Class 12 Chapter 4 Inverse Trigonometric Functions

RD Sharma Solutions for Class 12 Maths Chapter 4-Inverse Trigonometric Functions

Class 12: Maths Chapter 4 solutions. Complete Class 12 Maths Chapter 4 Notes.

RD Sharma Solutions for Class 12 Maths Chapter 4-Inverse Trigonometric Functions

RD Sharma 12th Maths Chapter 4, Class 12 Maths Chapter 4 solutions
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

Exercise 4.1 Page No: 4.6

1. Find the principal value of the following:
(i) $\sin ^{-1}\left(-\sqrt{\frac{3}{2}}\right)(i i) \sin ^{-1}\left(\cos \frac{2 \pi}{3}\right)(i i i) \sin ^{-1}\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}\right)(i v) \sin ^{-1}\left(\frac{\sqrt{3}+1}{2 \sqrt{2}}\right)$
(v) $\sin ^{-1}\left(\cos \frac{3 \pi}{4}\right)(v i) \sin ^{-1}\left(\tan \frac{5 \pi}{4}\right)$

Solution:

(i) Let $\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)=y$

Then $\sin y=\left(\frac{-\sqrt{3}}{2}\right)$
$=-\sin \left(\frac{\pi}{3}\right)$
$=\sin \left(-\frac{\pi}{3}\right)$
We know that the principal value of $\sin ^{-1}$ is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
And $-\sin \frac{\pi}{3}=\sin \left(\frac{-\pi}{3}\right)$
Theref ore principal value of $\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)=\frac{-\pi}{3}$
(ii) Let $\sin ^{-1}\left(\cos \frac{2 \pi}{3}\right)=y$

Then $\sin y=\cos \left(\frac{2 \pi}{3}\right)$
$=-\sin \left(\frac{\pi}{2}+\frac{\pi}{6}\right)$
$=-\sin \left(\frac{\pi}{6}\right)$
We know that the principal value of $\sin ^{-1}$ is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
And $-\sin \left(\frac{\pi}{6}\right)=\cos \left(\frac{2 \pi}{3}\right)$
Therefore principal value of $\sin ^{-1}\left(\cos \frac{2 \pi}{3}\right)$ is $\frac{-\pi}{6}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

(iii) Given functions can be written as

$$
\sin ^{-1}\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}\right)=\sin ^{-1}\left(\frac{\sqrt{3}}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}}\right)
$$

Taking $1 / \mathrm{V} 2$ as common from the above equation we get,

$$
=\sin ^{-1}\left(\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}-\frac{1}{2} \times \frac{1}{\sqrt{2}}\right)
$$

Taking $\sqrt{ } 3 / 2$ as common, and $1 / \mathrm{V} 2$ from the above equation we get,

$$
=\sin ^{-1}\left(\frac{\sqrt{3}}{2} \times \sqrt{1-\left(\frac{1}{\sqrt{2}}\right)^{2}}-\frac{1}{\sqrt{2}} \times \sqrt{1-\left(\frac{\sqrt{3}}{2}\right)^{2}}\right)
$$

On simplifying, we get

$$
=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)-\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)
$$

By substituting the values,

$$
=\frac{\pi}{3}-\frac{\pi}{4}
$$

Taking LCM and cross multiplying we get,

$$
=\frac{\pi}{12}
$$

(iv) The given question can be written as

ClndCareer

$$
\sin ^{-1}\left(\frac{\sqrt{3}+1}{2 \sqrt{2}}\right)=\sin ^{-1}\left(\frac{\sqrt{3}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}\right)
$$

Taking $1 / \mathrm{v} 2$ as common from the above equation we get
$=\sin ^{-1}\left(\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}+\frac{1}{2} \times \frac{1}{\sqrt{2}}\right)$
Taking $\mathrm{V} 3 / 2$ as common, and $1 / \mathrm{V} 2$ from the above equation we get,

$$
=\sin ^{-1}\left(\frac{\sqrt{3}}{2} \times \sqrt{1-\left(\frac{1}{\sqrt{2}}\right)^{2}}+\frac{1}{\sqrt{2}} \times \sqrt{1-\left(\frac{\sqrt{3}}{2}\right)^{2}}\right)
$$

On simplifying we get,
$=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)+\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
By substituting the corresponding values we get
$=\frac{\pi}{3}+\frac{\pi}{4}$
$=\frac{7 \pi}{12}$
(v) Let

ClindCareer

$\sin ^{-1}\left(\cos \frac{3 \pi}{4}\right)=y$
Then above equation can be written as
$\sin y=\cos \frac{3 \pi}{4}=-\sin \left(\pi-\frac{3 \pi}{4}\right)=-\sin \left(\frac{\pi}{4}\right)$
We know that the principal value of $\sin ^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Therefore above equation becomes,
$-\sin \left(\frac{\pi}{4}\right)=\cos \frac{3 \pi}{4}$
Therefore the principal value of $\sin ^{-1}\left(\cos \frac{3 \pi}{4}\right)$ is $-\frac{\pi}{4}$
(vi) Let

$$
y=\sin ^{-1}\left(\tan \frac{5 \pi}{4}\right)
$$

Therefore above equation can be written as
$\operatorname{Sin} y=\left(\tan \frac{5 \pi}{4}\right)=\tan \left(\pi+\frac{\pi}{4}\right)=\tan \frac{\pi}{4}=1=\sin \left(\frac{\pi}{2}\right)$
We know that the principal value of $\sin ^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$
\sin \left(\frac{\pi}{2}\right)=\tan \frac{5 \pi}{4}
$$

Therefore the principal value of $\sin ^{-1}\left(\tan \frac{5 \pi}{4}\right)$ is $\frac{\pi}{2}$.

ClndCareer

2.

(i)
(ii)

Solution:

(i) The given question can be written as,

$$
\sin ^{-1} \frac{1}{2}-2 \sin ^{-1} \frac{1}{\sqrt{2}}=\sin ^{-1} \frac{1}{2}-\sin ^{-1}\left(2 \times \frac{1}{\sqrt{2}} \sqrt{1-\left(\frac{1}{\sqrt{2}}\right)^{2}}\right)
$$

On simplifying, we get
$=\sin ^{-1} \frac{1}{2}-\sin ^{-1}(1)$
By substituting the corresponding values, we get
$=\frac{\pi}{6}-\frac{\pi}{2}$
$=-\frac{\pi}{3}$
(ii) Given question can be written as

ClndCareer

We know that $\left(\sin ^{-1} \frac{\sqrt{3}}{2}\right)=\pi / 3$
$=\sin ^{-1}\left\{\cos \left(\frac{\pi}{3}\right)\right\}$
Now substituting the values we get,
$=\sin ^{-1}\left\{\frac{1}{2}\right\}$
$=\frac{\pi}{6}$

RD Sharma 12th Maths Chapter 4, Class 12 Maths Chapter 4 solutions

Exercise 4.2 Page No: 4.10

1. Find the domain of definition of $f(x)=\cos ^{-1}\left(x^{2}-4\right)$

Solution:

Given $f(x)=\cos ^{-1}\left(x^{2}-4\right)$
We know that domain of $\cos ^{-1}\left(x^{2}-4\right)$ lies in the interval $[-1,1]$
Therefore, we can write as
$-1 \leq x^{2}-4 \leq 1$
$4-1 \leq x^{2} \leq 1+4$
$3 \leq x^{2} \leq 5$
$\pm \sqrt{ } 3 \leq x \leq \pm \sqrt{ } 5$
$-\sqrt{ } 5 \leq x \leq-\sqrt{ } 3$ and $\sqrt{ } 3 \leq x \leq \sqrt{5}$
Therefore domain of $\cos ^{-1}\left(x^{2}-4\right)$ is $[-\sqrt{ } 5,-\sqrt{ } 3] \cup[\sqrt{ } 3, \sqrt{ } 5]$
2. Find the domain of $f(x)=\cos ^{-1} 2 x+\sin ^{-1} x$.

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

Given that $f(x)=\cos ^{-1} 2 x+\sin ^{-1} x$.
Now we have to find the domain of $f(x)$,
We know that domain of $\cos ^{-1} \mathrm{x}$ lies in the interval $[-1,1]$
Also know that domain of $\sin ^{-1} \mathrm{x}$ lies in the interval $[-1,1]$
Therefore, the domain of $\cos ^{-1}(2 x)$ lies in the interval $[-1,1]$
Hence we can write as,
$-1 \leq 2 x \leq 1$
$-1 / 2 \leq x \leq 1 / 2$
Hence, domain of $\cos ^{-1}(2 x)+\sin ^{-1} x$ lies in the interval $[-1 / 2,1 / 2]$

RD Sharma 12th Maths Chapter 4, Class 12 Maths Chapter 4 solutions

Exercise 4.3 Page No: 4.14

1. Find the principal value of each of the following:
(i) $\tan ^{-1}(1 / \sqrt{ } 3)$
(ii) $\tan ^{-1}(-1 / \sqrt{ } 3)$
(iii) $\tan ^{-1}(\cos (\pi / 2))$
(iv) $\tan ^{-1}(2 \cos (2 \pi / 3))$

Solution:

(i) Given $\tan ^{-1}(1 / \sqrt{ } 3)$

We know that for any $x \in R, \tan ^{-1}$ represents an angle in $(-\pi / 2, \pi / 2)$ whose tangent is x.
So, $\tan ^{-1}(1 / \sqrt{ } 3)=$ an angle in $(-\pi / 2, \pi / 2)$ whose tangent is $(1 / \sqrt{ } 3)$
But we know that the value is equal to $\pi / 6$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

Therefore $\tan ^{-1}(1 / \sqrt{ } 3)=\pi / 6$
Hence the principal value of $\tan ^{-1}(1 / \sqrt{ } 3)=\pi / 6$
(ii) Given $\tan ^{-1}(-1 / \sqrt{ } 3)$

We know that for any $x \in R$, tan $^{-1}$ represents an angle in ($-\pi / 2, \pi / 2$) whose tangent is x.
So, $\tan ^{-1}(-1 / \sqrt{ } 3)=$ an angle in $(-\pi / 2, \pi / 2)$ whose tangent is $(1 / \sqrt{ } 3)$
But we know that the value is equal to $-\pi / 6$
Therefore $\tan ^{-1}(-1 / \sqrt{ } 3)=-\pi / 6$
Hence the principal value of $\tan ^{-1}(-1 / \sqrt{ } 3)=-\pi / 6$
(iii) Given that $\tan ^{-1}(\cos (\pi / 2))$

But we know that $\cos (\pi / 2)=0$
We know that for any $x \in R, \tan ^{-1}$ represents an angle in ($-\pi / 2, \pi / 2$) whose tangent is x.
Therefore $\tan ^{-1}(0)=0$
Hence the principal value of $\tan ^{-1}(\cos (\pi / 2)$ is 0 .
(iv) Given that $\tan ^{-1}(2 \cos (2 \pi / 3))$

But we know that $\cos \pi / 3=1 / 2$
So, $\cos (2 \pi / 3)=-1 / 2$
Therefore $\tan ^{-1}(2 \cos (2 \pi / 3))=\tan ^{-1}(2 \times-1 / 2)$
$=\tan ^{-1}(-1)$
$=-\pi / 4$
Hence, the principal value of $\tan ^{-1}(2 \cos (2 \pi / 3))$ is $-\pi / 4$

RD Sharma 12th Maths Chapter 4, Class 12 Maths Chapter 4 solutions
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

Exercise 4.4 Page No: 4.18

1. Find the principal value of each of the following:
(i) $\sec ^{-1}(-\sqrt{ } 2)$
(ii) $\sec ^{-1}(2)$
(iii) $\sec ^{-1}(2 \sin (3 \pi / 4))$
(iv) $\sec ^{-1}(2 \tan (3 \pi / 4))$

Solution:

(i) Given $\mathrm{sec}^{-1}(-\sqrt{ } 2)$

Now let $\mathrm{y}=\sec ^{-1}(-\sqrt{ } 2)$
$\operatorname{Sec} y=-\sqrt{ } 2$
We know that $\sec \pi / 4=\sqrt{ } 2$
Therefore, $-\sec (\pi / 4)=-\sqrt{ } 2$
$=\sec (\pi-\pi / 4)$
$=\sec (3 \pi / 4)$
Thus the range of principal value of $\sec ^{-1}$ is $[0, \pi]-\{\pi / 2\}$
And $\sec (3 \pi / 4)=-\sqrt{ } 2$
Hence the principal value of $\sec ^{-1}(-\sqrt{ } 2)$ is $3 \pi / 4$
(ii) Given $\mathrm{sec}^{-1}(2)$

Let $\mathrm{y}=\sec ^{-1}(2)$
$\operatorname{Sec} y=2$
$=\operatorname{Sec} \pi / 3$
Therefore the range of principal value of $\sec ^{-1}$ is $[0, \pi]-\{\pi / 2\}$ and $\sec \pi / 3=2$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

Thus the principal value of $\sec ^{-1}(2)$ is $\pi / 3$
(iii) Given $\sec ^{-1}(2 \sin (3 \pi / 4))$

But we know that $\sin (3 \pi / 4)=1 / \sqrt{ } 2$
Therefore $2 \sin (3 \pi / 4)=2 \times 1 / \sqrt{ } 2$
$2 \sin (3 \pi / 4)=\sqrt{ } 2$
Therefore by substituting above values in $\sec ^{-1}(2 \sin (3 \pi / 4))$, we get
$\operatorname{Sec}^{-1}(\sqrt{ } 2)$
Let $\operatorname{Sec}^{-1}(\sqrt{ } 2)=y$
$\operatorname{Sec} y=\sqrt{ } 2$
$\operatorname{Sec}(\pi / 4)=\sqrt{ } 2$
Therefore range of principal value of $\sec ^{-1}$ is $[0, \pi]-\{\pi / 2\}$ and $\sec (\pi / 4)=\sqrt{ } 2$
Thus the principal value of $\sec ^{-1}(2 \sin (3 \pi / 4))$ is $\pi / 4$.
(iv) Given $\sec ^{-1}(2 \tan (3 \pi / 4))$

But we know that $\tan (3 \pi / 4)=-1$
Therefore, $2 \tan (3 \pi / 4)=2 \times-1$
$2 \tan (3 \pi / 4)=-2$
By substituting these values in $\sec ^{-1}(2 \tan (3 \pi / 4))$, we get
$\operatorname{Sec}^{-1}(-2)$
Now let $y=\operatorname{Sec}^{-1}(-2)$
$\operatorname{Sec} y=-2$
$-\sec (\pi / 3)=-2$
$=\sec (\pi-\pi / 3)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

$=\sec (2 \pi / 3)$
Therefore the range of principal value of $\sec ^{-1}$ is $[0, \pi]-\{\pi / 2\}$ and $\sec (2 \pi / 3)=-2$
Thus, the principal value of $\sec ^{-1}(2 \tan (3 \pi / 4))$ is $(2 \pi / 3)$.

