# Class 12 Chapter 1 Relation 

 ClndCareer

# RD Sharma Solutions for Class 12 Maths Chapter 1-Relation 

Class 12: Maths Chapter 1 solutions. Complete Class 12 Maths Chapter 1 Notes.

## RD Sharma Solutions for Class 12 Maths Chapter 1-Relation

RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions
Page No 1.10:

## Question 1:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClindCareer

Let $A$ be the set of all human beings in a town at a particular time. Determine whether each of the following relations are reflexive, symmetric and transitive:
(i) $R=\{(x, y): x$ and $y$ work at the same place $\}$
(ii) $R=\{(x, y): x$ and $y$ live in the same locality $\}$
(iii) $R=\{(x, y): x$ is wife of $y\}$
(iv) $R=\{(x, y): x$ is father of and $y\}$

## ANSWER:

(i) Reflexivity:

Let $x$ be an arbitrary element of $R$. Then, $x \in R \Rightarrow x$ and $x$ work at the same place is true since they are the same. $\Rightarrow(x, x) \in R S o, R$ is a reflexive relation. Let $x$ be an arbitrary element of $R$. Then, $x \in R \Rightarrow x$ and $x$ work at the same place is true since they are the same. $\Rightarrow x, x \in R S o, R$ is a reflexive relation.

Symmetry:
Let $(x, y) \in R \Rightarrow x$ and $y$ work at the same place $\Rightarrow y$ and $x$ work at the same place $\Rightarrow(y$, $x) \in R S o, R$ is a symmetric relation. Let $x, y \in R \Rightarrow x$ and $y$ work at the same place $\Rightarrow y$ and $x$ work at the same place $\Rightarrow y, x \in R S o, R$ is a symmetric relation.

Transitivity:
Let $(x, y) \in R$ and $(y, z) \in R$. Then, $x$ and $y$ work at the same place. $y$ and $z$ also work at the same place. $\Rightarrow x, y$ and $z$ all work at the same place. $\Rightarrow x$ and $z$ work at the same place. $\Rightarrow(x, z) \in R S o, R$ is a transitive relation. Let $x, y \in R$ and $y, z \in R$. Then, $x$ and $y$ work at the same place. $y$ and $z$ also work at the same place. $\Rightarrow x, y$ and $z$ all work at the same place. $\Rightarrow x$ and $z$ work at the same place. $\Rightarrow x, z \in R S o, R$ is a transitive relation.
(ii) Reflexivity:

## https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## Clnd Career

Let $x$ be an arbitrary element of $R$. Then, $x \in R \Rightarrow x$ and $x$ live in the same locality is true since they are the same. So, $R$ is a reflexive relation. Let $x$ be an arbitrary element of $R$. Then, $x \in R \Rightarrow x$ and $x$ live in the same locality is true since they are the same.So, $R$ is a reflexive relation.

Symmetry:
Let $(x, y) \in R \Rightarrow x$ and $y$ live in the same locality $\Rightarrow y$ and $x$ live in the same locality $\Rightarrow(y$, $x) \in R$ So, $R$ is a symmetric relation. Let $x, y \in R \Rightarrow x$ and $y$ live in the same locality $\Rightarrow y$ and $x$ live in the same locality $\Rightarrow y, x \in R$ So, $R$ is a symmetric relation.

Transitivity:
Let $(x, y) \in R$ and $(y, z) \in R$. Then, $x$ and $y$ live in the same locality and $y$ and $z$ live in the same locality $\Rightarrow x$, $y$ and $z$ all live in the same locality $\Rightarrow x$ and $z$ live in the same locality $\Rightarrow(x, z) \in R S o, R$ is a transitive relation. Let $x, y \in R$ and $y, z \in R$. Then, $x$ and $y$ live in the same locality and $y$ and $z$ live in the same locality $\Rightarrow x, y$ and $z$ all live in the same locality $\Rightarrow x$ and $z$ live in the same locality $\Rightarrow x, z \in R S o, R$ is a transitive relation.

## (iii)

Reflexivity:
Let $x$ be an element of $R$. Then, $x$ is wife of $x$ cannot be true. $\Rightarrow(x, x) \notin R S o, R$ is not a reflexive relation. Let $x$ be an element of $R$. Then, $x$ is wife of $x$ cannot be true. $\Rightarrow x$, $x \notin R S o, R$ is not a reflexive relation.

Symmetry:
Let $(x, y) \in R \Rightarrow x$ is wife of $y \Rightarrow x$ is female and $y$ is male $\Rightarrow y$ cannot be wife of $x$ as $y$ is husband of $x \Rightarrow(y, x) \notin R$ So, $R$ is not a symmetric relation. Let $x, y \in R \Rightarrow x$ is wife of $y \Rightarrow x$ is female and $y$ is male $\Rightarrow y$ cannot be wife of $x$ as $y$ is husband of $x \Rightarrow y, x \notin R$ So, $R$ is not a symmetric relation.

## https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClindCareer

Transitivity:
Let $(x, y) \in R$, but $(y, z) \notin R$ Since $x$ is wife of $y$, but $y$ cannot be the wife of $z, y$ is husband of $x . \Rightarrow x$ is not the wife of $z \Rightarrow(x, z) \in R S o, R$ is a transitive relation. Let $x, y \in R$, but $y$, $z \notin R$ Since $x$ is wife of $y$, but $y$ cannot be the wife of $z, y$ is husband of $x . \Rightarrow x$ is not the wife of $z \Rightarrow x, z \in R S o, R$ is a transitive relation.
(iv)

Reflexivity:
Let $x$ be an arbitrary element of $R$. Then, $x$ is father of $x$ cannot be true since no one can be father of himself.So, $R$ is not a reflexive relation. Let $x$ be an arbitrary element of $R$. Then, $x$ is father of $x$ cannot be true since no one can be father of himself.So, $R$ is not a reflexive relation.

Symmetry:
Let $(x, y) \in R \Rightarrow x$ is father of $y \Rightarrow y$ is son/daughter of $x \Rightarrow(y, x) \notin R$ So, $R$ is not a symmetric relation. Let $x, y \in R \Rightarrow x$ is father of $y \Rightarrow y$ is son/daughter of $x \Rightarrow y, x \notin R$ So, $R$ is not a symmetric relation.

Transitivity:
Let $(x, y) \in R$ and $(y, z) \in R$. Then, $x$ is father of $y$ and $y$ is father of $z \Rightarrow x$ is grandfather of $z \Rightarrow(x, z) \notin R S o, R$ is not a transitive relation. Let $x, y \in R$ and $y, z \in R$. Then, $x$ is father of $y$ and $y$ is father of $z \Rightarrow x$ is grandfather of $z \Rightarrow x, z \notin R S o, R$ is not a transitive relation.

RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.10:

## Question 2:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClindCareer

Three relations $R_{1}, R_{2}$ and $R_{3}$ are defined on a set $A=\{a, b, c\}$ as follows:
$R_{1}=\{(a, a),(a, b),(a, c),(b, b),(b, c),(c, a),(c, b),(c, c)\}$
$R_{2}=\{(a, a)\}$
$R_{3}=\{(b, c)\}$
$R_{4}=\{(a, b),(b, c),(c, a)\}$.

Find whether or not each of the relations $R_{1}, R_{2}, R_{3}, R_{4}$ on $A$ is (i) reflexive (ii) symmetric and (iii) transitive.

ANSWER:
(i) $\mathrm{R}_{1}$

Reflexive:
Clearly, (a, a), (b, b) and (c, c) $\in \in \mathrm{R}_{1}$
So, $R_{1}$ is reflexive.

Symmetric:
We see that the ordered pairs obtained by interchanging the components of $\mathrm{R}_{1}$ are also in $R_{1}$.

So, $R_{1}$ is symmetric.

