rightarrow \mathrm{D}=2$
Again, Solve D_{1} formed by replacing $1^{\text {st }}$ column by B matrices
Here

$$
\begin{aligned}
& B=\left|\begin{array}{l}
5 \\
3 \\
4
\end{array}\right| \\
& \Rightarrow D_{1}=\left|\begin{array}{lll}
5 & 1 & 0 \\
3 & 1 & 1 \\
4 & 0 & 1
\end{array}\right|
\end{aligned}
$$

Solving determinant, expanding along $1^{\text {st }}$ Row
$\Rightarrow D_{1}=5[1]-1[(3)(1)-(4)(1)]+0[0-(4)(1)]$
$\Rightarrow D_{1}=5-1[3-4]+0[-4]$
$\Rightarrow D_{1}=5-1[-1]+0$
$\Rightarrow D_{1}=5+1+0$
$\Rightarrow D_{1}=6$
Again, Solve D_{2} formed by replacing $1^{\text {st }}$ column by B matrices
Here

$$
\begin{aligned}
& B=\left|\begin{array}{l}
5 \\
3 \\
4
\end{array}\right| \\
& \Rightarrow D_{2}=\left|\begin{array}{lll}
1 & 5 & 0 \\
0 & 3 & 1 \\
1 & 4 & 1
\end{array}\right|
\end{aligned}
$$

Solving determinant
$\Rightarrow D_{2}=1[3-4]-5[-1]+0[0-3]$
$\Rightarrow D_{2}=1[-1]+5+0$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClndCareer

ClndCareer

$\Rightarrow D_{2}=4$
And, Solve D_{3} formed by replacing $1^{\text {st }}$ column by B matrices
Here
$B=\left|\begin{array}{l}5 \\ 3 \\ 4\end{array}\right|$
$\Rightarrow \mathrm{D}_{3}=\left|\begin{array}{lll}1 & 1 & 5 \\ 0 & 1 & 3 \\ 1 & 0 & 4\end{array}\right|$

Solving determinant, expanding along $1^{\text {st }}$ Row
$\Rightarrow D_{3}=1[4-0]-1[0-3]+5[0-1]$
$\Rightarrow D_{3}=1[4]-1(-3)+5(-1)$
$\Rightarrow D_{3}=4+3-5$
$\Rightarrow D_{3}=2$
Thus by Cramer's Rule, we have

$$
\begin{aligned}
& \Rightarrow x=\frac{D_{1}}{D} \\
& \Rightarrow x=\frac{6}{2} \\
& \Rightarrow x=3 \\
& \Rightarrow y=\frac{D_{2}}{D} \\
& \Rightarrow y=\frac{4}{2} \\
& \Rightarrow y=2 \\
& \Rightarrow z=\frac{D_{3}}{D} \\
& \Rightarrow z=\frac{2}{2} \\
& \Rightarrow z=1
\end{aligned}
$$

15. $2 y-3 z=0$

$x+3 y=-4$
$3 x+4 y=3$

Solution:

Given
$2 y-3 z=0$
$x+3 y=-4$
$3 x+4 y=3$
Let there be a system of n simultaneous linear equations and with n unknown given by

ClndCareer

$$
\begin{aligned}
& \mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1} \\
& \mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2} \\
& \vdots: \vdots \\
& \mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}} \\
& \text { Let } \mathrm{D}=\left|\begin{array}{cccc}
\mathrm{a}_{11} & \mathrm{a}_{12} & \ldots & \mathrm{a}_{1 \mathrm{n}} \\
\mathrm{a}_{21} & \mathrm{a}_{22} & \ldots & \mathrm{a}_{2 \mathrm{n}} \\
\vdots & \vdots & & \vdots \\
\mathrm{a}_{\mathrm{n} 1} & \mathrm{a}_{\mathrm{n} 1} & \ldots & \mathrm{a}_{\mathrm{nn}}
\end{array}\right|
\end{aligned}
$$

Let D_{j} be the determinant obtained from D after replacing the $\mathrm{j}^{\text {th }}$ column by

$$
\left|\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right|
$$

Then,

$$
x_{1}=\frac{D_{1}}{D}, x_{2}=\frac{D_{2}}{D}, \ldots, x_{n}=\frac{D_{n}}{D} \text { Provided that } D \neq 0
$$

Now, here we have
$2 y-3 z=0$
$x+3 y=-4$
$3 x+4 y=3$
So by comparing with theorem, now we have to find D, D_{1} and D_{2}

$$
\Rightarrow \mathrm{D}=\left|\begin{array}{ccc}
0 & 2 & -3 \\
1 & 3 & 0 \\
3 & 4 & 0
\end{array}\right|
$$

Solving determinant, expanding along $1^{\text {st }}$ Row
$\Rightarrow D=0[0]-2[(0)(1)-0]-3[1(4)-3(3)]$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