RD Sharma 12th Maths Chapter 4, Class 12 Maths Chapter 4 solutions

Exercise 4.5 Page No: 4.21

1. Find the principal values of each of the following:
(i) $\operatorname{cosec}^{-1}(-\sqrt{ } 2)$
(ii) $\operatorname{cosec}^{-1}(-2)$
(iii) $\operatorname{cosec}^{-1}(2 / \sqrt{ } 3)$
(iv) $\operatorname{cosec}^{-1}(2 \cos (2 \pi / 3))$

Solution:

(i) Given $\operatorname{cosec}^{-1}(-\sqrt{ } 2)$

Let $\mathrm{y}=\operatorname{cosec}^{-1}(-\sqrt{ } 2)$
Cosec $y=-\sqrt{ } 2$
$-\operatorname{Cosec} y=\sqrt{ } 2$
$-\operatorname{Cosec}(\pi / 4)=\sqrt{ } 2$
$-\operatorname{Cosec}(\pi / 4)=\operatorname{cosec}(-\pi / 4)[\operatorname{since}-\operatorname{cosec} \theta=\operatorname{cosec}(-\theta)]$
The range of principal value of $\operatorname{cosec}^{-1}[-\pi / 2, \pi / 2]-\{0\}$ and $\operatorname{cosec}(-\pi / 4)=-\sqrt{ } 2$
$\operatorname{Cosec}(-\pi / 4)=-\sqrt{ } 2$
Therefore the principal value of $\operatorname{cosec}^{-1}(-\sqrt{ } 2)$ is $-\pi / 4$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/
ClndCareer

ClndCareer

(ii) Given $\operatorname{cosec}^{-1}(-2)$

Let $\mathrm{y}=\operatorname{cosec}^{-1}(-2)$
Cosec $y=-2$
$-\operatorname{Cosec} y=2$
$-\operatorname{Cosec}(\pi / 6)=2$
$-\operatorname{Cosec}(\pi / 6)=\operatorname{cosec}(-\pi / 6)[\operatorname{since}-\operatorname{cosec} \theta=\operatorname{cosec}(-\theta)]$
The range of principal value of $\operatorname{cosec}^{-1}[-\pi / 2, \pi / 2]-\{0\}$ and $\operatorname{cosec}(-\pi / 6)=-2$
$\operatorname{Cosec}(-\pi / 6)=-2$
Therefore the principal value of $\operatorname{cosec}^{-1}(-2)$ is $-\pi / 6$
(iii) Given $\operatorname{cosec}^{-1}(2 / \sqrt{ } 3)$

Let $y=\operatorname{cosec}^{-1}(2 / \sqrt{3})$
Cosec $y=(2 / \sqrt{ } 3)$
$\operatorname{Cosec}(\pi / 3)=(2 / \sqrt{ } 3)$
Therefore range of principal value of $\operatorname{cosec}^{-1}$ is $[-\pi / 2, \pi / 2]-\{0\}$ and $\operatorname{cosec}(\pi / 3)=(2 / \sqrt{ } 3)$
Thus, the principal value of $\operatorname{cosec}^{-1}(2 / \sqrt{ } 3)$ is $\pi / 3$
(iv) Given $\operatorname{cosec}^{-1}(2 \cos (2 \pi / 3))$

But we know that $\cos (2 \pi / 3)=-1 / 2$
Therefore $2 \cos (2 \pi / 3)=2 \times-1 / 2$
$2 \cos (2 \pi / 3)=-1$
By substituting these values in $\operatorname{cosec}^{-1}(2 \cos (2 \pi / 3))$ we get,
$\operatorname{Cosec}^{-1}(-1)$
Let $\mathrm{y}=\operatorname{cosec}^{-1}(-1)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

- Cosec y = 1
$-\operatorname{Cosec}(\pi / 2)=\operatorname{cosec}(-\pi / 2)[$ since $-\operatorname{cosec} \theta=\operatorname{cosec}(-\theta)]$
The range of principal value of $\operatorname{cosec}^{-1}[-\pi / 2, \pi / 2]-\{0\}$ and $\operatorname{cosec}(-\pi / 2)=-1$
$\operatorname{Cosec}(-\pi / 2)=-1$
Therefore the principal value of $\operatorname{cosec}^{-1}(2 \cos (2 \pi / 3))$ is $-\pi / 2$

RD Sharma 12th Maths Chapter 4, Class 12 Maths Chapter 4 solutions

Exercise 4.6 Page No: 4.24

1. Find the principal values of each of the following:
(i) $\cot ^{-1}(-\sqrt{ } 3)$
(ii) $\operatorname{Cot}^{-1}(\sqrt{3})$
(iii) $\cot ^{-1}(-1 / \sqrt{ } 3)$
(iv) $\cot ^{-1}(\tan 3 \pi / 4)$

Solution:

(i) Given $\cot ^{-1}(-\sqrt{ } 3)$

Let $\mathrm{y}=\cot ^{-1}(-\sqrt{ } 3)$
$-\operatorname{Cot}(\pi / 6)=\sqrt{ } 3$
$=\operatorname{Cot}(\pi-\pi / 6)$
$=\cot (5 \pi / 6)$
The range of principal value of $\cot ^{-1}$ is $(0, \pi)$ and $\cot (5 \pi / 6)=-\sqrt{ } 3$
Thus, the principal value of $\cot ^{-1}(-\sqrt{ } 3)$ is $5 \pi / 6$
(ii) Given $\operatorname{Cot}^{-1}(\sqrt{ } 3)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

Let $y=\cot ^{-1}(\sqrt{ } 3)$
$\operatorname{Cot}(\pi / 6)=\sqrt{ } 3$
The range of principal value of $\cot ^{-1}$ is $(0, \pi)$ and
Thus, the principal value of $\cot ^{-1}(\sqrt{ } 3)$ is $\pi / 6$
(iii) Given $\cot ^{-1}(-1 / \sqrt{ } 3)$

Let $y=\cot ^{-1}(-1 / \sqrt{ } 3)$
Cot $y=(-1 / \sqrt{ } 3)$
$-\operatorname{Cot}(\pi / 3)=1 / \sqrt{3}$
$=\operatorname{Cot}(\pi-\pi / 3)$
$=\cot (2 \pi / 3)$
The range of principal value of $\cot ^{-1}(0, \pi)$ and $\cot (2 \pi / 3)=-1 / \sqrt{ } 3$
Therefore the principal value of $\cot ^{-1}(-1 / \sqrt{3})$ is $2 \pi / 3$
(iv) Given $\cot ^{-1}(\tan 3 \pi / 4)$

But we know that $\tan 3 \pi / 4=-1$
By substituting this value in $\cot ^{-1}(\tan 3 \pi / 4)$ we get
$\operatorname{Cot}^{-1}(-1)$
Now, let $y=\cot ^{-1}(-1)$
Cot $\mathrm{y}=(-1)$
$-\operatorname{Cot}(\pi / 4)=1$
$=\operatorname{Cot}(\pi-\pi / 4)$
$=\cot (3 \pi / 4)$
The range of principal value of $\cot ^{-1}(0, \pi)$ and $\cot (3 \pi / 4)=-1$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

Therefore the principal value of $\cot ^{-1}(\tan 3 \pi / 4)$ is $3 \pi / 4$

RD Sharma 12th Maths Chapter 4, Class 12 Maths Chapter 4 solutions

Exercise 4.7 Page No: 4.42

1. Evaluate each of the following:
(i) $\sin ^{-1}(\sin \pi / 6)$
(ii) $\sin ^{-1}(\sin 7 \pi / 6)$
(iii) $\sin ^{-1}(\sin 5 \pi / 6)$
(iv) $\sin ^{-1}(\sin 13 \pi / 7)$
(v) $\sin ^{-1}(\sin 17 \pi / 8)$
(vi) $\sin ^{-1}\{(\sin -17 \pi / 8)\}$
(vii) $\sin ^{-1}(\sin 3)$
(viii) $\sin ^{-1}(\sin 4)$
(ix) $\sin ^{-1}(\sin 12)$
(x) $\sin ^{-1}(\sin 2)$

Solution:

(i) Given $\sin ^{-1}(\sin \pi / 6)$

We know that the value of $\sin \pi / 6$ is $1 / 2$
By substituting this value in $\sin ^{-1}(\sin \pi / 6)$
We get, $\sin ^{-1}(1 / 2)$
Now let $y=\sin ^{-1}(1 / 2)$
$\operatorname{Sin}(\pi / 6)=1 / 2$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClindCareer

The range of principal value of $\sin ^{-1}(-\pi / 2, \pi / 2)$ and $\sin (\pi / 6)=1 / 2$
Therefore $\sin ^{-1}(\sin \pi / 6)=\pi / 6$
(ii) Given $\sin ^{-1}(\sin 7 \pi / 6)$

But we know that $\sin 7 \pi / 6=-1 / 2$
By substituting this in $\sin ^{-1}(\sin 7 \pi / 6)$ we get,
$\operatorname{Sin}^{-1}(-1 / 2)$
Now let $\mathrm{y}=\sin ^{-1}(-1 / 2)$
$-\operatorname{Sin} y=1 / 2$
$-\operatorname{Sin}(\pi / 6)=1 / 2$
$-\operatorname{Sin}(\pi / 6)=\sin (-\pi / 6)$
The range of principal value of $\sin ^{-1}(-\pi / 2, \pi / 2)$ and $\sin (-\pi / 6)=-1 / 2$
Therefore $\sin ^{-1}(\sin 7 \pi / 6)=-\pi / 6$
(iii) Given $\sin ^{-1}(\sin 5 \pi / 6)$

We know that the value of $\sin 5 \pi / 6$ is $1 / 2$
By substituting this value in $\sin ^{-1}(\sin 5 \pi / 6)$
We get, $\sin ^{-1}(1 / 2)$
Now let $y=\sin ^{-1}(1 / 2)$
$\operatorname{Sin}(\pi / 6)=1 / 2$
The range of principal value of $\sin ^{-1}(-\pi / 2, \pi / 2)$ and $\sin (\pi / 6)=1 / 2$
Therefore $\sin ^{-1}(\sin 5 \pi / 6)=\pi / 6$
(iv) Given $\sin ^{-1}(\sin 13 \pi / 7)$

Given question can be written as $\sin (2 \pi-\pi / 7)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

$\operatorname{Sin}(2 \pi-\pi / 7)$ can be written as $\sin (-\pi / 7)$ [since $\sin (2 \pi-\theta)=\sin (-\theta)]$
By substituting these values in $\sin ^{-1}(\sin 13 \pi / 7)$ we get $\sin ^{-1}(\sin -\pi / 7)$
As $\sin ^{-1}(\sin x)=x$ with $x \in[-\pi / 2, \pi / 2]$
Therefore $\sin ^{-1}(\sin 13 \pi / 7)=-\pi / 7$
(v) Given $\sin ^{-1}(\sin 17 \pi / 8)$

Given question can be written as $\sin (2 \pi+\pi / 8)$
$\operatorname{Sin}(2 \pi+\pi / 8)$ can be written as $\sin (\pi / 8)$
By substituting these values in $\sin ^{-1}(\sin 17 \pi / 8)$ we get $\sin ^{-1}(\sin \pi / 8)$
As $\sin ^{-1}(\sin x)=x$ with $x \in[-\pi / 2, \pi / 2]$
Therefore $\sin ^{-1}(\sin 17 \pi / 8)=\pi / 8$
(vi) Given $\sin ^{-1}\{(\sin -17 \pi / 8)\}$

But we know that $-\sin \theta=\sin (-\theta)$
Therefore $(\sin -17 \pi / 8)=-\sin 17 \pi / 8$
$-\operatorname{Sin} 17 \pi / 8=-\sin (2 \pi+\pi / 8)[\operatorname{since} \sin (2 \pi-\theta)=-\sin (\theta)]$
It can also be written as $-\sin (\pi / 8)$
$-\operatorname{Sin}(\pi / 8)=\sin (-\pi / 8)[$ since $-\sin \theta=\sin (-\theta)]$
By substituting these values in $\sin ^{-1}\{(\sin -17 \pi / 8)\}$ we get,
$\operatorname{Sin}^{-1}(\sin -\pi / 8)$
As $\sin ^{-1}(\sin x)=x$ with $x \in[-\pi / 2, \pi / 2]$
Therefore $\sin ^{-1}(\sin -\pi / 8)=-\pi / 8$
(vii) Given $\sin ^{-1}(\sin 3)$

We know that $\sin ^{-1}(\sin x)=x$ with $x \in[-\pi / 2, \pi / 2]$ which is approximately equal to $[-1.57,1.57]$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

But here $x=3$, which does not lie on the above range,
Therefore we know that $\sin (\pi-x)=\sin (x)$
Hence $\sin (\pi-3)=\sin (3)$ also $\pi-3 \in[-\pi / 2, \pi / 2]$
$\operatorname{Sin}^{-1}(\sin 3)=\pi-3$
(viii) Given $\sin ^{-1}(\sin 4)$

We know that $\sin ^{-1}(\sin x)=x$ with $x \in[-\pi / 2, \pi / 2]$ which is approximately equal to $[-1.57,1.57]$
But here $x=4$, which does not lie on the above range,
Therefore we know that $\sin (\pi-x)=\sin (x)$
Hence $\sin (\pi-4)=\sin (4)$ also $\pi-4 \in[-\pi / 2, \pi / 2]$
$\operatorname{Sin}^{-1}(\sin 4)=\pi-4$
(ix) Given $\sin ^{-1}(\sin 12)$

We know that $\sin ^{-1}(\sin \mathrm{x})=\mathrm{x}$ with $\mathrm{x} \in[-\pi / 2, \pi / 2]$ which is approximately equal to $[-1.57,1.57]$
But here $x=12$, which does not lie on the above range,
Therefore we know that $\sin (2 n \pi-x)=\sin (-x)$
Hence $\sin (2 n \pi-12)=\sin (-12)$
Here $\mathrm{n}=2$ also $12-4 \pi \in[-\pi / 2, \pi / 2]$
$\operatorname{Sin}^{-1}(\sin 12)=12-4 \pi$
(x) Given $\sin ^{-1}(\sin 2)$