Transitive:
Here,
$(a, b) \in R 1,(b, c) \in R 1$ and also $(a, c) \in R 1 a, b \in R 1, b, c \in R 1$ and also $a, c \in R 1$
So, $R_{1}$ is transitive.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/
(ii) $\mathrm{R}_{2}$

Reflexive: Clearly $(a, a) \in R 2 a, a \in R 2$. So, $R_{2}$ is reflexive.
Symmetric: Clearly $(a, a) \in R \Rightarrow(a, a) \in R a, a \in R \Rightarrow a, a \in R$. So, $R 2$ is symmetric.
Transitive: $R_{2}$ is clearly a transitive relation, since there is only one element in it.
(iii) $R_{3}$

Reflexive:

Here,
(b, b) $\ddagger R 3$ neither (c, c) $\ddagger R 3 b, b \notin R 3$ neither $c, c \notin R 3$
So, $R_{3}$ is not reflexive.

Symmetric:
Here,
(b, c) $\in R 3$, but $(c, b) \notin R 3$ So, $R 3$ is not symmetric. $b, c \in R 3$, but $c, b \notin R 3$ So, $R 3$ is not symmetric.

Transitive:
Here, $R_{3}$ has only two elements. Hence, $R_{3}$ is transitive.
(iv) $\mathrm{R}_{4}$

Reflexive:
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

Here,
( $a, a) \notin R 4,(b, b) \notin R 4$ (c, c) $\ddagger R 4$ So, $R 4$ is not reflexive. $a, a \notin R 4, b, b \notin R 4 c, c \notin R 4 S o, R 4$ is not reflexive.

Symmetric:
Here,
(a, b) $\in R 4$, but $(b, a) \notin R 4$.So, $R 4$ is not symmetric. $a, b \in R 4$, but $b, a \notin R 4$.So, $R 4$ is not symmetric.

Transitive:
Here,
$(a, b) \in R 4,(b, c) \in R 4$, but $(a, c) \notin R 4$ So, $R 4$ is not transitive. $a, b \in R 4, b, c \in R 4$, but $a$, $c \notin R 4$ So, $R 4$ is not transitive.

RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.10:

## Question 3:

Test whether the following relations $R_{1}, R_{2}$, and $R_{3}$ are (i) reflexive (ii) symmetric and (iii) transitive:
(i) $R_{1}$ on $Q_{0}$ defined by $(a, b) \in R_{1} \Leftrightarrow a=1 / b$.
(ii) $R_{2}$ on $Z$ defined by $(a, b) \in R_{2} \Leftrightarrow|a-b| \leq 5$
(iii) $R_{3}$ on $R$ defined by $(a, b) \in R_{3} \Leftrightarrow a^{2}-4 a b+3 b^{2}=0$.

ANSWER:
(i) Reflexivity:

Let $a$ be an arbitrary element of $R_{1}$. Then, https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClindCareer

$a \in R 1 \Rightarrow a \neq 1 a$ for all $a \in Q 0$ So, $R 1$ is not reflexive. $a \in R 1 \Rightarrow a \neq 1 a$ for all $a \in Q 0$ So, $R 1$ is not reflexive.

Symmetry:
Let $(a, b) \in \mathrm{R} 1 \in \mathrm{R} 1$. Then,
$(a, b) \in R 1 \Rightarrow a=1 b \Rightarrow b=1 a \Rightarrow(b, a) \in R 1$ So, $R 1$ is symmetric. $a, b \in R 1 \Rightarrow a=1 b \Rightarrow b=1 a \Rightarrow b$, $a \in R 1$ So, R1 is symmetric.

Transitivity:
Here,
$(a, b) \in R 1$ and $(b, c) \in R 2 \Rightarrow a=1 b$ and $b=1 c \Rightarrow a=11 c=c \Rightarrow a \neq 1 c \Rightarrow(a, c) \notin R 1$ So, R1 is not transitive. $a, b \in R 1$ and $b, c \in R 2 \Rightarrow a=1 b$ and $b=1 c \Rightarrow a=11 c=c \Rightarrow a \neq 1 c \Rightarrow a, c \notin R 1$ So, $R 1$ is not transitive.
(ii)

Reflexivity:
Let $a$ be an arbitrary element of $R_{2}$. Then,
$a \in R 2 \Rightarrow|a-a|=0 \leq 5 S o, R 1$ is reflexive. $\quad a \in R 2 \Rightarrow a-a=0 \leq 5 S o, R 1$ is reflexive.

Symmetry:

Let $(a, b) \in R 2 \Rightarrow|a-b| \leq 5 \Rightarrow|b-a| \leq 5$
symmetric.Let $a, b \in R 2 \Rightarrow a-b \leq 5 \Rightarrow b-a \leq 5$ symmetric.
[Since, $|a-b|=|b-a|] \Rightarrow(b, a) \in R 2 S o, R 2$ is
Since, $a-b=b-a \Rightarrow b, a \in R 2 S o, R 2$ is
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

Transitivity:
Let $(1,3) \in R 2$ and $(3,7) \in R 2 \Rightarrow|1-3| \leq 5$ and $|3-7| \leq 5$ But $|1-7| \star 5 \Rightarrow(1,7) \notin R 2$ So, $R 2$ is not transitive.Let $1,3 \in R 2$ and $3,7 \in R 2 \Rightarrow 1-3 \leq 5$ and $3-7 \leq 5$ But $1-7 \not \approx 5 \Rightarrow 1,7 \notin R 2$ So, $R 2$ is not transitive.
(iii)

Reflexivity: Let a be an arbitrary element of $R_{3}$. Then,
$a \in R 3 \Rightarrow a 2-4 a \times a+3 a 2=0$ So, $R 3$ is reflexive. $\quad a \in R 3 \Rightarrow a 2-4 a \times a+3 a 2=0$ So, $R 3$ is reflexive.

Symmetry:
Let $(a, b) \in R 3 \Rightarrow a 2-4 a b+3 b 2=0$ But $b 2-4 b a+3 a 2 \neq 0$ for $a l l a, b \in R S o, R 3$ is not symmetric.Let $a, b \in R 3 \Rightarrow a 2-4 a b+3 b 2=0$ But $b 2-4 b a+3 a 2 \neq 0$ for $a l l a, b \in R S o, R 3$ is not symmetric.

Transitivity:
$(1,2) \in R 3$ and $(2,3) \in R 3 \Rightarrow 1-8+6=0$ and $4-24+27=0$ But $1-12+9 \neq 0$ So, $R 3$ is not transitive. $1,2 \in R 3$ and $2,3 \in R 3 \Rightarrow 1-8+6=0$ and $4-24+27=0$ But $1-12+9 \neq 0$ So, $R 3$ is not transitive.

RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.10:

## Question 4:

Let $A=\{1,2,3\}$, and let $R_{1}=\{(1,1),(1,3),(3,1),(2,2),(2,1),(3,3)\}, R_{2}=\{(2,2),(3,1)$, $(1,3)\}, R_{3}=\{(1,3),(3,3)\}$. Find whether or not each of the relations $R_{1}, R_{2}, R_{3}$ on A is (i) reflexive (ii) symmetric (iii) transitive.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

# ClndCareer 

## ANSWER:

(1) $1 R_{1}$

Reflexivity:
Here,
$(1,1),(2,2),(3,3) \in R S o, R 1$ is reflexive. $1,1,2,2,3,3 \in R S o, R 1$ is reflexive.

Symmetry:
Here, $(2,1) \in R 1$, but $(1,2) \notin R 1$ So, $R 1$ is not symmetric. Here, $2,1 \in R 1$, but $1,2 \notin R 1$ So, R 1 is not symmetric.

Transitivity:
Here, $(2,1) \in R 1$ and $(1,3) \in R 1$, but $(2,3) \notin R 1 S o, R 1$ is not transitive. Here, $2,1 \in R 1$ and $1,3 \in R 1$, but $2,3 \notin R 1$ So, $R 1$ is not transitive.
(2) $2 R_{2}$

Reflexivity:

Clearly, $(1,1)$ and $(3,3) \notin R 2$ So, $R 2$ is not reflexive.Clearly, 1,1 and $3,3 \notin R 2$ So, $R 2$ is not reflexive.