$\Rightarrow D=0-0-3[4-9]$
$\Rightarrow D=0-0+15$
$\Rightarrow D=15$
Again, Solve D_{1} formed by replacing $1^{\text {st }}$ column by B matrices
Here

$$
\begin{aligned}
& B=\left|\begin{array}{c}
0 \\
-4 \\
3
\end{array}\right| \\
& \Rightarrow D_{1}=\left|\begin{array}{ccc}
0 & 2 & -3 \\
-4 & 3 & 0 \\
3 & 4 & 0
\end{array}\right|
\end{aligned}
$$

Solving determinant, expanding along $1^{\text {st }}$ Row
$\Rightarrow D_{1}=0[0]-2[(0)(-4)-0]-3[4(-4)-3(3)]$
$\Rightarrow D_{1}=0-0-3[-16-9]$
$\Rightarrow D_{1}=0-0-3(-25)$
$\Rightarrow D_{1}=0-0+75$
$\Rightarrow D_{1}=75$
Again, Solve D_{2} formed by replacing $2^{\text {nd }}$ column by B matrices
Here

$$
\begin{aligned}
& B=\left|\begin{array}{c}
0 \\
-4 \\
3
\end{array}\right| \\
& \Rightarrow \quad D_{2}=\left|\begin{array}{ccc}
0 & 0 & -3 \\
1 & -4 & 0 \\
3 & 3 & 0
\end{array}\right|
\end{aligned}
$$

Solving determinant
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClindCareer

$\Rightarrow \mathrm{D}_{2}=0[0]-0[(0)(1)-0]-3[1(3)-3(-4)]$
$\Rightarrow \mathrm{D}_{2}=0-0+(-3)(3+12)$
$\Rightarrow D_{2}=-45$
And, Solve D_{3} formed by replacing $3^{\text {rd }}$ column by B matrices
Here

$$
\begin{aligned}
& B=\left|\begin{array}{c}
0 \\
-4 \\
3
\end{array}\right| \\
& \Rightarrow D_{3}=\left|\begin{array}{ccc}
0 & 2 & 0 \\
1 & 3 & -4 \\
3 & 4 & 3
\end{array}\right|
\end{aligned}
$$

Solving determinant, expanding along $1^{\text {st }}$ Row

$$
\begin{aligned}
& \Rightarrow D_{3}=0[9-(-4) 4]-2[(3)(1)-(-4)(3)]+0[1(4)-3(3)] \\
& \Rightarrow D_{3}=0[25]-2(3+12)+0(4-9) \\
& \Rightarrow D_{3}=0-30+0 \\
& \Rightarrow D_{3}=-30
\end{aligned}
$$

Thus by Cramer's Rule, we have

$$
\begin{aligned}
& \Rightarrow x=\frac{D_{1}}{D} \\
& \Rightarrow x=\frac{75}{15} \\
& \Rightarrow x=5 \\
& \Rightarrow y=\frac{D_{2}}{D} \\
& \Rightarrow y=\frac{-45}{15} \\
& \Rightarrow y=-3 \\
& \Rightarrow z=\frac{D_{3}}{D} \\
& \Rightarrow z=\frac{-30}{15} \\
& \Rightarrow z=-2
\end{aligned}
$$

16. $5 x-7 y+z=11$
$6 x-8 y-z=15$
$3 x+2 y-6 z=7$

Solution:

Given
$5 x-7 y+z=11$
$6 x-8 y-z=15$
$3 x+2 y-6 z=7$
Let there be a system of n simultaneous linear equations and with n unknown given by

ClndCareer

$\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1}$
$\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}$
: :
$\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
Let $D=\left|\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 1} & \ldots & a_{n n}\end{array}\right|$
Let D_{j} be the determinant obtained from D after replacing the $j^{\text {th }}$ column by
$\left|\begin{array}{c}\mathrm{b}_{1} \\ \mathrm{~b}_{2} \\ \vdots \\ \mathrm{~b}_{\mathrm{n}}\end{array}\right|$
Then,
$\mathrm{x}_{1}=\frac{\mathrm{D}_{1}}{\mathrm{D}}, \mathrm{x}_{2}=\frac{\mathrm{D}_{2}}{\mathrm{D}}, \ldots, \mathrm{x}_{\mathrm{n}}=\frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{D}}$ Provided that $\mathrm{D} \neq 0$

Now, here we have
$5 x-7 y+z=11$
$6 x-8 y-z=15$
$3 x+2 y-6 z=7$
So by comparing with theorem, now we have to find D, D_{1} and D_{2}
$\Rightarrow D=\left|\begin{array}{ccc}5 & -7 & 1 \\ 6 & -8 & -1 \\ 3 & 2 & -6\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ Row

$$
\Rightarrow D=5[(-8)(-6)-(-1)(2)]-7[(-6)(6)-3(-1)]+1[2(6)-3(-8)]
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
ClindCareer