We know that $\sin ^{-1}(\sin \mathrm{x})=\mathrm{x}$ with $\mathrm{x} \in[-\pi / 2, \pi / 2]$ which is approximately equal to $[-1.57,1.57]$
But here $x=2$, which does not lie on the above range,
Therefore we know that $\sin (\pi-x)=\sin (x)$
Hence $\sin (\pi-2)=\sin (2)$ also $\pi-2 \in[-\pi / 2, \pi / 2]$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

$\operatorname{Sin}^{-1}(\sin 2)=\pi-2$

2. Evaluate each of the following:

(i) $\cos ^{-1}\{\cos (-\pi / 4)\}$
(ii) $\cos ^{-1}(\cos 5 \pi / 4)$
(iii) $\cos ^{-1}(\cos 4 \pi / 3)$
(iv) $\cos ^{-1}(\cos 13 \pi / 6)$
(v) $\cos ^{-1}(\cos 3)$
(vi) $\cos ^{-1}(\cos 4)$
(vii) $\cos ^{-1}(\cos 5)$
(viii) $\cos ^{-1}(\cos 12)$

Solution:

(i) Given $\cos ^{-1}\{\cos (-\pi / 4)\}$

We know that $\cos (-\pi / 4)=\cos (\pi / 4)[$ since $\cos (-\theta)=\cos \theta$
Also know that $\cos (\pi / 4)=1 / \sqrt{ } 2$
By substituting these values in $\cos ^{-1}\{\cos (-\pi / 4)\}$ we get,
$\operatorname{Cos}^{-1}(1 / \sqrt{ } 2)$
Now let $y=\cos ^{-1}(1 / \sqrt{ } 2)$
Therefore $\cos y=1 / \sqrt{ } 2$
Hence range of principal value of $\cos ^{-1}$ is $[0, \pi]$ and $\cos (\pi / 4)=1 / \sqrt{ } 2$
Therefore $\cos ^{-1}\{\cos (-\pi / 4)\}=\pi / 4$
(ii) Given $\cos ^{-1}(\cos 5 \pi / 4)$

But we know that $\cos (5 \pi / 4)=-1 / \sqrt{ } 2$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

By substituting these values in $\cos ^{-1}\{\cos (5 \pi / 4)\}$ we get,
$\operatorname{Cos}^{-1}(-1 / \sqrt{ } 2)$
Now let $y=\cos ^{-1}(-1 / \sqrt{ } 2)$
Therefore $\cos y=-1 / \sqrt{ } 2$
$-\operatorname{Cos}(\pi / 4)=1 / \sqrt{ } 2$
$\operatorname{Cos}(\pi-\pi / 4)=-1 / \sqrt{ } 2$
$\operatorname{Cos}(3 \pi / 4)=-1 / \sqrt{ } 2$
Hence range of principal value of $\cos ^{-1}$ is $[0, \pi]$ and $\cos (3 \pi / 4)=-1 / \sqrt{ } 2$
Therefore $\cos ^{-1}\{\cos (5 \pi / 4)\}=3 \pi / 4$
(iii) Given $\cos ^{-1}(\cos 4 \pi / 3)$

But we know that $\cos (4 \pi / 3)=-1 / 2$
By substituting these values in $\cos ^{-1}\{\cos (4 \pi / 3)\}$ we get,
$\operatorname{Cos}^{-1}(-1 / 2)$
Now let $\mathrm{y}=\cos ^{-1}(-1 / 2)$
Therefore $\cos y=-1 / 2$
$-\operatorname{Cos}(\pi / 3)=1 / 2$
$\operatorname{Cos}(\pi-\pi / 3)=-1 / 2$
$\operatorname{Cos}(2 \pi / 3)=-1 / 2$
Hence range of principal value of $\cos ^{-1}$ is $[0, \pi]$ and $\cos (2 \pi / 3)=-1 / 2$
Therefore $\cos ^{-1}\{\cos (4 \pi / 3)\}=2 \pi / 3$
(iv) Given $\cos ^{-1}(\cos 13 \pi / 6)$

But we know that $\cos (13 \pi / 6)=\sqrt{ } 3 / 2$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

By substituting these values in $\cos ^{-1}\{\cos (13 \pi / 6)\}$ we get,
$\operatorname{Cos}^{-1}(\sqrt{3} / 2)$
Now let $\mathrm{y}=\cos ^{-1}(\sqrt{ } 3 / 2)$
Therefore $\cos y=\sqrt{ } 3 / 2$
$\operatorname{Cos}(\pi / 6)=\sqrt{ } 3 / 2$
Hence range of principal value of $\cos ^{-1}$ is $[0, \pi]$ and $\cos (\pi / 6)=\sqrt{ } 3 / 2$
Therefore $\cos ^{-1}\{\cos (13 \pi / 6)\}=\pi / 6$
(v) Given $\cos ^{-1}(\cos 3)$

We know that $\cos ^{-1}(\cos \theta)=\theta$ if $0 \leq \theta \leq \pi$
Therefore by applying this in given question we get,
$\operatorname{Cos}^{-1}(\cos 3)=3,3 \in[0, \pi]$
(vi) Given $\cos ^{-1}(\cos 4)$

We have $\cos ^{-1}(\cos x)=x$ if $x \in[0, \pi] \approx[0,3.14]$
And here $x=4$ which does not lie in the above range.
We know that $\cos (2 \pi-x)=\cos (x)$
Thus, $\cos (2 \pi-4)=\cos (4)$ so $2 \pi-4$ belongs in $[0, \pi]$
Hence $\cos ^{-1}(\cos 4)=2 \pi-4$
(vii) Given $\cos ^{-1}(\cos 5)$

We have $\cos ^{-1}(\cos x)=x$ if $x \in[0, \pi] \approx[0,3.14]$
And here $x=5$ which does not lie in the above range.
We know that $\cos (2 \pi-x)=\cos (x)$
Thus, $\cos (2 \pi-5)=\cos (5)$ so $2 \pi-5$ belongs in $[0, \pi]$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

Hence $\cos ^{-1}(\cos 5)=2 \pi-5$
(viii) Given $\cos ^{-1}(\cos 12)$
$\operatorname{Cos}^{-1}(\cos x)=x$ if $x \in[0, \pi] \approx[0,3.14]$
And here $x=12$ which does not lie in the above range.
We know $\cos (2 n \pi-x)=\cos (x)$
$\operatorname{Cos}(2 n \pi-12)=\cos (12)$
Here $\mathrm{n}=2$.
Also $4 \pi-12$ belongs in $[0, \pi]$
$\therefore \cos ^{-1}(\cos 12)=4 \pi-12$
3. Evaluate each of the following:
(i) $\tan ^{-1}(\tan \pi / 3)$
(ii) $\tan ^{-1}(\tan 6 \pi / 7)$
(iii) $\tan ^{-1}(\tan 7 \pi / 6)$
(iv) $\tan ^{-1}(\tan 9 \pi / 4)$
(v) $\tan ^{-1}(\tan 1)$
(vi) $\tan ^{-1}(\tan 2)$
(vii) $\tan ^{-1}(\tan 4)$
(viii) $\tan ^{-1}(\tan 12)$

Solution:

(i) Given $\tan ^{-1}(\tan \pi / 3)$

As $\tan ^{-1}(\tan \mathrm{x})=\mathrm{x}$ if $\mathrm{x} \in[-\pi / 2, \pi / 2]$
By applying this condition in the given question we get,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

$\operatorname{Tan}^{-1}(\tan \pi / 3)=\pi / 3$
(ii) Given $\tan ^{-1}(\tan 6 \pi / 7)$

We know that $\tan 6 \pi / 7$ can be written as $(\pi-\pi / 7)$
$\operatorname{Tan}(\pi-\pi / 7)=-\tan \pi / 7$
We know that $\tan ^{-1}(\tan \mathrm{x})=\mathrm{x}$ if $\mathrm{x} \in[-\pi / 2, \pi / 2]$
$\operatorname{Tan}^{-1}(\tan 6 \pi / 7)=-\pi / 7$
(iii) Given $\tan ^{-1}(\tan 7 \pi / 6)$

We know that $\tan 7 \pi / 6=1 / \sqrt{ } 3$
By substituting this value in $\tan ^{-1}(\tan 7 \pi / 6)$ we get,
$\operatorname{Tan}^{-1}(1 / \sqrt{3})$
Now let $\tan ^{-1}(1 / \sqrt{ } 3)=y$
Tan $y=1 / \sqrt{ } 3$
$\operatorname{Tan}(\pi / 6)=1 / \sqrt{ } 3$
The range of the principal value of $\tan ^{-1}$ is $(-\pi / 2, \pi / 2)$ and $\tan (\pi / 6)=1 / \sqrt{ } 3$
Therefore $\tan ^{-1}(\tan 7 \pi / 6)=\pi / 6$
(iv) Given $\tan ^{-1}(\tan 9 \pi / 4)$

We know that $\tan 9 \pi / 4=1$
By substituting this value in $\tan ^{-1}(\tan 9 \pi / 4)$ we get,
$\operatorname{Tan}^{-1}(1)$
Now let $\tan ^{-1}(1)=y$
$\operatorname{Tan} \mathrm{y}=1$
$\operatorname{Tan}(\pi / 4)=1$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

The range of the principal value of $\tan ^{-1}$ is $(-\pi / 2, \pi / 2)$ and $\tan (\pi / 4)=1$
Therefore $\tan ^{-1}(\tan 9 \pi / 4)=\pi / 4$
(v) Given $\tan ^{-1}(\tan 1)$

But we have $\tan ^{-1}(\tan x)=x$ if $x \in[-\pi / 2, \pi / 2]$
By substituting this condition in given question
$\operatorname{Tan}^{-1}(\tan 1)=1$
(vi) Given $\tan ^{-1}(\tan 2)$

As $\tan ^{-1}(\tan x)=x$ if $x \in[-\pi / 2, \pi / 2]$
But here $\mathrm{x}=2$ which does not belongs to above range
We also have $\tan (\pi-\theta)=-\tan (\theta)$
Therefore $\tan (\theta-\pi)=\tan (\theta)$
$\operatorname{Tan}(2-\pi)=\tan (2)$
Now $2-\pi$ is in the given range
Hence $\tan ^{-1}(\tan 2)=2-\pi$
(vii) Given $\tan ^{-1}(\tan 4)$

As $\tan ^{-1}(\tan x)=x$ if $x \in[-\pi / 2, \pi / 2]$
But here $x=4$ which does not belongs to above range
We also have $\tan (\pi-\theta)=-\tan (\theta)$
Therefore $\tan (\theta-\pi)=\tan (\theta)$
$\operatorname{Tan}(4-\pi)=\tan (4)$
Now $4-\pi$ is in the given range
Hence $\tan ^{-1}(\tan 2)=4-\pi$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

(viii) Given $\tan ^{-1}(\tan 12)$

As $\tan ^{-1}(\tan \mathrm{x})=\mathrm{x}$ if $\mathrm{x} \in[-\pi / 2, \pi / 2]$
But here $\mathrm{x}=12$ which does not belongs to above range
We know that $\tan (2 n \pi-\theta)=-\tan (\theta)$
$\operatorname{Tan}(\theta-2 n \pi)=\tan (\theta)$
Here $\mathrm{n}=2$
$\operatorname{Tan}(12-4 \pi)=\tan (12)$
Now $12-4 \pi$ is in the given range
$\therefore \tan ^{-1}(\tan 12)=12-4 \pi$.

RD Sharma 12th Maths Chapter 4, Class 12 Maths Chapter 4 solutions

Exercise 4.8 Page No: 4.54

1. Evaluate each of the following:
(i) $\sin \left(\sin ^{-1} 7 / 25\right)$
(ii) $\operatorname{Sin}\left(\cos ^{-1} 5 / 13\right)$
(iii) $\operatorname{Sin}\left(\tan ^{-1} 24 / 7\right)$
(iv) $\operatorname{Sin}\left(\mathrm{sec}^{-1} 17 / 8\right)$
(v) Cosec $\left(\cos ^{-1} 8 / 17\right)$
(vi) $\operatorname{Sec}\left(\sin ^{-1} 12 / 13\right)$
(vii) $\operatorname{Tan}\left(\cos ^{-1} 8 / 17\right)$
(viii) $\cot \left(\cos ^{-1} 3 / 5\right)$
(ix) $\operatorname{Cos}\left(\tan ^{-1} 24 / 7\right)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

Solution:

(i) Given $\sin \left(\sin ^{-1} 7 / 25\right)$

Now let $y=\sin ^{-1} 7 / 25$
$\operatorname{Sin} y=7 / 25$ where $y \in[0, \pi / 2]$
Substituting these values in $\sin \left(\sin ^{-1} 7 / 25\right)$ we get
$\operatorname{Sin}\left(\sin ^{-1} 7 / 25\right)=7 / 25$
(ii) Given $\operatorname{Sin}\left(\cos ^{-1} 5 / 13\right)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClindCareer

$$
\text { Let } \cos ^{-1} \frac{5}{13}=y
$$

$$
\Rightarrow \quad \cos y=\frac{5}{13} \text { Where } y \in\left[0, \frac{\pi}{2}\right]
$$

Now we have to find

$$
\sin \left(\cos ^{-1} \frac{5}{13}\right)=\sin y
$$

We know that $\sin ^{2} \theta+\cos ^{2} \theta=1$
By substituting this trigonometric identity we get
$\Rightarrow \sin y= \pm \sqrt{1-\cos ^{2} y}$
Where $\mathrm{y} \in\left[0, \frac{\pi}{2}\right]$
$\Rightarrow \sin \mathrm{y}=\sqrt{1-\cos ^{2} \mathrm{y}}$
Now by substituting $\cos \mathrm{y}$ value we get

$$
\begin{aligned}
& \Rightarrow \sin \mathrm{y}=\sqrt{1-\left(\frac{5}{13}\right)^{2}} \\
& \Rightarrow \sin \mathrm{y}=\sqrt{1-\frac{25}{169}} \\
& \Rightarrow \sin \mathrm{y}=\sqrt{\frac{144}{169}} \\
& \Rightarrow \sin \mathrm{y}=\frac{12}{13} \Rightarrow \sin \left[\cos ^{-1}\left(\frac{5}{13}\right)\right]=\frac{12}{13}
\end{aligned}
$$