Symmetry:
Here, $(1,3) \in R 2$ and $(3,1) \in R 2 S o, R 2$ is symmetric. Here, $1,3 \in R 2$ and $3,1 \in R 2 S o$, $R 2$ is symmetric.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

Transitivity:
Here, $(1,3) \in R 2$ and $(3,1) \in R 2$ But $(3,3) \notin R 2 S o$, 2 is not transitive. Here, $1,3 \in R 2$ and $3,1 \in R 2$ But $3,3 \notin R 2 S o, R 2$ is not transitive.
(3)3 $R_{3}$

Reflexivity:
Clearly, $(1,1) \notin R 3$ So, $R 3$ is not reflexive.Clearly, $1,1 \notin R 3$ So, $R 3$ is not reflexive.

Symmetry:
Here, $(1,3) \in R 3$, but $(3,1) \notin R 3$ So, $R 3$ is not symmetric. Here, $1,3 \in R 3$, but $3,1 \notin R 3$ So, R3 is not symmetric.

Transitivity:
Here, $(1,3) \in R 3$ and $(3,3) \in R 3$ Also, $(1,3) \in R 3 S o, R 3$ is transitive. Here, $1,3 \in R 3$ and $3,3 \in R 3$ Also, $1,3 \in$ R3So, R3 is transitive.

RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.11:

## Question 5:

The following relations are defined on the set of real numbers.
(i) $a R b$ if $a-b>0$
(ii) $a R b$ if $1+a b>0$
(iii) $a R b$ if $|a| \leq b$

## Clnd Career

Find whether these relations are reflexive, symmetric or transitive.

## ANSWER:

(i)

Reflexivity: Let a be an arbitrary element of $R$. Then,
$a \in$ RBut $a-a=0 \ngtr 0$ So, this relation is not reflexive. $\quad a \in R B u t a-a=0 \searrow 0$ So, this relation is not reflexive.

Symmetry:

Let $(a, b) \in R \Rightarrow a-b>0 \Rightarrow-(b-a)>0 \Rightarrow b-a<0$ So, the given relation is not symmetric.Let $a$, $b \in R \Rightarrow a-b>0 \Rightarrow-(b-a)>0 \Rightarrow b-a<0$ So, the given relation is not symmetric.

Transitivity:

Let $(a, b) \in R$ and $(b, c) \in R$. Then, $a-b>0$ and $b-c>0$ Adding the two, we geta $-b+b-c>0 \Rightarrow a-c>0 \Rightarrow(a, c) \in R$. So, the given relation is transitive. Let $a, b \in R$ and $b, c \in R$. Then, $a-b>0$ and $b-c>0$ Adding the two, we geta- $b+b-c>0 \Rightarrow a-c>0 \Rightarrow a, c \in R$. So, the given relation is transitive.
(ii)

Reflexivity: Let a be an arbitrary element of $R$. Then,

## ClndCareer

$a \in R \Rightarrow 1+a \times a>0$ i.e. $1+a 2>0 \quad$ [Since, square of any number is positive]So, the given relation is reflexive. $\quad a \in R \Rightarrow 1+a \times a>0$ i.e. $1+a 2>0 \quad$ Since, square of any number is positiveSo, the given relation is reflexive.

Symmetry:

Let $(a, b) \in R \Rightarrow 1+a b>0 \Rightarrow 1+b a>0 \Rightarrow(b, a) \in R S o$, the given relation is symmetric. Let $a$, $b \in R \Rightarrow 1+a b>0 \Rightarrow 1+b a>0 \Rightarrow b, a \in R S o$, the given relation is symmetric.

Transitivity:

Let $(a, b) \in R$ and $(b, c) \in R \Rightarrow 1+a b>0$ and $1+b c>0$ But $1+a c \gg 0 \Rightarrow(a, c) \notin R S o$, the given relation is not transitive. Let $a, b \in R$ and $b, c \in R \Rightarrow 1+a b>0$ and $1+b c>0$ But $1+a c \ngtr 0 \Rightarrow a$, $c \notin R S o$, the given relation is not transitive.
(iii)

Reflexivity: Let a be an arbitrary element of $R$. Then,

$$
a \in R \Rightarrow|a| \nless a \quad[\text { Since, }|a|=a] \text { So, } R \text { is not reflexive. } \quad a \in R \Rightarrow a \not a
$$

Since, $a=a S o, R$ is not reflexive.

Symmetry:

Let $(a, b) \in R \Rightarrow|a| \leq b \Rightarrow|b| \nless a$ for all $a, b \in R \Rightarrow(b, a) \notin R$ So, $R$ is not symmetric. Let $a$, $b \in R \Rightarrow a \leq b \Rightarrow b \nless a$ for all $a, b \in R \Rightarrow b, a \notin R$ So, $R$ is not symmetric.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

Transitivity:

Let $(a, b) \in R$ and $(b, c) \in R \Rightarrow|a| \leq b$ and $|b| \leq c M u l t i p l y i n g$ the corresponding sides, we get $|a||b| \leq b c \Rightarrow|a| \leq c \Rightarrow(a, c) \in R$ Thus, $R$ is transitive. Let $a, b \in R$ and $b, c \in R \Rightarrow a \leq b$ and $b \leq c$ Multiplying the corresponding sides, we get $a b \leq b c \Rightarrow a \leq c \Rightarrow a, c \in R T h u s, R$ is transitive.

RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.11:

## Question 6:

Check whether the relation $R$ defined on the set $A=\{1,2,3,4,5,6\}$ as $R=\{(a, b): b=$ $a+1\}$ is reflexive, symmetric or transitive.

## ANSWER:

Reflexivity:

Letabeanarbitraryelementof $R$. Then, $a=a+1$ cannot be true for all $a \in A . \Rightarrow(a, a) \notin R$ So, $R$ is not reflexive on A.Letabeanarbitraryelementof R.Then, $a=a+1$ cannot be true for all $a \in A . \Rightarrow a, a \notin R$ So, $R$ is not reflexive on $A$.

Symmetry:
Let $(a, b) \in R \Rightarrow b=a+1 \Rightarrow-a=-b+1 \Rightarrow a=b-1$ Thus, $(b, a) \notin R S o, R$ is not symmetric on A.Let $a, b \in R \Rightarrow b=a+1 \Rightarrow-a=-b+1 \Rightarrow a=b-1$ Thus, $b, a \notin R S o, R$ is not symmetric on $A$.

Transitivity:

## ClndCareer

Let $(1,2)$ and $(2,3) \in R \Rightarrow 2=1+1$ and $32+1$ is true. But $3 \neq 1+1 \Rightarrow(1,3) \notin R S o, R$ is not transitive on $A$. Let 1,2 and $2,3 \in R \Rightarrow 2=1+1$ and $32+1$ is true. But $3 \neq 1+1 \Rightarrow 1,3 \notin R$ So, $R$ is not transitive on $A$.

RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.11:

## Question 7:

Check whether the relation $R$ on $\mathbf{R}$ defined by $R=\left\{(a, b): a \leq b^{3}\right\}$ is reflexive, symmetric or transitive.

## ANSWER:

Reflexivity:

Since $12>(12) 3,(12,12) \notin R S o, R$ is not reflexive.Since $12>123,12,12 \notin R S o, R$ is not reflexive.

Symmetry:

Since $(12,2) \in R, 12<23 B$ ut $2>(12) 3 \Rightarrow(2,12) \in R S$ o, $R$ is not symmetric. Since 12 , $2 \in R, 12<23$ But $2>123 \Rightarrow 2,12 \in R S o, R$ is not symmetric.