ClndCareer

$\Rightarrow D=5[48+2]-7[-36+3]+1[12+24]$
$\Rightarrow D=250-231+36$
$\Rightarrow D=55$
Again, Solve D_{1} formed by replacing $1^{\text {st }}$ column by B matrices
Here
$B=\left|\begin{array}{c}11 \\ 15 \\ 7\end{array}\right| \Rightarrow D_{1}=\left|\begin{array}{ccc}11 & -7 & 1 \\ 15 & -8 & -1 \\ 7 & 2 & -6\end{array}\right|$
Solving determinant, expanding along $1^{\text {st }}$ Row
$\Rightarrow D_{1}=11[(-8)(-6)-(2)(-1)]-(-7)[(15)(-6)-(-1)(7)]+1[(15) 2-(7)(-8)]$
$\Rightarrow D_{1}=11[48+2]+7[-90+7]+1[30+56]$
$\Rightarrow D_{1}=11[50]+7[-83]+86$
$\Rightarrow D_{1}=550-581+86$
$\Rightarrow D_{1}=55$
Again, Solve D_{2} formed by replacing $2^{\text {nd }}$ column by B matrices
Here
$B=\left|\begin{array}{c}11 \\ 15 \\ 7\end{array}\right|$

$$
\Rightarrow \quad D_{2}=\left|\begin{array}{ccc}
5 & 11 & 1 \\
6 & 15 & -1 \\
3 & 7 & -6
\end{array}\right|
$$

Solving determinant, expanding along $1^{\text {st }}$ Row

$$
\begin{aligned}
& \Rightarrow D_{2}=5[(15)(-6)-(7)(-1)]-11[(6)(-6)-(-1)(3)]+1[(6) 7-(15)(3)] \\
& \Rightarrow D_{2}=5[-90+7]-11[-36+3]+1[42-45]
\end{aligned}
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClindCareer

$\Rightarrow D_{2}=5[-83]-11(-33)-3$
$\Rightarrow D_{2}=-415+363-3$
$\Rightarrow D_{2}=-55$
And, Solve D_{3} formed by replacing $3^{\text {rd }}$ column by B matrices
Here

$$
\begin{aligned}
& B=\left|\begin{array}{c}
11 \\
15 \\
7
\end{array}\right| \\
& \Rightarrow D_{3}=\left|\begin{array}{ccc}
5 & -7 & 11 \\
6 & -8 & 15 \\
3 & 2 & 7
\end{array}\right|
\end{aligned}
$$

Solving determinant, expanding along $1^{\text {st }}$ Row
$\Rightarrow \mathrm{D}_{3}=5[(-8)(7)-(15)(2)]-(-7)[(6)(7)-(15)(3)]+11[(6) 2-(-8)(3)]$
$\Rightarrow D_{3}=5[-56-30]-(-7)[42-45]+11[12+24]$
$\Rightarrow \mathrm{D}_{3}=5[-86]+7[-3]+11[36]$
$\Rightarrow D_{3}=-430-21+396$
$\Rightarrow D_{3}=-55$
Thus by Cramer's Rule, we have
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

$$
\begin{aligned}
& \Rightarrow x=\frac{D_{1}}{D} \\
& \Rightarrow x=\frac{55}{55} \\
& \Rightarrow x=1 \\
& \Rightarrow y=\frac{D_{2}}{D} \\
& \Rightarrow y=\frac{-55}{55} \\
& \Rightarrow y=-1 \\
& \Rightarrow z=\frac{D_{3}}{D} \\
& \Rightarrow z=\frac{-55}{55} \\
& \Rightarrow z=-1
\end{aligned}
$$

Exercise 6.5 Page No: 6.89

Solve each of the following system of homogeneous linear equations:

1. $x+y-2 z=0$
$2 x+y-3 z=0$
$5 x+4 y-9 z=0$

Solution:

Given $\mathrm{x}+\mathrm{y}-2 \mathrm{z}=0$
$2 x+y-3 z=0$
$5 x+4 y-9 z=0$
Any system of equation can be written in matrix form as $A X=B$
Now finding the Determinant of these set of equations,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

$$
\begin{aligned}
& \mathrm{D}=\left|\begin{array}{lll}
1 & 1 & -2 \\
2 & 1 & -3 \\
5 & 4 & -9
\end{array}\right| \\
& |\mathrm{A}|=1\left|\begin{array}{ll}
1 & -3 \\
4 & -9
\end{array}\right|-1\left|\begin{array}{ll}
2 & -3 \\
5 & -9
\end{array}\right|-2\left|\begin{array}{ll}
2 & 1 \\
5 & 4
\end{array}\right| \\
& =1(1 \times(-9)-4 \times(-3))-1(2 \times(-9)-5 \times(-3))-2(4 \times 2-5 \times 1) \\
& =1(-9+12)-1(-18+15)-2(8-5) \\
& =1 \times 3-1 \times(-3)-2 \times 3 \\
& =3+3-6 \\
& =0
\end{aligned}
$$