(iii) Given $\operatorname{Sin}\left(\tan ^{-1} 24 / 7\right)$

ClndCareer

$$
\text { Let } \tan ^{-1} \frac{24}{7}=y
$$

$$
\Rightarrow \tan \mathrm{y}=\frac{24}{7} \text { Where } \mathrm{y} \in\left[0, \frac{\pi}{2}\right]
$$

Now we have to find

$$
\sin \left(\tan ^{-1} \frac{24}{7}\right)=\sin y
$$

We know that $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$
$\Rightarrow 1+\cot ^{2} y=\operatorname{cosec}^{2} y$
Now substituting this trigonometric identity we get,
$\Rightarrow 1+\left(\frac{7}{24}\right)^{2}=\operatorname{cosec}^{2} y$

$$
\Rightarrow 1+\frac{49}{576}=\frac{1}{\sin ^{2} y}
$$

On rearranging we get,

$$
\begin{aligned}
& \Rightarrow \sin ^{2} \mathrm{y}=\frac{576}{625} \\
& \Rightarrow \sin \mathrm{y}=\frac{24}{25} \text { Where } \mathrm{y} \in\left[0, \frac{\pi}{2}\right] \\
& \Rightarrow \sin \left(\tan ^{-1} \frac{24}{7}\right)=\frac{24}{25}
\end{aligned}
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

(iv) Given $\operatorname{Sin}\left(\mathrm{sec}^{-1} 17 / 8\right)$

$$
\text { Let } \sec ^{-1} \frac{17}{8}=y
$$

$\Rightarrow \sec \mathrm{y}=\frac{17}{8}$ Where $\mathrm{y} \in\left[0, \frac{\pi}{2}\right]$
Now we have find

$$
\begin{aligned}
& \sin \left(\sec ^{-1} \frac{17}{8}\right)=\sin \mathrm{y} \\
& \text { We know that, }
\end{aligned}
$$

$$
\Rightarrow \quad \cos y=\frac{8}{17}
$$

$$
\text { Now, } \sin \mathrm{y}=\sqrt{1-\cos ^{2} \mathrm{y}} \text { where } \mathrm{y} \in\left[0, \frac{\pi}{2}\right]
$$

By substituting, cos y value we get,

$$
\begin{aligned}
& \Rightarrow \quad \sin y=\sqrt{1-\left(\frac{8}{17}\right)^{2}} \\
& \Rightarrow \sin y=\sqrt{\frac{225}{289}} \\
& \Rightarrow \sin y=\frac{15}{17} \\
& \Rightarrow \sin \left(\sec ^{-1} \frac{17}{8}\right)=\frac{15}{17}
\end{aligned}
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

(v) Given Cosec ($\cos ^{-1} 8 / 17$)

Let $\cos ^{-1}(8 / 17)=y$
$\cos y=8 / 17$ where $y \in[0, \pi / 2]$
Now, we have to find
$\operatorname{Cosec}\left(\cos ^{-1} 8 / 17\right)=\operatorname{cosec} y$
We know that,
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\sin ^{2} \theta=\sqrt{ }\left(1-\cos ^{2} \theta\right)$
So,
$\sin y=\sqrt{ }\left(1-\cos ^{2} y\right)$
$=\sqrt{ }\left(1-(8 / 17)^{2}\right)$
$=\sqrt{ }(1-64 / 289)$
$=\sqrt{ }(289-64 / 289)$
$=\sqrt{ }(225 / 289)$
$=15 / 17$

Hence,
Cosec $y=1 / \sin y=1 /(15 / 17)=17 / 15$
Therefore,
$\operatorname{Cosec}\left(\cos ^{-1} 8 / 17\right)=17 / 15$
(vi) Given Sec $\left(\sin ^{-1} 12 / 13\right)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

$$
\begin{aligned}
& \text { Let } \sin ^{-1} \frac{12}{13}=\mathrm{y} \text { where } \mathrm{y} \in\left[0, \frac{\pi}{2}\right] \\
& \Rightarrow \sin \mathrm{y}=\frac{12}{13}
\end{aligned}
$$

Now we have to find

$$
\sec \left(\sin ^{-1} \frac{12}{13}\right)=\sec y
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

We know that $\sin ^{2} \theta+\cos ^{2} \theta=1$
According to this identity $\cos y$ can be written as
$\Rightarrow \cos y=\sqrt{1-\sin ^{2} y}$ Where $y \in\left[0, \frac{\pi}{2}\right]$
Now substituting the value of $\sin y$ we get,

$$
\left.\begin{array}{l}
\Rightarrow \cos y=\sqrt{1-\left(\frac{12}{13}\right)^{2}} \\
\Rightarrow \cos y=\sqrt{1-\frac{144}{169}} \\
\Rightarrow \cos y=\sqrt{\frac{25}{169}} \\
\Rightarrow \cos y=\frac{5}{13} \\
\Rightarrow \sec y=\frac{1}{\cos y}
\end{array} \quad \Rightarrow \sec y=\frac{13}{5}\right)
$$

(vii) Given $\operatorname{Tan}\left(\cos ^{-1} 8 / 17\right)$

$$
\begin{aligned}
& \text { Let } \cos ^{-1} \frac{8}{17}=y \text { where } \mathrm{y} \in\left[0, \frac{\pi}{2}\right] \\
& \Rightarrow \cos \mathrm{y}=\frac{8}{17}
\end{aligned}
$$

Now we have to find

$$
\tan \left(\cos ^{-1} \frac{8}{17}\right)=\tan y
$$

We know that $1+\tan ^{2} \theta=\sec ^{2} \theta$
Rearranging and substituting the value of $\tan y$ we get,

$$
\Rightarrow \tan y=\sqrt{\sec ^{2} y-1} \text { Where } y \in\left[0, \frac{\pi}{2}\right]
$$

We have $\sec y=1 / \cos y \mid$

$$
\begin{aligned}
& \Rightarrow \tan y=\sqrt{\left(\frac{1}{\cos ^{2} y}\right)-1} \\
& \Rightarrow \tan y=\sqrt{\left(\frac{17}{8}\right)^{2}-1} \\
& \Rightarrow \tan y=\sqrt{\frac{289}{64}-1}
\end{aligned}
$$

ClndCareer

$$
\begin{aligned}
& \Rightarrow \tan y=\sqrt{\frac{225}{64}} \\
& \Rightarrow \tan y=\frac{15}{8} \\
& \Rightarrow \tan \left(\cos ^{-1} \frac{8}{17}\right)=\frac{15}{8}
\end{aligned}
$$

(viii) Given $\cot \left(\cos ^{-1} 3 / 5\right)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

Let $\cos ^{-1} \frac{3}{5}=y$ where $y \in\left[0, \frac{\pi}{2}\right]$
$\Rightarrow \cos y=\frac{3}{5}$
Now we have to find

$$
\cot \left(\cos ^{-1} \frac{3}{5}\right)=\cot y
$$

We know that $1+\tan ^{2} \theta=\sec ^{2} \theta$
Rearranging and substituting the value of $\tan y$ we get,
$\Rightarrow \tan y=\sqrt{\sec ^{2} y-1}$ Where $y \in\left[0, \frac{\pi}{2}\right]$
We have $\sec y=1 / \cos y$, on substitution we get,

$$
\begin{array}{ll}
\Rightarrow \frac{1}{\cot y}=\sqrt{\left(\frac{1}{\cos ^{2} y}\right)-1} & \Rightarrow \frac{1}{\cot y}=\sqrt{\frac{16}{9}} \\
\Rightarrow \frac{1}{\cot y}=\sqrt{\left(\frac{5}{3}\right)^{2}-1} & \Rightarrow \cot y=\frac{3}{4} \\
\Rightarrow \cot \left(\cos ^{-1} \frac{3}{5}\right)=\frac{3}{4} &
\end{array}
$$

(ix) Given $\operatorname{Cos}\left(\tan ^{-1} 24 / 7\right)$

$$
\text { Let } \tan ^{-1} \frac{24}{7}=y
$$

$$
\Rightarrow \quad \tan \mathrm{y}=\frac{24}{7} \text { Where } \mathrm{y} \in\left[0, \frac{\pi}{2}\right]
$$

Now we have to find,

$$
\cos \left(\tan ^{-1} \frac{24}{7}\right)=\cos y
$$

We know that $1+\tan ^{2} \theta=\sec ^{2} \theta$
$\Rightarrow 1+\tan ^{2} y=\sec ^{2} y$
On rearranging and substituting the value of $\sec y$ we get,
$\Rightarrow \sec y=\sqrt{1+\tan ^{2} y}$ Where $\mathrm{y} \in\left[0, \frac{\pi}{2}\right]$
$\Rightarrow \sec y=\sqrt{1+\left(\frac{24}{7}\right)^{2}}$
$\Rightarrow \sec y=\sqrt{\frac{625}{49}}$
$\Rightarrow \quad \sec y=\frac{25}{7}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

$$
\begin{aligned}
& \Rightarrow \cos y=\frac{1}{\sec y} \\
& \Rightarrow \\
& \cos y=\frac{7}{25} \\
& \Rightarrow \cos \left(\tan ^{-1} \frac{24}{7}\right)=\frac{7}{25}
\end{aligned}
$$

Exercise 4.9 Page No: 4.58

1. Evaluate:
(i) $\operatorname{Cos}\left\{\sin ^{-1}(-7 / 25)\right\}$
(ii) $\operatorname{Sec}\left\{\cot ^{-1}(-5 / 12)\right\}$
(iii) Cot $\left\{\sec ^{-1}(-13 / 5)\right\}$

Solution:

(i) Given $\operatorname{Cos}\left\{\sin ^{-1}(-7 / 25)\right\}$

Clnd Career

$$
\text { Let } \sin ^{-1}\left(-\frac{7}{25}\right)=x_{\text {Where }} \mathrm{x} \in\left[-\frac{\pi}{2}, 0\right]
$$

$$
\Rightarrow \quad \sin x=-\frac{7}{25}
$$

Now we have to find

$$
\cos \left[\sin ^{-1}\left(-\frac{7}{25}\right)\right]=\cos x
$$

We know that $\sin ^{2} x+\cos ^{2} x=1$
On rearranging and substituting we get,

$$
\begin{aligned}
& \Rightarrow \cos x=\sqrt{1-\sin ^{2} x} \text { since } x \in\left[-\frac{\pi}{2}, 0\right] \\
& \Rightarrow \cos x=\sqrt{1-\frac{49}{625}} \\
& \Rightarrow \cos x=\sqrt{\frac{576}{625}} \\
& \Rightarrow \cos x=\frac{24}{25} \\
& \Rightarrow \cos \left[\sin ^{-1}\left(-\frac{7}{25}\right)\right]=\frac{24}{25}
\end{aligned}
$$

(ii) Given $\operatorname{Sec}\left\{\cot ^{-1}(-5 / 12)\right\}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClindCareer

$$
\begin{aligned}
& \text { Let } \cot ^{-1}\left(-\frac{5}{12}\right)=\mathrm{x}_{\text {where }} \mathrm{x} \in\left(\frac{\pi}{2}, \pi\right) \\
& \Rightarrow \cot \mathrm{x}=-\frac{5}{12}
\end{aligned}
$$

Now we have to find,

$$
\sec \left[\cot ^{-1}\left(-\frac{5}{12}\right)\right]=\sec x
$$

We know that $1+\tan ^{2} x=\sec ^{2} x$
On rearranging, we get

$$
\Rightarrow \quad 1+\frac{1}{\cot ^{2} x}=\sec ^{2} x
$$

Substituting these values we get,

$$
\begin{aligned}
& \Rightarrow \sec x=-\left.\sqrt{1+\frac{1}{\cot ^{2} x}}\right|_{\text {Since }} x \in\left(\frac{\pi}{2}, \pi\right) \\
& \Rightarrow \sec x=-\sqrt{1+\left(\frac{12}{5}\right)^{2}} \\
& \Rightarrow \sec x=-\frac{13}{5} \\
& \Rightarrow \sec \left[\cot ^{-1}\left(-\frac{5}{12}\right)\right]=-\frac{13}{5}
\end{aligned}
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

(iii) Given $\operatorname{Cot}\left\{\sec ^{-1}(-13 / 5)\right\}$

$$
\text { Let } \sec ^{-1}\left(-\frac{13}{5}\right)=x \underset{\text { where }}{ } \mathrm{x} \in\left(\frac{\pi}{2}, \pi\right)
$$

$$
\Rightarrow \quad \sec x=-\frac{13}{5}
$$

Now we have find,

$$
\cot \left[\sec ^{-1}\left(-\frac{13}{5}\right)\right]=\cot x
$$

We know that $1+\tan ^{2} x=\sec ^{2} x$
On rearranging, we get
$\Rightarrow \tan \mathrm{x}=-\sqrt{\sec ^{2} \mathrm{x}-1}$
Now substitute the value of $\sec x$, we get

$$
\begin{array}{ll}
\Rightarrow \tan x=-\sqrt{\left(-\frac{13}{5}\right)^{2}-1} & \Rightarrow \\
\cot x=-\frac{5}{12} \\
\Rightarrow \tan x=-\frac{12}{5} & \Rightarrow \cot \left[\sec ^{-1}\left(-\frac{13}{5}\right)\right]=-\frac{5}{12}
\end{array}
$$

Exercise 4.10 Page No: 4.66

1. Evaluate:
(i) $\operatorname{Cot}\left(\sin ^{-1}(3 / 4)+\sec ^{-1}(4 / 3)\right)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

(ii) $\operatorname{Sin}\left(\tan ^{-1} \mathrm{x}+\tan ^{-1} 1 / \mathrm{x}\right)$ for $\mathrm{x}<0$
(iii) $\operatorname{Sin}\left(\tan ^{-1} x+\tan ^{-1} 1 / x\right)$ for $x>0$
(iv) $\operatorname{Cot}\left(\tan ^{-1} a+\cot ^{-1} a\right)$
(v) $\operatorname{Cos}\left(\sec ^{-1} x+\operatorname{cosec}^{-1} x\right),|x| \geq 1$

Solution:

(i) Given Cot $\left(\sin ^{-1}(3 / 4)+\sec ^{-1}(4 / 3)\right)$

$$
\begin{aligned}
& =\cot \left(\sin ^{-1} \frac{3}{4}+\cos ^{-1} \frac{3}{4}\right) \\
& \left(\because \sec ^{-1} x=\cos ^{-1} \frac{1}{x}\right)
\end{aligned}
$$