Transitivity:
Since $(7,3) \in R$ and $(3,313) \in R, 7<33$ and $3=(313) 3$ But $7>(313) 3 \Rightarrow(7,313) \notin R S o, R$ is not transitive. Since $7,3 \in R$ and $3,313 \in R, 7<33$ and $3=3133$ But $7>3133 \Rightarrow 7,313 \notin R$ So, $R$ is not transitive.

RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.11:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

## Question 8:

Prove that every identity relation on a set is reflexive, but the converse is not necessarily true.

ANSWER:
Let $A$ be a set. Then,

Identity relation $I A=I A$ is reflexive, since $(a, a) \in A \forall$ aldentity relation $I A=I A$ is reflexive, since $a, a \in A \forall a$

The converse of it need not be necessarily true.
Consider the set $A=\{1,2,3\}$

Here,
Relation $R=\{(1,1),(2,2),(3,3),(2,1),(1,3)\}$ is reflexive on $A$.
However, $R$ is not an identity relation.

## Page No 1.11:

## Question 9:

If $A=\{1,2,3,4\}$ define relations on $A$ which have properties of being
(i) reflexive, transitive but not symmetric
(ii) symmetric but neither reflexive nor transitive
(iii) reflexive, symmetric and transitive.

## ANSWER:

(i) The relation on $A$ having properties of being reflexive, transitive, but not symmetric is https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClindCareer

$R=\{(1,1),(2,2),(3,3),(4,4),(2,1)\}$

Relation $R$ satisfies reflexivity and transitivity. $\Rightarrow(1,1),(2,2),(3,3) \in R$ and (1, 1), (2, $1) \in R \Rightarrow(1,1) \in R$ However, $(2,1) \in R$, but $(1,2) \notin R R$ elation $R$ satisfies reflexivity and transitivity. $\Rightarrow 1,1,2,2,3,3 \in R$ and $1,1,2,1 \in R \Rightarrow 1,1 \in R H$ owever, $2,1 \in R$, but $1,2 \notin R$
(ii) The relation on $A$ having properties of being symmetric, but neither reflexive nor transitive is
$R=\{(1,2),(2,1)\}$
The relation $R$ on $A$ is neither reflexive nor transitive, but symmetric.
(iii) The relation on $A$ having properties of being symmetric, reflexive and transitive is $R=\{(1,1),(2,2),(3,3),(4,4),(1,2),(2,1)\}$

The relation $R$ is an equivalence relation on $A$.
RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.11:

## Question 10:

Let $R$ be a relation defined on the set of natural numbers $N$ as
$R=\{(x, y): x, y \in N, 2 x+y=41\}$
Find the domain and range of $R$. Also, verify whether $R$ is (i) reflexive, (ii) symmetric (iii) transitive.

## ANSWER:

Domain of $R$ is the values of $x$ and range of $R$ is the values of $y$ that together should satisfy $2 x+y=41$.

## https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

So,
Domain of $R=\{1,2,3,4, \ldots, 20\}$
Range of $R=\{1,3,5, \ldots, 37,39\}$

Reflexivity: Let $x$ be an arbitrary element of $R$. Then,
$x \in R \Rightarrow 2 x+x=41$ cannot be true. $\Rightarrow(x, x) \notin R$ So, $R$ is not reflexive. $x \in R \Rightarrow 2 x+x=41$ cannot be true. $\Rightarrow x, x \notin R$ So, $R$ is not reflexive.

Symmetry:
Let $(x, y) \in R$. Then, $2 x+y=41 \Rightarrow 2 y+x=41 \Rightarrow(y, x) \notin R S o, R$ is not symmetric.Let $x, y \in R$.
Then, $2 x+y=41 \Rightarrow 2 y+x=41 \Rightarrow y, x \notin R S o, R$ is not symmetric.

Transitivity:
Let $(x, y)$ and $(y, z) \in R \Rightarrow 2 x+y=41$ and $2 y+z=41 \Rightarrow 2 x+z=2 x+41-2 y 41-y-2 y=41-3 y \Rightarrow(x$,
$z) \notin R$ Thus, $R$ is not transitive.Let $x, y$ and $y, z \in R \Rightarrow 2 x+y=41$ and $2 y$ $+z=41 \Rightarrow 2 x+z=2 x+41-2 y 41-y-2 y=41-3 y \Rightarrow x, z \notin R$ Thus, $R$ is not transitive.

## Page No 1.11:

## Question 11:

Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.

## ANSWER:

No, it is not true.

Consider a set $A=\{1,2,3\}$ and relation $R$ on $A$ such that $R=\{(1,2),(2,1),(2,3),(1,3)\}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

The relation $R$ on $A$ is symmetric and transitive. However, it is not reflexive.
$(1,1),(2,2)$ and $(3,3) \notin R 1,1,2,2$ and $3,3 \notin R$

Hence, $R$ is not reflexive.
RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.11:

## Question 12:

An integer $m$ is said to be related to another integer $n$ if $m$ is a multiple of $n$.Check if the relation is symmetric, reflexive and transitive.

## ANSWER:

$R=\{(m, n): m, n \in Z, m=k n$, where $k \in N\}$ Reflexivity:Let $m$ be an arbitrary element of $R$. Then, $m=k m$ is true for $k=1 \Rightarrow(m, m) \in R$ Thus, $R$ is reflexive. Symmetry: Let ( $m$, $n) \in R \Rightarrow m=k n$ for some $k \in N \rightarrow n=1 k m \Rightarrow(n, m) \notin R$ Thus, $R$ is not symmetric. Transitivity: Let $(m, n)$ and $(n, o) \in R \Rightarrow m=k n$ and $n=$ lo for some $k, l \in N \Rightarrow m=(k l)$ oHere, $k l \in R \Rightarrow(m$, $o) \in R$ Thus, $R$ is transitive. $R=m, n: m, n \in Z, m=k n$, where $k \in N R e f l e x i v i t y: L e t ~ m$ be an arbitrary element of $R$. Then, $m=k m$ is true for $k=1 \Rightarrow m, m \in R$ Thus, $R$ is reflexive.Symmetry: Let $m, n \in R \Rightarrow m=k n$ for some $k \in N \rightarrow n=1 k m \Rightarrow n, m \notin R$ Thus, $R$ is not symmetric. Transitivity: Let $m, n$ and $n, o \in R \Rightarrow m=k n$ and $n=l o$ for some $k, l$ $\in N \Rightarrow m=(k l)$ oHere, $k l \in R \Rightarrow m, o \in R T h u s, R$ is transitive.

## Page No 1.11:

## Question 13:

Show that the relation ' $\geq$ ' on the set $R$ of all real numbers is reflexive and transitive but not symmetric.

## ANSWER:

Let $R$ be the set such that $R=\{(a, b): a, b \in R ; a \geq b \in R ; a \geq b\}$

## ClndCareer

## Reflexivity:

Let $a$ be an arbitrary element of $R . \Rightarrow a \in R \Rightarrow a=a \Rightarrow a \geq a$ is true for $a=a \Rightarrow(a, a) \in R$ Hence, $R$ is reflexive. Let a be an arbitrary element of $R . \Rightarrow a \in R \Rightarrow a=a \Rightarrow a \geq a$ is true for $a=a \Rightarrow a, a \in R$ Hence, $R$ is reflexive.

## Symmetry:

Let $(a, b) \in R \Rightarrow a \geq b$ is same as $b \leq a$, but not $b \geq a$ Thus, $(b, a) \notin R$ Hence, $R$ is not symmetric.Let $a, b \in R \Rightarrow a \geq b$ is same as $b \leq a$, $b$ ut not $b \geq a$ Thus, $b, a \notin R$ Hence, $R$ is not symmetric.

Transitivity:
Let $(a, b)$ and $(b, c) \in R \Rightarrow a \geq b$ and $b \geq c \Rightarrow a \geq b \geq c \Rightarrow a \geq c \Rightarrow(a, c) \in R H e n c e, R$ is transitive. Let $a, b$ and $b, c \in R \Rightarrow a \geq b$ and $b \geq c \Rightarrow a \geq b \geq c \Rightarrow a \geq c \Rightarrow a, c \in R$ Hence, $R$ is transitive.