Since $D=0$, so the system of equation has infinite solution.
Now let $\mathrm{z}=\mathrm{k}$
$\Rightarrow \mathrm{x}+\mathrm{y}=2 \mathrm{k}$
And $2 x+y=3 k$
Now using the Cramer's rule
$x=\frac{D_{1}}{D}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/
$\mathrm{x}=\frac{\left|\begin{array}{cc}2 \mathrm{k} & 1 \\ 3 \mathrm{k} & 1\end{array}\right|}{\left|\begin{array}{cc}1 & 1 \\ 2 & 1\end{array}\right|}$
$x=\frac{-k}{-1}$
$x=k$
Similarly,
$y=\frac{D_{2}}{D}$
$\mathrm{y}=\frac{\left|\begin{array}{cc}1 & 2 \mathrm{k} \\ 2 & 3 \mathrm{k}\end{array}\right|}{\left|\begin{array}{cc}1 & 1 \\ 2 & 1\end{array}\right|}$
$y=\frac{-k}{-1}$
$y=k$
Hence, $x=y=z=k$.
2. $2 x+3 y+4 z=0$
$x+y+z=0$
$2 x+5 y-2 z=0$

Solution:

Given
$2 x+3 y+4 z=0$
$x+y+z=0$
$2 x+5 y-2 z=0$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

Any system of equation can be written in matrix form as $A X=B$
Now finding the Determinant of these set of equations,
$\mathrm{D}=\left|\begin{array}{ccc}2 & 3 & 4 \\ 1 & 1 & 1 \\ 2 & 5 & -2\end{array}\right|$
$|A|=2\left|\begin{array}{cc}1 & 1 \\ 5 & -2\end{array}\right|-3\left|\begin{array}{cc}1 & 1 \\ 2 & -2\end{array}\right|+4\left|\begin{array}{ll}1 & 1 \\ 2 & 5\end{array}\right|$
$=2(1 \times(-2)-1 \times 5)-3(1 \times(-2)-2 \times 1)+4(1 \times 5-2 \times 1)$
$=2(-2-5)-3(-2-2)+4(5-2)$
$=1 \times(-7)-3 \times(-4)+4 \times 3$
$=-7+12+12$
$=17$
Since $D \neq 0$, so the system of equation has infinite solution.
Therefore the system of equation has only solution as $x=y=z=0$.
RD Sharma 12th Maths Chapter 6, Class 12 Maths Chapter 6 solutions

Chapterwise RD Sharma Solutions for Class 12 Maths :

- Chapter 1-Relation
- Chapter 2-Functions
- Chapter 3-Binary Operations
- Chapter 4-Inverse Trigonometric Functions
- Chapter 5-Algebra of Matrices
- Chapter 6-Determinants
- Chapter 7-Adjoint and Inverse of a Matrix
- Chapter 8-Solution of Simultaneous Linear Equations
- Chapter 9-Continuity
- Chapter 10-Differentiability
- Chapter 11-Differentiation
- Chapter 12-Higher Order Derivatives
- Chapter 13-Derivatives as a Rate Measurer
- Chapter 14-Differentials, Errors and Approximations
- Chapter 15-Mean Value Theorems
- Chapter 16-Tangents and Normals
- Chapter 17 -Increasing and Decreasing Functions
- Chapter 18-Maxima and Minima
- Chapter 10-Indefinite Integrals
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-6-determina nts/

ClndCareer

About RD Sharma

RD Sharma isn't the kind of author you'd bump into at lit fests. But his bestselling books have helped many CBSE students lose their dread of maths. Sunday Times profiles the tutor turned internet star

He dreams of algorithms that would give most people nightmares. And, spends every waking hour thinking of ways to explain concepts like 'series solution of linear differential equations'. Meet Dr Ravi Dutt Sharma mathematics teacher and author of 25 reference books - whose name evokes as much awe as the subject he teaches. And though students have used his thick tomes for the last 31 years to ace the dreaded maths exam, it's only recently that a spoof video turned the tutor into a YouTube star.

R D Sharma had a good laugh but said he shared little with his on-screen persona except for the love for maths. "I like to spend all my time thinking and writing about maths problems. I find it relaxing," he says. When he is not writing books explaining mathematical concepts for classes 6 to 12 and engineering students, Sharma is busy dispensing his duty as vice-principal and head of department of science and humanities at Delhi government's Guru Nanak Dev Institute of Technology.