We have

$$
\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}
$$

By substituting these values in given questions, we get

$$
\begin{aligned}
& \cot \frac{\pi}{2} \\
= & 0
\end{aligned}
$$

(ii) Given $\operatorname{Sin}\left(\tan ^{-1} x+\tan ^{-1} 1 / x\right)$ for $x<0$

Clnd Career

$$
\begin{aligned}
& =\sin \left(\tan ^{-1} \mathrm{x}+\left(\cot ^{-1} \mathrm{x}-\pi\right)\right)\left(\because \tan ^{-1} \theta=\cot ^{-1} \frac{1}{\theta}-\pi \quad \text { for } \mathrm{x}<0\right) \\
= & \sin \left(\frac{\pi}{2}-\pi\right)\left(\because \tan ^{-1} \theta+\cot ^{-1} \theta=\frac{\pi}{2}\right)
\end{aligned}
$$

On simplifying, we get

$$
=\sin \left(-\frac{\pi}{2}\right)
$$

We know that $\sin (-\theta)=-\sin \theta$

$$
=-\sin \frac{\pi}{2}=-1
$$

(iii) Given $\operatorname{Sin}\left(\tan ^{-1} x+\tan ^{-1} 1 / x\right)$ for $x>0$

$$
=\sin \left(\tan ^{-1} x+\cot ^{-1} x\right)\left(\because \tan ^{-1} \theta=\cot ^{-1} \frac{1}{\theta} \quad \text { for } x>0\right)
$$

Again we know that,

$$
\tan ^{-1} \theta+\cot ^{-1} \theta=\frac{\pi}{2}
$$

Now by substituting above identity in given question we get,

$$
\begin{aligned}
& =\sin \frac{\pi}{2} \\
& =1
\end{aligned}
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

(iv) Given Cot $\left(\tan ^{-1} \mathrm{a}+\cot ^{-1} \mathrm{a}\right)$

We know that,

$$
\tan ^{-1} \theta+\cot ^{-1} \theta=\frac{\pi}{2}
$$

Now by substituting above identity in given question we get,

$$
\begin{aligned}
& \cot \left(\frac{\pi}{2}\right) \\
= & 0 \\
= & 0
\end{aligned}
$$

(v) Given $\operatorname{Cos}\left(\sec ^{-1} x+\operatorname{cosec}^{-1} x\right),|x| \geq 1$

We know that

$$
\sec ^{-1} \theta=\cos ^{-1} \frac{1}{\theta}
$$

Again we have

$$
\operatorname{cosec}^{-1} \theta=\sin ^{-1} \frac{1}{\theta}
$$

By substituting these values in given question we get,

$$
=\cos \left(\cos ^{-1} \frac{1}{x}+\sin ^{-1} \frac{1}{x}\right)
$$

We know that from the identities,

$$
\sin ^{-1} \theta+\cos ^{-1} \theta=\frac{\pi}{2}
$$

Now by substituting we get,

$$
\begin{aligned}
& =\cos \frac{\pi}{2} \\
& =0
\end{aligned}
$$

2. If $\cos ^{-1} x+\cos ^{-1} y=\pi / 4$, find the value of $\sin ^{-1} x+\sin ^{-1} y$.

Solution:

Given $\cos ^{-1} x+\cos ^{-1} y=\pi / 4$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

We know that

$$
\sin ^{-1} \theta+\cos ^{-1} \theta=\frac{\pi}{2}
$$

Now substituting above identity in given question we get,

$$
\Rightarrow\left(\frac{\pi}{2}-\sin ^{-1} x\right)+\left(\frac{\pi}{2}-\sin ^{-1} y\right)=\frac{\pi}{4}
$$

Adding and simplifying we get,

$$
\Rightarrow \quad \pi-\left(\sin ^{-1} x+\sin ^{-1} y\right)=\frac{\pi}{4}
$$

On rearranging,

$$
\begin{aligned}
\Rightarrow & \sin ^{-1} x+\sin ^{-1} y=\pi-\frac{\pi}{4} \\
\Rightarrow & \sin ^{-1} x+\sin ^{-1} y=\frac{3 \pi}{4}
\end{aligned}
$$

3. If $\sin ^{-1} x+\sin ^{-1} y=\pi / 3$ and $\cos ^{-1} x-\cos ^{-1} y=\pi / 6$, find the values of x and y.

Solution:

Given $\sin ^{-1} x+\sin ^{-1} y=\pi / 3 \ldots \ldots$. Equation (i)
And $\cos ^{-1} x-\cos ^{-1} y=\pi / 6 \ldots \ldots .$. Equation (ii)

ClindCareer

Subtracting Equation (ii) from Equation (i), we get

$$
\Rightarrow \quad\left(\sin ^{-1} x-\cos ^{-1} x\right)+\left(\sin ^{-1} y+\cos ^{-1} y\right)=\frac{\pi}{3}-\frac{\pi}{6}
$$

We know that,

$$
\sin ^{-1} \theta+\cos ^{-1} \theta=\frac{\pi}{2}
$$

ClndCareer

By substituting above identity, we get

$$
\Rightarrow \quad\left(\sin ^{-1} x-\cos ^{-1} x\right)+\left(\frac{\pi}{2}\right)=\frac{\pi}{6}
$$

Replacing $\sin ^{-1} x$ by $\pi / 2-\cos ^{-1} x$ and rearranging we get,

$$
\Rightarrow\left(\frac{\pi}{2}-\cos ^{-1} x\right)-\cos ^{-1} x=-\frac{\pi}{3}
$$

Now by adding,

$$
\begin{aligned}
& \Rightarrow 2 \cos ^{-1} x=\frac{5 \pi}{6} \\
& \Rightarrow \cos ^{-1} x=\frac{5 \pi}{12}
\end{aligned}
$$

$$
\Rightarrow x=\cos \left(\frac{5 \pi}{12}\right)
$$

$$
\Rightarrow x=\cos \left(\frac{\pi}{4}+\frac{\pi}{6}\right)
$$

We know that $\operatorname{Cos}(A+B)=\operatorname{Cos} A \cdot \operatorname{Cos} B-\operatorname{Sin} A \cdot \operatorname{Sin} B$, substituting this we get,
4. If $\cot \left(\cos ^{-1} 3 / 5+\sin ^{-1} x\right)=0$, find the value of x.

Solution:

Given $\cot \left(\cos ^{-1} 3 / 5+\sin ^{-1} x\right)=0$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

On rearranging we get,
$\left(\cos ^{-1} 3 / 5+\sin ^{-1} x\right)=\cot ^{-1}(0)$
$\left(\operatorname{Cos}^{-1} 3 / 5+\sin ^{-1} x\right)=\pi / 2$
We know that $\cos ^{-1} x+\sin ^{-1} x=\pi / 2$
Then $\sin ^{-1} x=\pi / 2-\cos ^{-1} x$
Substituting the above in $\left(\cos ^{-1} 3 / 5+\sin ^{-1} x\right)=\pi / 2$ we get,
$\left(\operatorname{Cos}^{-1} 3 / 5+\pi / 2-\cos ^{-1} x\right)=\pi / 2$
Now on rearranging we get,
$\left(\operatorname{Cos}^{-1} 3 / 5-\cos ^{-1} x\right)=\pi / 2-\pi / 2$
$\left(\operatorname{Cos}^{-1} 3 / 5-\cos ^{-1} x\right)=0$
Therefore $\operatorname{Cos}^{-1} 3 / 5=\cos ^{-1} x$
On comparing the above equation we get,
$x=3 / 5$
5. If $\left(\sin ^{-1} x\right)^{2}+\left(\cos ^{-1} x\right)^{2}=17 \pi^{2} / 36$, find x.

Solution:

Given $\left(\sin ^{-1} x\right)^{2}+\left(\cos ^{-1} x\right)^{2}=17 \pi^{2} / 36$
We know that $\cos ^{-1} x+\sin ^{-1} x=\pi / 2$
Then $\cos ^{-1} x=\pi / 2-\sin ^{-1} x$
Substituting this in $\left(\sin ^{-1} x\right)^{2}+\left(\cos ^{-1} x\right)^{2}=17 \pi^{2} / 36$ we get
$\left(\sin ^{-1} x\right)^{2}+\left(\pi / 2-\sin ^{-1} x\right)^{2}=17 \pi^{2} / 36$
Let $\mathrm{y}=\sin ^{-1} \mathrm{x}$
$y^{2}+((\pi / 2)-y)^{2}=17 \pi^{2} / 36$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

$y^{2}+\pi^{2} / 4-y^{2}-2 y((\pi / 2)-y)=17 \pi^{2} / 36$
$\pi^{2} / 4-\pi y+2 y^{2}=17 \pi^{2} / 36$
On rearranging and simplifying, we get
$2 y^{2}-\pi y+2 / 9 \pi^{2}=0$
$18 y^{2}-9 \pi y+2 \pi^{2}=0$
$18 y^{2}-12 \pi y+3 \pi y+2 \pi^{2}=0$
$6 y(3 y-2 \pi)+\pi(3 y-2 \pi)=0$
Now, $(3 y-2 \pi)=0$ and $(6 y+\pi)=0$
Therefore $y=2 \pi / 3$ and $y=-\pi / 6$
Now substituting $y=-\pi / 6$ in $y=\sin ^{-1} x$ we get
$\sin ^{-1} x=-\pi / 6$
$x=\sin (-\pi / 6)$
$x=-1 / 2$
Now substituting $y=-2 \pi / 3$ in $y=\sin ^{-1} x$ we get
$x=\sin (2 \pi / 3)$
$x=\sqrt{ } 3 / 2$
Now substituting $x=\sqrt{3} / 2$ in $\left(\sin ^{-1} x\right)^{2}+\left(\cos ^{-1} x\right)^{2}=17 \pi^{2} / 36$ we get,
$=\pi / 3+\pi / 6$
$=\pi / 2$ which is not equal to $17 \pi^{2} / 36$
So we have to neglect this root.
Now substituting $x=-1 / 2$ in $\left(\sin ^{-1} x\right)^{2}+\left(\cos ^{-1} x\right)^{2}=17 \pi^{2} / 36$ we get,
$=\pi^{2} / 36+4 \pi^{2} / 9$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/
$=17 \pi^{2} / 36$
Hence $x=-1 / 2$.

Exercise 4.11 Page No: 4.82

1. Prove the following results:
(i) $\operatorname{Tan}^{-1}(1 / 7)+\tan ^{-1}(1 / 13)=\tan ^{-1}(2 / 9)$
(ii) $\operatorname{Sin}^{-1}(12 / 13)+\cos ^{-1}(4 / 5)+\tan ^{-1}(63 / 16)=\pi$
(iii) $\tan ^{-1}(1 / 4)+\tan ^{-1}(2 / 9)=\operatorname{Sin}^{-1}(1 / \sqrt{ } 5)$

Solution:

(i) Given $\operatorname{Tan}^{-1}(1 / 7)+\tan ^{-1}(1 / 13)=\tan ^{-1}(2 / 9)$

ClndCareer

Consider LHS

$$
\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{1}{13}\right)
$$

We know that, Formula

$$
\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}
$$

According to the formula, we can write as

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{\frac{1}{7}+\frac{1}{13}}{1-\frac{1}{7} \times \frac{1}{13}}\right) \\
& = \\
& =\tan ^{-1}\left(\frac{\frac{13+7}{9}}{\frac{911}{91}}\right) \\
& =\tan ^{-1}\left(\frac{20}{90}\right) \\
& =\tan ^{-1}\left(\frac{2}{9}\right) \\
& =\text { RHS }
\end{aligned}
$$

Hence, the proof.

Hence, proved.
(ii) Given $\operatorname{Sin}^{-1}(12 / 13)+\cos ^{-1}(4 / 5)+\tan ^{-1}(63 / 16)=\pi$

ClndCareer

$$
\sin ^{-1}\left(\frac{12}{13}\right)+\cos ^{-1} \frac{4}{5}+\tan ^{-1}\left(\frac{63}{16}\right)
$$

We know that, Formula

$$
\begin{aligned}
& \sin ^{-1} x=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right) \\
& \cos ^{-1} x=\tan ^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right)
\end{aligned}
$$

Now, by substituting the formula we get,

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{\frac{12}{13}}{\sqrt{1-\left(\frac{12}{13}\right)^{2}}}\right)+\tan ^{-1}\left(\frac{\sqrt{1-\left(\frac{4}{5}\right)^{2}}}{\frac{4}{5}}\right)+\tan ^{-1}\left(\frac{63}{16}\right) \\
& = \\
& =\tan ^{-1}\left(\frac{12}{5}\right)+\tan ^{-1}\left(\frac{3}{4}\right)+\tan ^{-1}\left(\frac{63}{16}\right)
\end{aligned}
$$

Again we know that,

$$
\tan ^{-1} x+\tan ^{-1} y=\pi+\tan ^{-1} \frac{x+y}{1-x y}
$$

Again by substituting, we get

$$
\begin{aligned}
& \pi+\tan ^{-1}\left(\frac{\frac{12}{5}+\frac{3}{4}}{1-\frac{12}{5} \times \frac{3}{4}}\right)+\tan ^{-1}\left(\frac{63}{16}\right) \\
& = \\
& =\pi+\tan ^{-1}\left(-\frac{63}{16}\right)+\tan ^{-1}\left(\frac{63}{16}\right)
\end{aligned}
$$

We know that,

$\tan ^{-1}(-\mathrm{x})=-\tan ^{-1} \mathrm{x}$
$=\pi-\tan ^{-1}\left(\frac{63}{16}\right)+\tan ^{-1}\left(\frac{63}{16}\right)$
$=\pi$
So, $\sin ^{-1}\left(\frac{12}{13}\right)+\cos ^{-1} \frac{4}{5}+\tan ^{-1}\left(\frac{63}{16}\right)=\pi$
Hence, the proof.