## Page No 1.11:

## Question 14:

Give an example of a relation which is
(i) reflexive and symmetric but not transitive;
(ii) reflexive and transitive but not symmetric;
(iii) symmetric and transitive but not reflexive;
(iv) symmetric but neither reflexive nor transitive.
(v) transitive but neither reflexive nor symmetric.

## ANSWER:

Suppose $A$ be the set such that $A=\{1,2,3\}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## elndCareer

(i) Let $R$ be the relation on $A$ such that
$R=\{(1,1),(2,2),(3,3),(1,2),(2,1),(2,3)\}$
Thus,
$R$ is reflexive and symmetric, but not transitive.
(ii) Let $R$ be the relation on $A$ such that
$R=\{(1,1),(2,2),(3,3),(1,2),(1,3),(2,3)\}$
Clearly, the relation $R$ on $A$ is reflexive and transitive, but not symmetric.
(iii) Let $R$ be the relation on $A$ such that
$R=\{(1,2),(2,1),(1,3),(3,1),(2,3)\}$
We see that the relation $R$ on $A$ is symmetric and transitive, but not reflexive.
(iv) Let $R$ be the relation on $A$ such that
$R=\{(1,2),(2,1),(1,3),(3,1)\}$
The relation $R$ on $A$ is symmetric, but neither reflexive nor transitive.
(v) Let $R$ be the relation on $A$ such that
$R=\{(1,2),(2,3),(1,3)\}$
The relation $R$ on $A$ is transitive, but neither symmetric nor reflexive.
RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

## Page No 1.11:

## Question 15:

Given the relation $R=\{(1,2),(2,3)\}$ on the set $A=\{1,2,3\}$, add a minimum number of ordered pairs so that the enlarged relation is symmeteric, transitive and reflexive.

## ANSWER:

We have,
$R=\{(1,2),(2,3)\}$
$R$ can be a transitive only when the elements $(1,3)$ is added
$R$ can be a reflexive only when the elements (1, 1), (2, 2), (3, 3) are added
$R$ can be a symmetric only when the elements $(2,1),(3,1)$ and $(3,2)$ are added

So, the required enlarged relation, $R^{\prime}=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1)$, $(3,2),(3,3)\}=A \times \times A$

## Page No 1.11:

## Question 16:

Let $A=\{1,2,3\}$ and $R=\{(1,2),(1,1),(2,3)\}$ be a relation on $A$. What minimum number of ordered pairs may be added to $R$ so that it may become a transitive relation on $A$.

## ANSWER:

We have,

## ClndCareer

$A=\{1,2,3\}$ and $R=\{(1,2),(1,1),(2,3)\}$

To make $R$ a transitive relation on $A,(1,3)$ must be added to it.

So, the minimum number of ordered pairs that may be added to $R$ to make it a transitive relation is 1 .

## Page No 1.11:

## Question 17:

Let $A=\{a, b, c\}$ and the relation $R$ be defined on $A$ as follows: $R=\{(a, a),(b, c),(a, b)\}$.
Then, write minimum number of ordered pairs to be added in $R$ to make it reflexive and transitive.

## ANSWER:

We have,
$A=\{a, b, c\}$ and $R=\{(a, a),(b, c),(a, b)\}$
$R$ can be a reflexive relation only when elements $(b, b)$ and $(c, c)$ are added to it
$R$ can be a transitive relation only when the element $(a, c)$ is added to it

So, the minmum number of ordered pairs to be added in $R$ is 3 .
RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## Page No 1.11:

## Question 18:

Each of the following defines a relation on $\mathbf{N}$ :
(i) $x>y, x, y \in \in \mathbf{N}$
(ii) $x+y=10, x, y \in \in \mathbf{N}$
(iii) $x y$ is square of an integer, $x, y \in \in \mathbf{N}$
(iv) $x+4 y=10, x, y \in \in \mathbf{N}$

Determine which of the above relations are reflexive, symmetric and transitive.

## ANSWER:

(i) We have,
$R=\{(x, y): x>y, x, y \in \in \mathbf{N}\}$

As, $x=x \forall x \in N \Rightarrow(x, x) \notin R S$ o, $R$ is not a reflexive relationLet $(x, y) \in R \Rightarrow x>y b u t$ $y<x \Rightarrow(y, x) \notin R S o, R$ is not a symmeteric relationLet $(x, y) \in R$ and $(y, z) \in R \Rightarrow x>y$ and $y>z \Rightarrow x>z \Rightarrow(x, z) \in R$ So, $R$ is a transitive relationAs, $x=x \forall x \in N \Rightarrow x, x \notin R$ So, $R$ is not a reflexive relationLet $x, y \in R \Rightarrow x>y b u t y<x \Rightarrow y, x \notin R S$ o, $R$ is not a symmeteric relationLet $x, y \in R$ and $y, z \in R \Rightarrow x>y$ and $y>z \Rightarrow x>z \Rightarrow x, z \in R S o, R$ is a transitive relation
(ii) We have,
$R=\{(x, y): x+y=10, x, y \in \in \mathbf{N}\}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

$R=\{(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1)\} A s,(1,1) \notin R S o, R$ is not a reflexive relationLet $(x, y) \in R \Rightarrow x+y=10 \Rightarrow y+x=10 \Rightarrow(y, x) \in R S o, R$ is a symmeteric relationAs, $(1,9) \in R$ and $(9,1) \in R$ but $(1,1) \notin R S o, R$ is not a transitive relation $R=1,9,2,8,3,7,4,6,5,5,6,4,7,3,8,2,9,1 \mathrm{As}, 1,1 \notin R S o, R$ is not a reflexive relationLet $x, y \in R \Rightarrow x+y=10 \Rightarrow y+x=10 \Rightarrow y, x \in R S o, R$ is a symmeteric relationAs, $1,9 \in R$ and $9,1 \in R$ but $1,1 \notin R S o, R$ is not a transitive relation
(iii) We have,
$R=\{(x, y): x y$ is square of an integer, $x, y \in \in \mathbf{N}\}$

As, $x \times x=x 2$, which is a square of an integer $x \Rightarrow(x, x) \in R S o, R$ is a reflexive relationLet $(x, y) \in R \Rightarrow x y$ is square of an integer $\Rightarrow y x$ is also a square of an integer $\Rightarrow(y, x) \in R S o, R$ is a symmeteric relationLet $(x, y) \in R$ and $(y, z) \in R \Rightarrow x y$ is square of an integer and $y z$ is also a square of an interger $\Rightarrow x z$ must be a square of an integer $\Rightarrow(x, z) \in R S o, R$ is a transitive relationAs, $x \times x=x 2$, which is a square of an integer $x \Rightarrow x, x \in R S o, R$ is a reflexive relationLet $x, y \in R \Rightarrow x y$ is square of an integer $\Rightarrow y x$ is also a square of an integer $\Rightarrow y, x \in R S o, R$ is a symmeteric relationLet $x, y \in R$ and $y, z \in R \Rightarrow x y$ is square of an integer and $y z$ is also a square of an interger $\Rightarrow x z$ must be a square of an integer $\Rightarrow x, z \in R S o, R$ is a transitive relation
(iv) We have,
$R=\{(x, y): x+4 y=10, x, y \in \in \mathbf{N}\}$
$R=\{(2,4),(6,1)\} A s,(2,2) \notin R S o, R$ is not a reflexive relationAs, $(2,4) \in R$ but $(4,2) \notin R S o, R$ is not a symmeteric relationAs, $(2,4) \in R$ but 4 is not related to any natural numberSo, $R$ https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1 -relation/

## ClndCareer

is a transitive relation $R=2,4,6,1 A s, 2,2 \in R S o, R$ is not a reflexive relationAs, $2,4 \in R$ but $4,2 \notin R S o, R$ is not a symmeteric relationAs, $2,4 \in R$ but 4 is not related to any natural numberSo, $R$ is a transitive relation

RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.26:

## Question 1:

Show that the relation $R$ defined by $R=\{(a, b): a-b$ is divisible by $3 ; a, b \in Z\}$ is an equivalence relation.