Hence, proved.
(iii) Given $\tan ^{-1}(1 / 4)+\tan ^{-1}(2 / 9)=\operatorname{Sin}^{-1}(1 / \sqrt{ } 5)$

$$
\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)
$$

We know that,

$$
\tan ^{-1} x+\tan ^{-1} y=\pi+\tan ^{-1} \frac{x+y}{1-x y}
$$

By substituting this formula we get,

$$
\begin{aligned}
& =\tan ^{-1} \frac{\frac{1}{4}+\frac{2}{9}}{1-\frac{1}{4} \times \frac{2}{5}} \\
& =\tan ^{-1} \frac{\frac{17}{36}}{\frac{34}{36}} \\
& =\tan ^{-1} \frac{\frac{17}{36}}{\frac{36}{36}} \\
& =\tan ^{-1} \frac{1}{2}
\end{aligned}
$$

Now let, $\tan \theta=\frac{1}{2}$
Therefore, $\sin \theta=\frac{1}{\sqrt{5}}$
$\Rightarrow \tan ^{-1}\left(\frac{1}{2}\right)=\sin ^{-1}\left(\frac{1}{\sqrt{5}}\right)=$ RHS $\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)=\sin ^{-1}\left(\frac{1}{\sqrt{5}}\right)$
So, $\theta=\sin ^{-1} \frac{1}{\sqrt{5}}$ Hence, Proved.
2. Find the value of $\tan ^{-1}(x / y)-\tan ^{-1}\{(x-y) /(x+y)\}$

Solution:

Given $\tan ^{-1}(\mathrm{x} / \mathrm{y})-\tan ^{-1}\{(\mathrm{x}-\mathrm{y}) /(\mathrm{x}+\mathrm{y})\}$

ClindCareer

We know that,

$$
\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y}
$$

Now by substituting the formula, we get

$$
\begin{aligned}
& \tan ^{-1} \frac{\frac{x}{y}-\left(\frac{x-y}{x+y}\right)}{1+\frac{x}{y} \times\left(\frac{x-y}{x+y}\right)} \\
= & \tan ^{-1} \frac{x(x+y)-y(x-y)}{y(x+y)+x(x-y)} \\
= & \tan ^{-1} \frac{x^{2}+y^{2}}{x^{2}+y^{2}} \\
= & \tan ^{-1} 1 \\
= & \frac{\pi}{4}
\end{aligned}
$$

So,
$\tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1}\left(\frac{x-y}{x+y}\right)=\frac{\pi}{4}$

Exercise 4.12 Page No: 4.89

1. Evaluate: $\operatorname{Cos}\left(\sin ^{-1} 3 / 5+\sin ^{-1} 5 / 13\right)$

Solution:

Given $\operatorname{Cos}\left(\sin ^{-1} 3 / 5+\sin ^{-1} 5 / 13\right)$
We know that,

ClndCareer

$$
\sin ^{-1} x+\sin ^{-1} y=\sin ^{-1}\left[x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right]
$$

By substituting this formula we get,

$$
\begin{aligned}
& =\cos \left(\sin ^{-1}\left[\frac{3}{5} \sqrt{1-\left(\frac{5}{13}\right)^{2}}+\frac{5}{13} \sqrt{1-\left(\frac{3}{5}\right)^{2}}\right]\right) \\
& =\cos \left(\sin ^{-1}\left[\frac{3}{5} \times \frac{12}{13}+\frac{5}{13} \times \frac{4}{5}\right]\right) \\
& =\cos \left(\sin ^{-1}\left[\frac{56}{65}\right]\right)
\end{aligned}
$$

Again, we know that

$$
\sin ^{-1} x=\cos ^{-1} \sqrt{1-x^{2}}
$$

Now substituting, we get

$$
\begin{aligned}
& =\cos \left(\cos ^{-1} \sqrt{1-\left(\frac{56}{65}\right)^{2}}\right) \\
& =\cos \left(\cos ^{-1} \sqrt{\frac{33}{65}}\right) \\
& = \\
& =\frac{33}{65} \\
& \text { Hence, } \quad \cos \left(\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{5}{13}\right)=\frac{33}{65}
\end{aligned}
$$

ClndCareer

$=\cos \left(\cos ^{-1} \sqrt{1-\left(\frac{56}{65}\right)^{2}}\right)$
$=\cos \left(\cos ^{-1} \sqrt{\left(\frac{33}{65}\right)^{2}}\right)=\cos \left(\cos ^{-1}\left(\frac{33}{65}\right)\right)$
$=\frac{33}{65}$
Hence, $\cos \left(\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{5}{13}\right)=\frac{33}{65}$

Exercise 4.13 Page No: 4.92

1. If $\cos ^{-1}(x / 2)+\cos ^{-1}(y / 3)=\alpha$, then prove that $9 x^{2}-12 x y \cos \alpha+4 y^{2}=36 \sin ^{2} \alpha$ Solution:

Given $\cos ^{-1}(x / 2)+\cos ^{-1}(y / 3)=\alpha$

ClndCareer

We know that,

$$
\cos ^{-1} x+\cos ^{-1} y=\cos ^{-1}\left[x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right]
$$

Now by substituting, we get

$$
\begin{aligned}
& \Rightarrow \cos ^{-1}\left[\frac{x}{2} \times \frac{y}{3}-\sqrt{1-\left(\frac{x}{2}\right)^{2}} \sqrt{1-\left(\frac{y}{3}\right)^{2}}\right]=\alpha \\
& \Rightarrow\left[\frac{x y}{6}-\frac{\sqrt{4-x^{2}}}{2} \times \frac{\sqrt{9-y^{2}}}{3}\right]=\cos \alpha \\
& \Rightarrow x y-\sqrt{4-x^{2}} \times \sqrt{9-y^{2}}=6 \cos \alpha \\
& \Rightarrow x y-6 \cos \alpha=\sqrt{4-x^{2}} \sqrt{9-y^{2}}
\end{aligned}
$$

On squaring both the sides we get

$$
\begin{aligned}
& \Rightarrow(x y-6 \cos \alpha)^{2}=\left(4-x^{2}\right)\left(9-y^{2}\right) \\
& \Rightarrow x^{2} y^{2}+36 \cos ^{2} \alpha-12 x y \cos \alpha=36-9 x^{2}-4 y^{2}+x^{2} y^{2} \\
& \Rightarrow 9 x^{2}+4 y^{2}-36+36 \cos ^{2} \alpha-12 x y \cos \alpha=0
\end{aligned}
$$

Clnd Career

$$
\begin{aligned}
& \Rightarrow 9 x^{2}+4 y^{2}-12 x y \cos \alpha-36\left(1-\cos ^{2} \alpha\right)=0 \\
& \Rightarrow 9 x^{2}+4 y^{2}-12 x y \cos \alpha-36 \sin ^{2} \alpha=0 \\
& \Rightarrow 9 x^{2}+4 y^{2}-12 x y \cos \alpha=36 \sin ^{2} \alpha
\end{aligned}
$$

Hence the proof.
Hence, proved.
2. Solve the equation: $\cos ^{-1}(a / x)-\cos ^{-1}(b / x)=\cos ^{-1}(1 / b)-\cos ^{-1}(1 / a)$

Solution:

Given $\cos ^{-1}(a / x)-\cos ^{-1}(b / x)=\cos ^{-1}(1 / b)-\cos ^{-1}(1 / a)$

ClndCareer

$$
\Rightarrow \cos ^{-1} \frac{a}{x}+\cos ^{-1} \frac{1}{a}=\cos ^{-1} \frac{1}{b}+\cos ^{-1} \frac{b}{x}
$$

We know that,

$$
\cos ^{-1} x+\cos ^{-1} y=\cos ^{-1}\left[x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right]
$$

By substituting this formula we get,

$$
\begin{aligned}
& \cos ^{-1}\left[\frac{1}{x}-\sqrt{1-\left(\frac{a}{x}\right)^{2}} \sqrt{1-\left(\frac{1}{a}\right)^{2}}\right]=\cos ^{-1}\left[\frac{1}{x}-\sqrt{1-\left(\frac{b}{x}\right)^{2}} \sqrt{1-\left(\frac{1}{b}\right)^{2}}\right] \\
& \Rightarrow \frac{1}{x}-\sqrt{1-\left(\frac{a}{x}\right)^{2}} \sqrt{1-\left(\frac{1}{a}\right)^{2}}=\frac{1}{x}-\sqrt{1-\left(\frac{b}{x}\right)^{2}} \sqrt{1-\left(\frac{1}{b}\right)^{2}} \\
& \Rightarrow \sqrt{1-\left(\frac{a}{x}\right)^{2}} \sqrt{1-\left(\frac{1}{a}\right)^{2}}=\sqrt{1-\left(\frac{b}{x}\right)^{2}} \sqrt{1-\left(\frac{1}{b}\right)^{2}}
\end{aligned}
$$

Squaring on both the sides, we get

$$
\Rightarrow\left(1-\left(\frac{a}{x}\right)^{2}\right)\left(1-\left(\frac{1}{a}\right)^{2}\right)=\left(1-\left(\frac{b}{x}\right)^{2}\right)\left(1-\left(\frac{1}{b}\right)^{2}\right)
$$

ClndCareer

$$
\begin{aligned}
& \Rightarrow 1-\left(\frac{a}{x}\right)^{2}-\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{x}\right)^{2}=1-\left(\frac{b}{x}\right)^{2}-\left(\frac{1}{b}\right)^{2}+\left(\frac{1}{x}\right)^{2} \\
& \Rightarrow\left(\frac{b}{x}\right)^{2}-\left(\frac{a}{x}\right)^{2}=\left(\frac{1}{a}\right)^{2}-\left(\frac{1}{b}\right)^{2}
\end{aligned}
$$

On simplifying, we get

$$
\begin{aligned}
& \Rightarrow\left(b^{2}-a^{2}\right) a^{2} b^{2}=x^{2}\left(b^{2}-a^{2}\right) \\
& \Rightarrow x^{2}=a^{2} b^{2} \\
& \Rightarrow x=a b
\end{aligned}
$$

Exercise 4.14 Page No: 4.115

1. Evaluate the following:
(i) $\tan \left\{2 \tan ^{-1}(1 / 5)-\pi / 4\right\}$
(ii) $\operatorname{Tan}\left\{1 / 2 \boldsymbol{\operatorname { s i n }}^{-1}(3 / 4)\right\}$
(iii) $\operatorname{Sin}\left\{1 / 2 \cos ^{-1}(4 / 5)\right\}$
(iv) $\operatorname{Sin}\left(2 \tan ^{-1} 2 / 3\right)+\cos \left(\tan ^{-1} \sqrt{ } 3\right)$

Solution:

(i) Given $\tan \left\{2 \tan ^{-1}(1 / 5)-\pi / 4\right\}$

ClndCareer

We know that,
$2 \tan ^{-1}(x)=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$, if $|x|<1$
And $\frac{\pi}{4}$ can be written as $\tan ^{-1}(1)$
Now substituting these values we get,

$$
\begin{aligned}
& =\tan \left\{\tan ^{-1}\left(\frac{2 \times \frac{1}{5}}{1-\frac{1}{25}}\right)-\tan ^{-1} 1\right\} \\
& =\tan \left\{\tan ^{-1}\left(\frac{5}{12}\right)-\tan ^{-1} 1\right\}
\end{aligned}
$$

Again we know that,

$$
\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y}
$$

Now substituting this formula, we get

$$
=\tan \left\{\tan ^{-1}\left(\frac{\frac{5}{12}-1}{1+\frac{5}{12}}\right)\right\}
$$

$$
\begin{aligned}
& =\tan \left\{\tan ^{-1}\left(\frac{-7}{17}\right)\right\} \\
& =-\frac{7}{17}
\end{aligned}
$$

(ii) Given $\tan \left\{1 / 2 \sin ^{-1}(3 / 4)\right\}$

Let $\frac{1}{2} \sin ^{-1} \frac{3}{4}=\mathrm{t}$
Therefore,

$$
\begin{aligned}
& \Rightarrow \sin ^{-1} \frac{3}{4}=2 t \\
& \Rightarrow \sin 2 t=\frac{3}{4}
\end{aligned}
$$

Now, by Pythagoras theorem, we have

$$
\begin{array}{ll}
\Rightarrow & \sin 2 t=\frac{3}{4}=\frac{\text { perpendicular }}{\text { hypotenuse }} \\
\\
\Rightarrow & \text { We know that, } \\
\cos 2 t=\frac{\sqrt{4^{2}-3^{2}}}{4}=\frac{\text { Base }}{\text { hypotenuse }} & \\
\Rightarrow \cos 2 t=\frac{\sqrt{7}}{4} & \tan (x)=\sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}}
\end{array}
$$

By considering, given question

$$
\tan \left\{\frac{1}{2} \sin ^{-1} \frac{3}{4}\right\}
$$

$$
=\tan (\mathrm{t})
$$

$$
\begin{aligned}
& =\sqrt{\frac{1-\cos 21}{1+\cos 21}} \\
& =\sqrt{\frac{1-\frac{\sqrt{7}}{4}}{1+\frac{\sqrt{7}}{4}}}
\end{aligned}
$$

ClindCareer

$$
=\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}
$$

Now by rationalizing the denominator, we get

$$
\begin{aligned}
& =\sqrt{\frac{(4-\sqrt{7})(4-\sqrt{7})}{(4+\sqrt{7})(4-\sqrt{7})}} \\
& =\sqrt{\frac{(4-\sqrt{7})^{2}}{9}} \\
& =\frac{4-\sqrt{7}}{3}
\end{aligned}
$$

Hence

$$
\tan \left\{\frac{1}{2} \sin ^{-1} \frac{3}{4}\right\}=\frac{4-\sqrt{7}}{3}
$$

(iii) Given $\sin \left\{1 / 2 \cos ^{-1}(4 / 5)\right\}$

ClindCareer

Now by substituting this formula we get,

$$
\begin{aligned}
& \sin \left(\frac{1}{2} 2 \sin ^{-1}\left(\pm \sqrt{\frac{1-\frac{4}{5}}{2}}\right)\right) \\
& =\sin \left(\sin ^{-1}\left(\pm \sqrt{\frac{1}{2 \times 5}}\right)\right) \\
& =\sin \left(\sin ^{-1}\left(\pm \frac{1}{\sqrt{10}}\right)\right)
\end{aligned}
$$

As we know that

$$
\begin{aligned}
& \sin \left(\sin ^{-1} x\right)=x \text { as } n \in[-1,1] \\
& = \pm \frac{1}{\sqrt{10}}
\end{aligned}
$$

$$
\cos ^{-1} x=2 \sin ^{-1}\left(\pm \sqrt{\frac{1-x}{2}}\right) \quad \text { Hence, } \sin \left(\frac{1}{2} \cos ^{-1} \frac{4}{5}\right)= \pm \frac{1}{\sqrt{10}}
$$

(iv) Given $\operatorname{Sin}\left(2 \tan ^{-1} 2 / 3\right)+\cos \left(\tan ^{-1} \sqrt{ } 3\right)$

ClndCareer

We know that

$$
\begin{aligned}
& \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)=2 \tan ^{-1}(x) \\
& \cos ^{-1}\left(\frac{1}{\sqrt{1+x^{2}}}\right)=\tan ^{-1}(x)
\end{aligned}
$$

Now by substituting these formulae we get,

$$
\begin{aligned}
& \sin \left(\sin ^{-1}\left(\frac{2 \times \frac{2}{3}}{1+\frac{4}{9}}\right)\right)+\cos \left(\cos ^{-1}\left(\frac{1}{\sqrt{1+3}}\right)\right) \\
= & \sin \left(\sin ^{-1}\left(\frac{12}{13}\right)\right)+\cos \left(\cos ^{-1}\left(\frac{1}{2}\right)\right) \\
= & \frac{12}{13}+\frac{1}{2} \\
= & \frac{37}{26}
\end{aligned}
$$

Hence,

$$
\sin \left(2 \tan ^{-1}\left(\frac{2}{3}\right)\right)+\cos \left(\tan ^{-1} \sqrt{3}\right)=\frac{37}{26}
$$

2. Prove the following results:
(i) $\mathbf{2} \boldsymbol{\operatorname { s i n }}^{-1}(3 / 5)=\tan ^{-1}(24 / 7)$
(ii) $\tan ^{-1} 1 / 4+\tan ^{-1}(2 / 9)=1 / 2 \cos ^{-1}(3 / 5)=1 / 2 \sin ^{-1}(4 / 5)$
(iii) $\tan ^{-1}(2 / 3)=1 / 2 \tan ^{-1}(12 / 5)$
(iv) $\tan ^{-1}(1 / 7)+2 \tan ^{-1}(1 / 3)=\pi / 4$
(v) $\sin ^{-1}(4 / 5)+2 \tan ^{-1}(1 / 3)=\pi / 2$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/
(vi) $2 \sin ^{-1}(3 / 5)-\tan ^{-1}(17 / 31)=\pi / 4$
(vii) $2 \tan ^{-1}(1 / 5)+\tan ^{-1}(1 / 8)=\tan ^{-1}(4 / 7)$
(viii) $2 \tan ^{-1}(3 / 4)-\tan ^{-1}(17 / 31)=\pi / 4$
(ix) $2 \tan ^{-1}(1 / 2)+\tan ^{-1}(1 / 7)=\tan ^{-1}(31 / 17)$
(x) $4 \tan ^{-1}(1 / 5)-\tan ^{-1}(1 / 239)=\pi / 4$

Solution:

(i) Given $2 \sin ^{-1}(3 / 5)=\tan ^{-1}(24 / 7)$

$$
=\sin \left(\sin ^{-1}\left(\frac{12}{13}\right)\right)+\cos \left(\cos ^{-1}\left(\frac{1}{2}\right)\right)
$$

$=\frac{12}{13}+\frac{1}{2}$
$=\frac{37}{26}$

Hence,
$\sin \left(2 \tan ^{-1}\left(\frac{2}{3}\right)\right)+\cos \left(\tan ^{-1} \sqrt{3}\right)=\frac{37}{26}$
Consider LHS
$2 \sin ^{-1} \frac{3}{5}$
We know that

$$
\sin ^{-1}(x)=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)
$$

Now by substituting the above formula we get,

Hence, proved.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

(ii) Given $\tan ^{-1} 1 / 4+\tan ^{-1}(2 / 9)=1 / 2 \cos ^{-1}(3 / 5)=1 / 2 \sin ^{-1}(4 / 5)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

$$
\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}
$$

Now by substituting this formula, we get

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{\frac{1}{4}+\frac{2}{9}}{1-\frac{1}{4} \times \frac{2}{9}}\right) \\
& = \\
& =\tan ^{-1}\left(\frac{\frac{9+8}{36}}{\frac{36-2}{36}}\right) \\
& =\tan ^{-1}\left(\frac{17}{34}\right) \\
& =\tan ^{-1}\left(\frac{1}{2}\right)
\end{aligned}
$$

Multiplying and dividing by 2

$$
=\frac{1}{2}\left\{2 \tan ^{-1}\left(\frac{1}{2}\right)\right\}
$$

Again we know that

Consider LHS

$$
=\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)
$$

We know that
$2 \tan ^{-1} x=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
$==^{\frac{1}{2} \cos ^{-1}\left(\frac{1-\frac{1}{4}}{1+\frac{1}{4}}\right)}$
$={ }^{\frac{1}{2}} \cos ^{-1}\left(\frac{\frac{3}{4}}{\frac{5}{5}}\right)$
$=\frac{1}{2} \cos ^{-1}\left(\frac{3}{5}\right)$
$=$ RHS
So, $\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)=\frac{1}{2} \cos ^{-1}\left(\frac{3}{5}\right)$
Now,
$=\frac{1}{2} \cos ^{-1}\left(\frac{3}{5}\right)$
We know that,
$=\cos ^{-1} x=\sin ^{-1} \sqrt{1-x^{2}}$
By substituting this, we get
$={ }^{\frac{1}{2}} \sin ^{-1} \sqrt{1-\frac{9}{25}}$
$={ }^{\frac{1}{2} \sin ^{-1} \sqrt{\frac{16}{25}}}$
$=\frac{1}{2} \sin ^{-1} \frac{4}{5}$
$=$ RHS
So, $\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)=\frac{1}{2} \cos ^{-1}\left(\frac{3}{5}\right)=\frac{1}{2} \sin ^{-1} \frac{4}{5}$
Hence the proof.

Hence, proved.

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClindCareer

(iii) Given $\tan ^{-1}(2 / 3)=1 / 2 \tan ^{-1}(12 / 5)$

Consider LHS
$=\tan ^{-1}\left(\frac{2}{3}\right)$

Now, Multiplying and dividing by 2 , we get
$=\frac{1}{2}\left\{2 \tan ^{-1}\left(\frac{2}{3}\right)\right\}$
We know that

$$
2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
$$

By substituting the above formula we get

$$
\begin{aligned}
& =\frac{\frac{1}{2} \tan ^{-1}\left(\frac{2 \times \frac{2}{3}}{1-\frac{4}{9}}\right)}{=} \begin{array}{l}
\frac{1}{2} \tan ^{-1}\left(\frac{\frac{4}{3}}{\frac{5}{9}}\right) \\
= \\
=\tan ^{-1}\left(\frac{12}{5}\right) \\
= \\
\text { RHS }
\end{array} \text { 有 }
\end{aligned}
$$

$$
\text { So, } \tan ^{-1}\left(\frac{2}{3}\right)=\frac{1}{2} \tan ^{-1}\left(\frac{12}{5}\right)
$$

Hence the proof.

Hence, proved.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

(iv) Given $\tan ^{-1}(1 / 7)+2 \tan ^{-1}(1 / 3)=\pi / 4$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

Consider LHS

$=\tan ^{-1}\left(\frac{1}{7}\right)+2 \tan ^{-1}\left(\frac{1}{3}\right)$
We know that,
$2 \tan ^{-1} \mathrm{x}=\tan ^{-1}\left(\frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}\right)$
By substituting the above formula we get,

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2 \times \frac{1}{2}}{1-\frac{1}{9}}\right) \\
& =
\end{aligned}
$$

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{\frac{2}{8}}{9}\right) \\
& =\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{3}{4}\right)
\end{aligned}
$$

Again we know that

$$
\begin{aligned}
& \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y} \\
& =\tan ^{-1}\left(\frac{\frac{1}{7}+\frac{3}{4}}{1-\frac{1}{7} \times \frac{3}{4}}\right) \\
& =\tan ^{-1}\left(\frac{\frac{25}{28}}{\frac{25}{28}}\right) \\
& =\tan ^{-1}(1) \\
& =\frac{\pi}{4} \\
& =\text { RHS }
\end{aligned}
$$

$$
\text { So, } \tan ^{-1}\left(\frac{1}{7}\right)+2 \tan ^{-1}\left(\frac{1}{3}\right)=\frac{\pi}{4}
$$

Hence the proof.

Hence, proved.
(v) Given $\sin ^{-1}(4 / 5)+2 \tan ^{-1}(1 / 3)=\pi / 2$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

$$
\begin{aligned}
& \sin ^{-1}(x)=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right) \\
& \text { And, } 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
\end{aligned}
$$

Now by substituting the formula we get,

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{\frac{4}{5}}{\sqrt{1-\frac{16}{25}}}\right)+\tan ^{-1}\left(\frac{2 \times \frac{1}{3}}{1-\frac{1}{9}}\right) \\
& = \\
& =\tan ^{-1}\left(\frac{\frac{4}{5}}{\sqrt{\frac{9}{25}}}\right)+\tan ^{-1}\left(\frac{\frac{2}{3}}{9}\right) \\
& = \\
& =\tan ^{-1}\left(\frac{4}{3}\right)+\tan ^{-1}\left(\frac{3}{4}\right)
\end{aligned}
$$

We know that,

$$
\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}
$$

$$
\begin{aligned}
& \text { Consider LHS } \quad=\sin ^{-1}\left(\frac{4}{5}\right)+2 \tan ^{-1}\left(\frac{1}{3}\right)= \\
& =\tan ^{-1}\left(\frac{\frac{4}{3}+\frac{3}{4}}{1-\frac{4}{3} \times \frac{3}{4}}\right) \\
& \text { We know that, }\left(\frac{\frac{25}{12}}{0}\right) \\
& =\tan ^{-1}(\infty) \\
& =\frac{\pi}{2} \quad \text { So, }^{\frac{\pi}{2}}\left(\frac{4}{5}\right)+2 \tan ^{-1}\left(\frac{1}{3}\right)=\frac{\pi}{2} \\
& =\text { RHS } \quad \text { Hence Proved }
\end{aligned}
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClindCareer

(vi) Given $2 \sin ^{-1}(3 / 5)-\tan ^{-1}(17 / 31)=\pi / 4$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

Consider LHS

$$
=2 \sin ^{-1}\left(\frac{3}{5}\right)-\tan ^{-1}\left(\frac{17}{31}\right)
$$

We know that

$$
\sin ^{-1}(x)=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)
$$

According to the formula we have,

$$
\begin{aligned}
& 2 \tan ^{-1}\left(\frac{\frac{3}{5}}{\sqrt{1-\frac{16}{25}}}\right)-\tan ^{-1}\left(\frac{17}{31}\right) \\
= & 2 \tan ^{-1}\left(\frac{\frac{4}{5}}{\sqrt{\frac{9}{25}}}\right)-\tan ^{-1}\left(\frac{17}{31}\right) \\
= & 2 \tan ^{-1}\left(\frac{3}{4}\right)-\tan ^{-1}\left(\frac{17}{31}\right)
\end{aligned}
$$

Again we know that,

$$
2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
$$

By substituting this formula, we get

ClndCareer

$$
=2 \tan ^{-1}\left(\frac{\frac{3}{5}}{\sqrt{1-\frac{9}{25}}}\right)-\tan ^{-1}\left(\frac{17}{31}\right)
$$

$$
=2 \tan ^{-1}\left(\frac{\frac{3}{5}}{\sqrt{\frac{16}{25}}}\right)-\tan ^{-1}\left(\frac{17}{31}\right)
$$

$$
=2 \tan ^{-1}\left(\frac{3}{4}\right)-\tan ^{-1}\left(\frac{17}{31}\right)
$$

Again we know that,

$$
2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
$$

By substituting this formula, we get

$$
=\tan ^{-1}\left(\frac{2 \times \frac{3}{4}}{1-\frac{9}{16}}\right)-\tan ^{-1}\left(\frac{17}{31}\right)
$$

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{\frac{3}{2}}{76}\right)-\tan ^{-1}\left(\frac{17}{31}\right) \\
& =\tan ^{-1}\left(\frac{24}{7}\right)-\tan ^{-1}\left(\frac{17}{31}\right)
\end{aligned}
$$

Again we have,

$$
\begin{aligned}
& \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y} \\
& =\tan ^{-1}\left(\frac{\frac{24}{7}-\frac{17}{11}}{1+\frac{24}{7} \times \frac{17}{31}}\right) \\
& =\tan ^{-1}\left(\frac{\frac{744-119}{2177+708}}{217}\right) \\
& =\tan ^{-1}\left(\frac{625}{625}\right) \\
& =\tan ^{-1}(1) \\
& =\frac{\pi}{4}=\text { RHS }
\end{aligned}
$$

$$
\text { So, } 2 \sin ^{-1}\left(\frac{3}{5}\right)-\tan ^{-1}\left(\frac{17}{31}\right)=\frac{\pi}{4}
$$

Hence the proof.
(vii) Given $2 \tan ^{-1}(1 / 5)+\tan ^{-1}(1 / 8)=\tan ^{-1}(4 / 7)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

$$
2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
$$

Now by substituting the formula we get,

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{2 \times \frac{1}{5}}{1-\frac{1}{25}}\right)+\tan ^{-1}\left(\frac{1}{8}\right) \\
& =\tan ^{-1}\left(\frac{\frac{2}{5}}{\frac{54}{25}}\right)+\tan ^{-1}\left(\frac{1}{8}\right) \\
& =\tan ^{-1}\left(\frac{5}{12}\right)+\tan ^{-1}\left(\frac{1}{8}\right)
\end{aligned}
$$

Again from the formula we have,

$$
\begin{aligned}
& \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y} \\
& =\tan ^{-1}\left(\frac{\frac{5}{12}+\frac{1}{8}}{1-\frac{5}{12} \times \frac{1}{8}}\right)
\end{aligned}
$$

Consider LHS

$$
\begin{array}{ll}
\text { Consider LHS } & \tan ^{-1}\left(\frac{\frac{10+3}{96-5}}{\frac{96-5}{96}}\right) \\
=2 \tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{8}\right) & =\tan ^{-1}\left(\frac{13}{24} \times \frac{96}{91}\right)
\end{array}
$$

ClndCareer

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{4}{7}\right) \\
& =\text { RHS }
\end{aligned}
$$

So, $2 \tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{8}\right)=\tan ^{-1}\left(\frac{4}{7}\right)$
Hence the proof.