## ANSWER:

We observe the following relations of relation $R$.

## Reflexivity:

Let a be an arbitrary element of $R$. Then, $a-a=0=0 \times 3 \Rightarrow a-a$ is divisible by $3 \Rightarrow(a, a) \in R$ for all $a \in Z S o, R$ is reflexive on $Z$. Let a be an arbitrary element of $R$. Then, $a-a=0=0 \times$ $3 \Rightarrow a-a$ is divisible by $3 \Rightarrow a, a \in R$ for all $a \in Z S o, R$ is reflexive on $Z$.

## Symmetry:

Let $(a, b) \in R \Rightarrow a-b$ is divisible by $3 \Rightarrow a-b 3 p$ for some $p \in Z \Rightarrow b-a=3(-p)$ Here, $-p \in Z \Rightarrow b-a$ is divisible by $3 \Rightarrow(b, a) \in R$ for all $a, b \in Z S o, R$ is symmetric on Z.Let $a$, $b \in R \Rightarrow a-b$ is divisible by $3 \Rightarrow a-b 3 p$ for some $p \in Z \Rightarrow b-a=3-p$ Here, $-p \in Z \Rightarrow b-a$ is divisible by $3 \Rightarrow b, a \in R$ for all $a, b \in Z S o, R$ is symmetric on $Z$.

Transitivity:
Let $(a, b)$ and $(b, c) \in R \Rightarrow a-b$ and $b-c$ are divisible by $3 \Rightarrow a-b=3 p$ for some $p \in$ Zand $b-c=3 q$ for some $q \in$ ZAdding the above two, we get $a-b+b-c=3 p+3 q \Rightarrow a-c=3$ $(p+q)$ Here, $p+q \in Z \Rightarrow a-c$ is divisible by $3 \Rightarrow(a, c) \in R$ for all $a, c \in Z S o, R$ is transitive on Z.Let $a, b$ and $b, c \in R \Rightarrow a-b$ and $b-c$ are divisible by $3 \Rightarrow a-b=3 p$ for some $p \in$ Zand https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

$b-c=3 q$ for some $q \in$ ZAdding the above two, we get $a-b+b-c=3 p+3 q \Rightarrow a-c=3 p+q$ Here, $p+q \in Z \Rightarrow a-c$ is divisible by $3 \Rightarrow a, c \in R$ for all $a, c \in Z S o, R$ is transitive on $Z$.

Hence, $R$ is an equivalence relation on $Z$.

## Page No 1.26:

## Question 2:

Show that the relation $R$ on the set $Z$ of integers, given by
$R=\{(a, b): 2$ divides $a-b\}$, is an equivalence relation.

## ANSWER:

We observe the following properties of relation $R$.

Reflexivity:
Let a be an arbitrary element of the set $Z$. Then,$a \in R \Rightarrow a-a=0=0 \times 2 \Rightarrow 2$ divides $a-a \Rightarrow(a, a) \in R$ for all $a \in Z S o, R$ is reflexive on Z.Let a be an arbitrary element of the set $Z$. Then,$a \in R \Rightarrow a-a=0=0 \times 2 \Rightarrow 2$ divides $a-a \Rightarrow a, a \in R$ for all $a \in Z S o, R$ is reflexive on $Z$.

Symmetry:
Let $(a, b) \in R \Rightarrow 2$ divides $a-b \Rightarrow a-b 2=p$ for some $p \in Z \Rightarrow b-a 2=-p$ Here, $-p \in Z \Rightarrow 2$ divides $b-a \Rightarrow(b, a) \in R$ for all $a, b \in Z S o, R$ is symmetric on Z.Let $a, b \in R \Rightarrow 2$ divides $a-b \Rightarrow a-b 2=p$ for some $p \in Z \Rightarrow b-a 2=-p$ Here, $-p \in Z \Rightarrow 2$ divides $b-a \Rightarrow b, a \in R$ for all $a, b$ $\in Z S o, R$ is symmetric on $Z$.

Transitivity:

## ClindCareer

Let $(a, b)$ and $(b, c) \in R \Rightarrow 2$ divides $a-b$ and 2 divides $b-c \Rightarrow a-b 2=p$ and $b-c 2=q$ for some $p, q \in Z A d d i n g$ the above two, we geta- $b 2+b-c 2=p+q \Rightarrow a-c 2=p+q$ Here, $p+q \in Z \Rightarrow 2$ divides $a-c \Rightarrow(a, c) \in R$ for all $a, c \in Z S o, R$ is transitive on Z.Let $a, b$ and $b$, $c \in R \Rightarrow 2$ divides $a-b$ and 2 divides $b-c \Rightarrow a-b 2=p$ and $b-c 2=q$ for some $p, q \in$ ZAdding the above two, we geta-b2+b-c2=p+q $\Rightarrow a-c 2=p+q \quad$ Here, $p+q \in Z \Rightarrow 2$ divides $a-c \Rightarrow a$, $c \in R$ for all $a, c \in Z S o, R$ is transitive on $Z$.

Hence, $R$ is an equivalence relation on $Z$.
RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.26:

## Question 3:

Prove that the relation $R$ on $Z$ defined by

$$
(a, b) \in R \Leftrightarrow a-b \text { is divisible by } 5
$$

is an equivalence relation on $Z$.

## ANSWER:

We observe the following properties of relation $R$.

## Reflexivity:

Let a be an arbitrary element of $R$. Then, $\Rightarrow a-a=0=0 \times 5 \Rightarrow a-a$ is divisible by $5 \Rightarrow(a$, $a) \in R$ for all $a \in Z S o, R$ is reflexive on $Z$.Let a be an arbitrary element of $R$. Then, $\Rightarrow a-a$ $=0=0 \times 5 \Rightarrow a-a$ is divisible by $5 \Rightarrow a, a \in R$ for all $a \in Z S o, R$ is reflexive on $Z$.

## Symmetry:

Let $(a, b) \in R \Rightarrow a-b$ is divisible by $5 \Rightarrow a-b=5 p$ for some $p \in Z \Rightarrow b-a=5(-p) \quad$ Here, $-p \in Z \quad[$ Since $p \in Z] \Rightarrow b-a$ is divisible by $5 \Rightarrow(b, a) \in R$ for all $a, b \in Z S o, R$ is symmetric on $Z$. Let $a, b \in R \Rightarrow a-b$ is divisible by $5 \Rightarrow a-b=5 p$ for some $p \in Z \Rightarrow b-a=5-p$ https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

Here, $-p \in Z$
[Since $p \in Z$ ] $\Rightarrow b-a$ is divisible by $5 \Rightarrow b, a \in R$ for all $a, b \in Z S o$,
$R$ is symmetric on $Z$.

Transitivity:
Let $(a, b)$ and $(b, c) \in R \Rightarrow a-b$ is divisible by $5 \Rightarrow a-b=5 p$ for some ZAlso, $b-c$ is divisible by $5 \Rightarrow b-c=5 q$ for some ZAdding the above two, we geta-b+b-c $=5 p+5 q \Rightarrow a-c=5$ $(p+q) \Rightarrow a-c$ is divisible by 5 Here, $p+q \in Z \Rightarrow(a, c) \in R$ for all $a, c \in Z S o, R$ is transitive on Z. Let $a, b$ and $b, c \in R \Rightarrow a-b$ is divisible by $5 \Rightarrow a-b=5 p$ for some ZAlso, $b-c$ is divisible by $5 \Rightarrow b-c=5 q$ for some ZAdding the above two, we geta-b+b-c $=5 p+5 q \Rightarrow a-c=5$ $(p+q) \Rightarrow a-c$ is divisible by 5 Here $, p+q \in Z \Rightarrow a, c \in R$ for all $a, c \in Z S o, R$ is transitive on $Z$.

Hence, $R$ is an equivalence relation on $Z$.
RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.26:

## Question 4:

Let $n$ be a fixed positive integer. Define a relation $R$ on $Z$ as follows:
$(a, b) \in R \Leftrightarrow a-b$ is divisible by $n$.
Show that $R$ is an equivalence relation on $Z$.

## ANSWER:

We observe the following properties of $R$. Then,
Reflexivity:
Let $a \in$ NHere, $a-a=0=0 \times n \Rightarrow a-a$ is divisible by $n \Rightarrow(a, a) \in R \Rightarrow(a, a) \in R$ for all $a \in$ ZSo, $R$ is reflexive on $Z$. Let $a \in$ NHere, $a-a=0=0 \times n \Rightarrow a-a$ is divisible by $n \Rightarrow a, a \in R \Rightarrow a, a \in R$ for all $a \in Z S o, R$ is reflexive on $Z$.

## https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

Symmetry:
Let $(a, b) \in R$ Here, $a-b$ is divisible by $n \Rightarrow a-b=n p$ for some $p \in Z \Rightarrow b-a=n(-p) \Rightarrow b-a$ is divisible by $n \quad[p \in Z \Rightarrow-p \in Z] \Rightarrow(b, a) \in R$ So, $R$ is symmetric on $Z$.Let $a$, $b \in R H$ ere, $a-b$ is divisible by $n \Rightarrow a-b=n p$ for some $p \in Z \Rightarrow b-a=n-p \Rightarrow b-a$ is divisible by $n$ $[p \in Z \Rightarrow-p \in Z] \Rightarrow b, a \in R$ So, $R$ is symmetric on $Z$.

Transitivity:
Let $(a, b)$ and $(b, c) \in R$ Here, $a-b$ is divisible by $n$ and $b-c$ is divisible by $n . \Rightarrow a-b=n p$ for some $\mathrm{p} \in$ Zand $\mathrm{b}-\mathrm{c}=\mathrm{nq}$ for some $\mathrm{q} \in$ ZAdding the above two, we geta-b+b-c=np+nq $\Rightarrow a-c=n(p+q)$ Here, $p+q \in Z \Rightarrow(a, c) \in R$ for all $a, c \in Z S o, R$ is transitive on Z.Let $a, b$ and $b, c \in R$ Here, $a-b$ is divisible by $n$ and $b-c$ is divisible by $\mathrm{n} . \Rightarrow \mathrm{a}-\mathrm{b}=\mathrm{np}$ for some $\mathrm{p} \in$ Zand $\mathrm{b}-\mathrm{c}=\mathrm{nq}$ for some $\mathrm{q} \in$ ZAdding the above two, we geta- $b+b-c=n p+n q \Rightarrow a-c=n(p+q)$ Here, $p+q \in Z \Rightarrow a, c \in R$ for all $a, c \in Z S o, R$ is transitive on $Z$.

Hence, $R$ is an equivalence relation on $Z$.
RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.26:

## Question 5:

Let $Z$ be the set of integers. Show that the relation
$R=\{(a, b): a, b \in Z$ and $a+b$ is even $\}$
is an equivalence relation on $Z$.

## ANSWER:

We observe the following properties of $R$.

Reflexivity:
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

Let a be an arbitrary element of $Z$. Then, $\quad a \in$ RClearly, $a+a=2 a$ is even for all $a \in Z . \Rightarrow(a, a) \in R$ for all $a \in Z S o, R$ is reflexive on $Z$. Let a be an arbitrary element of $Z$. Then, $\quad a \in R$ Clearly, $a+a=2 a$ is even for all $a \in Z . \Rightarrow a, a \in R$ for $a l l a \in Z S o, R$ is reflexive on $Z$.

Symmetry:
Let $(a, b) \in R \Rightarrow a+b$ is even $\Rightarrow b+a$ is even $\Rightarrow(b, a) \in R$ for $a l l a, b \in Z$ So, $R$ is symmetric on $Z$.Let $a, b \in R \Rightarrow a+b$ is even $\Rightarrow b+a$ is even $\Rightarrow b, a \in R$ for all $a, b \in Z$ So, $R$ is symmetric on $Z$.

Transitivity:
Let $(a, b)$ and $(b, c) \in R \Rightarrow a+b$ and $b+c$ are evenNow, let $a+b=2 x$ for some $x \in$ Zand $b+c=2 y$ for some $y \in Z A d d i n g$ the above two, we get $a+2 b+c=2 x+2 y \Rightarrow a+c=2(x+y-b)$, which is even for all $x, y, b \in Z$ Thus, $(a, c) \in R S o, R$ is transitive on Z.Let $a, b$ and $b$, $c \in R \Rightarrow a+b$ and $b+c$ are evenNow, let $a+b=2 x$ for some $x \in Z a n d b+c=2 y$ for some $y \in Z A d d i n g$ the above two, we get $a+2 b+c=2 x+2 y \Rightarrow a+c=2(x+y-b)$, which is even for all $x, y, b \in Z$ Thus, $a, c \in R S o, R$ is transitive on $Z$.

Hence, $R$ is an equivalence relation on $Z$.
RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.26:

## Question 6:

$m$ is said to be related to $n$ if $m$ and $n$ are integers and $m-n$ is divisible by 13 . Does this define an equivalence relation?

## ANSWER:

We observe the following properties of relation $R$.

## https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

Let $R=\{(m, n): m, n \in Z: m-n$ is divisible by 13$\}$ Relexivity: Let $m$ be an arbitrary element of $Z$. Then, $m \in R \Rightarrow m-m=0=0 \times 13 \Rightarrow m-m$ is divisible by $13 \Rightarrow(m, m)$ is reflexive on Z.Symmetry: Let $(m, n) \in R$. Then, $m-n$ is divisible by $13 \Rightarrow m-n=13 p H e r e$, $p \in Z \Rightarrow n-m=13(-p)$ Here, $-p \in Z \Rightarrow n-m$ is divisible by $13 \Rightarrow(n, m) \in R$ for all $m, n \in Z$ So, $R$ is symmetric on Z.Transitivity: Let ( $m, n$ ) and $(n, o) \in R \Rightarrow m-n$ and $n-o$ are divisible by $13 \Rightarrow m-n=13 p$ and $n-o=13 q$ for some $p, q \in$ ZAdding the above two, we get $m-n+n-o=13 p+13 q \Rightarrow m-o=13(p+q)$ Here, $p+q \in Z \Rightarrow m-o$ is divisible by $13 \Rightarrow(m, o) \in R$ for all $m, o \in Z S o, R$ is transitive on $Z$. Let $R=\{m, n: m, n \in Z: m-n$ is divisible by $13\}$ Relexivity: Let $m$ be an arbitrary element of $Z$. Then, $m \in R \Rightarrow m-m=0=0 \times 13 \Rightarrow m-m$ is divisible by $13 \Rightarrow m$, $m$ is reflexive on $Z$.Symmetry: Let $m, n \in R$. Then, $m-n$ is divisible by $13 \Rightarrow m-n=13 p$ Here, $p \in Z \Rightarrow n-m=13-p$ Here, $-p \in Z \Rightarrow n-m$ is divisible by $13 \Rightarrow n, m \in R$ for all $m, n \in Z S o, R$ is symmetric on Z.Transitivity: Let $m, n$ and $n, o \in R \Rightarrow m-n$ and $n-o$ are divisible by $13 \Rightarrow m-n=13 p$ and $n-0=13 q$ for some $p, q \in$ ZAdding the above two, we get $m-n+n-o=13 p+13 q \Rightarrow m-o=13 p+q$ Here, $p+q \in Z \Rightarrow m-o$ is divisible by $13 \Rightarrow m, o \in R$ for all $m, o \in Z S o, R$ is transitive on $Z$.