Hence, proved.
(viii) Given $2 \tan ^{-1}(3 / 4)-\tan ^{-1}(17 / 31)=\pi / 4$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

Consider LHS

$=2 \tan ^{-1}\left(\frac{3}{4}\right)-\tan ^{-1}\left(\frac{17}{31}\right)$
We know that,

$$
2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
$$

Now by substituting the formula we get,

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{2 \times \frac{3}{4}}{1-\frac{9}{16}}\right)-\tan ^{-1}\left(\frac{17}{31}\right) \\
& =\tan ^{-1}\left(\frac{3}{2} \times \frac{16}{7}\right)-\tan ^{-1}\left(\frac{17}{31}\right) \\
& =\tan ^{-1}\left(\frac{24}{7}\right)-\tan ^{-1}\left(\frac{17}{31}\right)
\end{aligned}
$$

We know that,

$$
\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y}
$$

Again by substituting the formula we get, $=\tan ^{-1}\left(\frac{625}{625}\right)$

$$
\left.\begin{array}{ll}
=\tan ^{-1}\left(\frac{\frac{24}{7}-\frac{17}{31}}{1+\frac{24}{7} \times \frac{17}{31}}\right) & =\tan ^{-1}(1) \\
=\tan ^{-1}\left(\frac{744-119}{2+7}\right) & =\frac{\pi}{4} \\
\frac{217+408}{217}
\end{array}\right)
$$

So, $2 \tan ^{-1}\left(\frac{3}{4}\right)-\tan ^{-1}\left(\frac{17}{31}\right)=\frac{\pi}{4}$
Hence the proof.

Hence, proved.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

Clnd Career

(ix) Given $2 \tan ^{-1}(1 / 2)+\tan ^{-1}(1 / 7)=\tan ^{-1}(31 / 17)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

Consider LHS

$$
=2 \tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{7}\right)
$$

We know that,

$$
2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
$$

Now by substituting the formula we get,

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{2 \times \frac{1}{2}}{1-\frac{1}{4}}\right)+\tan ^{-1}\left(\frac{1}{7}\right) \\
& =\tan ^{-1}\left(\frac{\frac{2}{2}}{\frac{2}{3}}\right)+\tan ^{-1}\left(\frac{1}{7}\right) \\
& =\tan ^{-1}\left(\frac{4}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right)
\end{aligned}
$$

Again by using the formula, we can write as

$$
\begin{aligned}
& \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y} \\
& =\tan ^{-1}\left(\frac{\frac{4}{3}+\frac{1}{7}}{1-\frac{1}{7} \times \frac{4}{3}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{\frac{31}{21}}{\frac{17}{21}}\right) \\
& =\tan ^{-1}\left(\frac{31}{17}\right) \\
& =\text { RHS } \\
& \text { So, } 2 \tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{7}\right)=\tan ^{-1}\left(\frac{31}{17}\right)
\end{aligned}
$$

Hence the proof.

Hence, proved.
(x) Given $4 \tan ^{-1}(1 / 5)-\tan ^{-1}(1 / 239)=\pi / 4$

ClindCareer

Consider LHS

$$
=4 \tan ^{-1}\left(\frac{1}{5}\right)-\tan ^{-1}\left(\frac{1}{239}\right)
$$

We know that,
$4 \tan ^{-1} x=\tan ^{-1}\left(\frac{4 x-4 x^{3}}{1-6 x^{2}+x^{4}}\right)$

$$
=\tan ^{-1}\left(\frac{120 \times 239-119}{119 \times 239+120}\right)
$$

Now by substituting the formula, we get

$$
\begin{array}{ll}
\tan ^{-1}\left(\frac{4 \times \frac{1}{5}-4\left(\frac{1}{5}\right)^{3}}{1-6\left(\frac{1}{5}\right)^{2}+\left(\frac{1}{5}\right)^{4}}\right)-\tan ^{-1}\left(\frac{1}{239}\right) & =\tan ^{-1}\left(\frac{28561}{28561}\right) \\
= & =\tan ^{-1}(1) \\
=\tan ^{-1}\left(\frac{120}{119}\right)-\tan ^{-1}\left(\frac{1}{239}\right) & =\frac{\pi}{4} \\
\text { Again we know that, } & =\text { RHS }
\end{array}
$$

$$
\begin{aligned}
& \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y} \\
& =\tan ^{-1}\left(\frac{\frac{120}{112}-\frac{1}{229}}{1-\frac{120}{119} \times \frac{1}{239}}\right)
\end{aligned}
$$

So,
$4 \tan ^{-1}\left(\frac{1}{5}\right)-\tan ^{-1}\left(\frac{1}{239}\right)=\frac{\pi}{4}$
Hence the proof.
Hence, proved.
3. If $\sin ^{-1}\left(2 a / 1+a^{2}\right)-\cos ^{-1}\left(1-b^{2} / 1+b^{2}\right)=\tan ^{-1}\left(2 x / 1-x^{2}\right)$, then prove that $x=(a-b) /(1+a$ b)

Solution:

Given $\sin ^{-1}\left(2 a / 1+a^{2}\right)-\cos ^{-1}\left(1-b^{2} / 1+b^{2}\right)=\tan ^{-1}\left(2 x / 1-x^{2}\right)$

ClndCareer

Consider,

$$
\Rightarrow \sin ^{-1}\left(\frac{2 a}{1+a^{2}}\right)-\cos ^{-1} \frac{1-b^{2}}{1+b^{2}}=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
$$

We know that,
$2 \tan ^{-1} x=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
$2 \tan ^{-1} x=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
$2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$
Now by applying these formulae in given equation we get,

ClndCareer

$$
\begin{aligned}
& \Rightarrow 2 \tan ^{-1}(a)-2 \tan ^{-1}(b)=2 \tan ^{-1}(x) \\
& \Rightarrow 2\left(\tan ^{-1}(a)-\tan ^{-1}(b)\right)=2 \tan ^{-1}(x) \\
& \Rightarrow \tan ^{-1}(a)-\tan ^{-1}(b)=\tan ^{-1}(x)
\end{aligned}
$$

Again we know that,

$$
\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y}
$$

Now by substituting this in above equation we get,

$$
\Rightarrow \tan ^{-1}\left(\frac{\mathrm{a}-\mathrm{b}}{1+\mathrm{ab}}\right)=\tan ^{-1}(\mathrm{x})
$$

On comparing we get,

$$
\Rightarrow x=\frac{\mathrm{a}-\mathrm{b}}{1+\mathrm{ab}}
$$

Hence the proof.

Hence, proved.

4. Prove that:

(i) $\left.\left.\tan ^{-1}\left\{\left(1-\mathrm{x}^{2}\right) / 2 \mathrm{x}\right)\right\}+\cot ^{-1}\left\{\left(1-\mathrm{x}^{2}\right) / 2 \mathrm{x}\right)\right\}=\pi / 2$
(ii) $\left.\sin \left\{\tan ^{-1}\left(1-x^{2}\right) / 2 x\right)+\cos ^{-1}\left(1-x^{2}\right) /\left(1+x^{2}\right)\right\}=1$

Solution:

(i) Given $\left.\left.\tan ^{-1}\left\{\left(1-x^{2}\right) / 2 x\right)\right\}+\cot ^{-1}\left\{\left(1-x^{2}\right) / 2 x\right)\right\}=\pi / 2$

ClndCareer

Now by applying the above formula we get,

$$
=\tan ^{-1}\left(\frac{1-x^{2}}{2 x}\right)+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
$$

Again we know

$$
\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}
$$

By substituting this we get,

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{\left(\frac{1-x^{2}}{2 x}\right)+\left(\frac{2 x}{1-x^{2}}\right)}{1-\left(\frac{1+x^{2}}{2 x}\right) \times\left(\frac{2 x}{1-x^{2}}\right)}\right) \\
& = \\
& =\tan ^{-1}\left(\frac{\frac{1+x^{4}-2 x^{2}+4 x^{2}}{2 x\left(1-x^{2}\right)}}{\frac{2 x\left(1-x^{2}\right)\left(-2 x-x^{2}\right)}{2 x\left(1-x^{2}\right)}}\right) \\
& =\tan ^{-1}\left(\frac{1+x^{4}+2 x^{2}}{0}\right)
\end{aligned}
$$

Consider LHS

$$
=\tan ^{-1} \frac{1-x^{2}}{2 x}+\cot ^{-1} \frac{1-x^{2}}{2 x} \quad=\tan ^{-1}(\infty)
$$

$$
\text { We know that, } \quad=\frac{\pi}{2}=\text { RHS }
$$

$$
\cot ^{-1} x=\tan ^{-1}\left(\frac{1}{x}\right) \quad \tan ^{-1} \frac{1-x^{2}}{2 x}+\cot ^{-1} \frac{1-x^{2}}{2 x}=\frac{\pi}{2}
$$

Hence, proved.
(ii) Given $\left.\sin \left\{\tan ^{-1}\left(1-x^{2}\right) / 2 x\right)+\cos ^{-1}\left(1-x^{2}\right) /\left(1+x^{2}\right)\right\}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

Consider LHS

$$
=\sin \left(\tan ^{-1} \frac{1-\mathrm{x}^{2}}{2 \mathrm{x}}+\cos ^{-1} \frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)
$$

We know that,

$$
2 \tan ^{-1} x=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)
$$

Now by applying the formula in above question we get,

$$
=\sin \left(\tan ^{-1} \frac{1-x^{2}}{2 x}+2 \tan ^{-1} x\right)
$$

Again, we have

$$
2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)
$$

Now by substituting the formula we get,

$$
=\sin \left(\tan ^{-1} \frac{1-\mathrm{x}^{2}}{2 \mathrm{x}}+\tan ^{-1}\left(\frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}\right)\right)
$$

Again we know that,

$$
\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}
$$

Now by applying the formula,

$$
=\quad \sin \left(\tan ^{-1}\left(\frac{\frac{1-x^{2}}{2 x}+\left(\frac{2 x}{1-x^{2}}\right)}{1-\frac{1-x^{2}}{2 x} \times\left(\frac{2 x}{1-x^{2}}\right)}\right)\right)
$$

$$
\left.\begin{array}{ll}
& =\sin \left(\frac{\pi}{2}\right) \\
= & \sin \left(\operatorname { t a n } ^ { - 1 } \left(\frac{\frac{1+x^{4}-2 x^{2}+4 x^{2}}{2 x\left(-x^{2}\right)}}{2 x\left(1-x^{2}\right)-2 x\left(1-x^{2}\right)}\right.\right. \\
2 x\left(1-x^{2}\right)
\end{array}\right)=1 \quad=\text { RHS } \quad \begin{array}{ll}
=\sin \left(\tan ^{-1}\left(\frac{\frac{1+x^{4}-2 x^{2}+4 x^{2}}{2 x\left(1-x^{2}\right)}}{0}\right)\right) & \text { So, } \\
= & \sin ^{-1}\left(\tan ^{-1} \frac{1-x^{2}}{2 x}+\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}\right)=1 \\
=\sin \left(\tan ^{-1}(\infty)\right) &
\end{array}
$$

Hence the proof.
Hence, proved.
5. If $\sin ^{-1}\left(2 a / 1+a^{2}\right)+\sin ^{-1}\left(2 b / 1+b^{2}\right)=2 \tan ^{-1} x$, prove that $x=(a+b / 1-a b)$

Solution:

Given $\sin ^{-1}\left(2 a / 1+a^{2}\right)+\sin ^{-1}\left(2 b / 1+b^{2}\right)=2 \tan ^{-1} x$

ClndCareer

Consider

$$
\sin ^{-1}\left(\frac{2 a}{1+a^{2}}\right)+\sin ^{-1} \frac{2 b}{1+b^{2}}=2 \tan ^{-1}(x)
$$

We know that,

$$
2 \tan ^{-1} x=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)
$$

Now by applying the above formula we get,

$$
\begin{aligned}
& \Rightarrow 2 \tan ^{-1}(\mathrm{a})+2 \tan ^{-1}(\mathrm{~b})=2 \tan ^{-1}(\mathrm{x}) \\
& \Rightarrow 2\left(\tan ^{-1}(\mathrm{a})+\tan ^{-1}(\mathrm{~b})\right)=2 \tan ^{-1}(\mathrm{x}) \\
& \Rightarrow \tan ^{-1}(\mathrm{a})+\tan ^{-1}(\mathrm{~b})=\tan ^{-1}(\mathrm{x})
\end{aligned}
$$

Again we have,

$$
\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}
$$

Now by substituting, we get

$$
\Rightarrow \tan ^{-1}\left(\frac{\mathrm{a}+\mathrm{b}}{1-\mathrm{ab}}\right)=\tan ^{-1}(\mathrm{x})
$$

On comparing we get,

$$
\Rightarrow x=\frac{a+b}{1-a b}
$$

Hence the proof.

Hence, proved.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

Chapterwise RD Sharma Solutions for Class 12 Maths :

- Chapter 1-Relation
- Chapter 2-Functions
- Chapter 3-Binary Operations
- Chapter 4-Inverse Trigonometric Functions
- Chapter 5-Algebra of Matrices
- Chapter 6-Determinants
- Chapter 7-Adjoint and Inverse of a Matrix
- Chapter 8-Solution of Simultaneous Linear Equations
- Chapter 9-Continuity
- Chapter 10-Differentiability
- Chapter 11-Differentiation
- Chapter 12-Higher Order Derivatives
- Chapter 13-Derivatives as a Rate Measurer
- Chapter 14-Differentials, Errors and Approximations
- Chapter 15-Mean Value Theorems
- Chapter 16-Tangents and Normals
- Chapter 17-Increasing and Decreasing Functions
- Chapter 18-Maxima and Minima
- Chapter 19-Indefinite Integrals

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-4-inverse-tri gonometric-functions/

ClndCareer

About RD Sharma

RD Sharma isn't the kind of author you'd bump into at lit fests. But his bestselling books have helped many CBSE students lose their dread of maths. Sunday Times profiles the tutor turned internet star

He dreams of algorithms that would give most people nightmares. And, spends every waking hour thinking of ways to explain concepts like 'series solution of linear differential equations'. Meet Dr Ravi Dutt Sharma mathematics teacher and author of 25 reference books - whose name evokes as much awe as the subject he teaches. And though students have used his thick tomes for the last 31 years to ace the dreaded maths exam, it's only recently that a spoof video turned the tutor into a YouTube star.

R D Sharma had a good laugh but said he shared little with his on-screen persona except for the love for maths. "I like to spend all my time thinking and writing about maths problems. I find it relaxing," he says. When he is not writing books explaining mathematical concepts for classes 6 to 12 and engineering students, Sharma is busy dispensing his duty as vice-principal and head of department of science and humanities at Delhi government's Guru Nanak Dev Institute of Technology.