Hence, $R$ is an equivalence relation on $Z$.
RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions
Page No 1.26:

## Question 7:

Let $R$ be a relation on the set $A$ of ordered pair of integers defined by $(x, y) R(u, v)$ if $x v$ $=y u$. Show that $R$ is an equivalence relation.

## ANSWER:

We observe the following properties of $R$.

Reflexivity: Let $(a, b)$ be an arbitrary element of the set $A$. Then, $(a, b) \in A \Rightarrow a b=b a$ $\Rightarrow(a, b) R(a, b)$ Thus, $R$ is reflexive on A.Symmetry: Let $(x, y)$ and $(u, v) \in A$ such that $(x$, y) $R(u, v)$. Then, $\quad x v=y u \Rightarrow v x=u y \Rightarrow u y=v x \Rightarrow(u, v) R(x, y)$ So, $R$ is symmetric on A.Transitivity: Let $(x, y),(u, v)$ and $(p, q) \in R$ such that $(x, y) R(u, v)$ and $(u, v) R(p$, $q) . \Rightarrow x v=y u$ and $u q=v p M u l t i p l y i n g$ the corresponding sides, we getxv $\times u q=y u \times$ $v p \Rightarrow x q=y p \Rightarrow(x, y) R(p, q)$ So, $R$ is transitive on A.Reflexivity: Let $a, b$ be an arbitrary https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

element of the set $A$. Then, $a, b \in A \Rightarrow a b=b a \Rightarrow a, b R a, b T h u s, R$ is reflexive on A. Symmetry: Let $x, y$ and $u, v \in A$ such that $x, y R u, v$. Then, $\mathrm{xv}=\mathrm{yu} \Rightarrow \mathrm{vx}=\mathrm{uy} \Rightarrow \mathrm{uy}=\mathrm{vx} \Rightarrow \mathrm{u}, \mathrm{v} \mathrm{R} x, \mathrm{ySo}, \mathrm{R}$ is symmetric on A.Transitivity: Let $\mathrm{x}, \mathrm{y}, \mathrm{u}, \mathrm{v}$ and $p, q \in R$ such that $x, y R u, v$ and $u, v R p, q . \Rightarrow x v=y u$ and $u q=v p M u l t i p l y i n g$ the corresponding sides, we getxv $\times u q=y u \times v p \Rightarrow x q=y p \Rightarrow x$, y $R p, q$ So, $R$ is transitive on A.

Hence, $R$ is an equivalence relation on $A$.
RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.26:

## Question 8:

Show that the relation $R$ on the set $A=\{x \in Z ; 0 \leq x \leq 12\}$, given by $R=\{(a, b): a=b\}$, is an equivalence relation. Find the set of all elements related to 1 .

## ANSWER:

We observe the following properties of $R$.

Reflexivity: Let a be an arbitrary element of $A$. Then,
$a \in R \Rightarrow a=a \quad$ [Since, every element is equal to itself] $\Rightarrow(a, a) \in R$ for all $a \in A S o, R$ is reflexive on A.Symmetry: Let $(a, b) \in R \Rightarrow a b \Rightarrow b=a \Rightarrow(b, a) \in R$ for all $a, b \in A$ So, $R$ is symmetric on A.Transitivity: Let $(a, b)$ and $(b, c) \in R \Rightarrow a=b$ and $b=c \Rightarrow a=b c \Rightarrow a=c \Rightarrow(a$, $c) \in R S o, R$ is transitive on $A . a \in R \Rightarrow a=a \quad$ Since, every element is equal to itself $\Rightarrow a, a \in R$ for all $a \in A S o, R$ is reflexive on A.Symmetry: Let $a, b \in R \Rightarrow a$ $b \Rightarrow b=a \Rightarrow b, a \in R$ for all $a, b \in A S o, R$ is symmetric on A.Transitivity: Let $a, b$ and $b$, $c \in R \Rightarrow a=b$ and $b=c \Rightarrow a=b c \Rightarrow a=c \Rightarrow a, c \in R S o, R$ is transitive on $A$.

Hence, $R$ is an equivalence relation on $A$.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

The set of all elements related to 1 is $\{1\}$.
RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.27:

## Question 9:

Let $L$ be the set of all lines in $X Y$-plane and $R$ be the relation in $L$ defined as $R=\left\{L_{1}, L_{2}\right)$ : $L_{1}$ is parallel to $\left.L_{2}\right\}$. Show that $R$ is an equivalence relation. Find the set of all lines related to the line $y=2 x+4$.

## ANSWER:

We observe the following properties of $R$.

Reflexivity: Let $L 1$ be an arbitrary element of the set $L$. Then, $L 1 \in L \Rightarrow L 1$ is parallel to $L 1$ [Every line is parallel to itselff $\Rightarrow(L 1, L 1) \in R$ for all $L 1 \in L S o, R$ is reflexive on L.Symmetry: Let $(L 1, L 2) \in R \Rightarrow L 1$ is parallel to $L 2 \Rightarrow L 2$ is parallel to $L 1 \Rightarrow(L 2, L 1) \in R$ for all L1 and L2 $\in L S o, R$ is symmetric on L.Transitivity: Let (L1, L2) and (L2, $L 3) \in R \Rightarrow L 1$ is parallel to $L 2$ and $L 2$ is parallel to $L 3 \Rightarrow L 1, L 2$ and $L 3$ are all parallel to each other $\Rightarrow \mathrm{L} 1$ is parallel to $\mathrm{L} 3 \Rightarrow(\mathrm{~L} 1, \mathrm{~L} 3) \in \mathrm{RSo}, \mathrm{R}$ is transitive on L.Reflexivity: Let L 1 be an arbitrary element of the set L . Then, $\mathrm{L} 1 \in \mathrm{~L} \Rightarrow \mathrm{~L} 1$ is parallel to $\mathrm{L} 1 \quad$ Every line is parallel to itself $\Rightarrow L 1, L 1 \in R$ for all $L 1 \in L S o, R$ is reflexive on $L$.Symmetry: Let $L 1$, $L 2 \in R \Rightarrow L 1$ is parallel to $L 2 \Rightarrow L 2$ is parallel to $L 1 \Rightarrow L 2, L 1 \in R$ for all $L 1$ and $L 2 \in L S o, R$ is symmetric on L.Transitivity: Let $L 1, L 2$ and $L 2, L 3 \in R \Rightarrow L 1$ is parallel to $L 2$ and $L 2$ is parallel to $L 3 \Rightarrow L 1, L 2$ and $L 3$ are all parallel to each other $\Rightarrow L 1$ is parallel to $L 3 \Rightarrow L 1$, $L 3 \in R S o, R$ is transitive on $L$.

Hence, $R$ is an equivalence relation on $L$.

Set of all the lines related to $y=2 x+4$

$$
=L^{\prime}=\{(x, y): y=2 x+c, \text { where } c \in \in R\}
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.27:

## Question 10:

Show that the relation $R$, defined on the set $A$ of all polygons as
$R=\left\{\left(P_{1}, P_{2}\right): P_{1}\right.$ and $P_{2}$ have same number of sides $\}$,
is an equivalence relation. What is the set of all elements in $A$ related to the right angle triangle $T$ with sides 3,4 and 5 ?

## ANSWER:

We observe the following properties on $R$.

Reflexivity: Let P1 be an arbitrary element of A. Then, polygon P1 and P1 have the same number of sides, since they are one and the same. $\Rightarrow(P 1, P 1) \in R$ for all $P 1 \in A S o$, $R$ is reflexive on $A$.Symmetry: Let $(P 1, P 2) \in R \Rightarrow P 1$ and $P 2$ have the same number of sides. $\Rightarrow P 2$ and $P 1$ have the same number of sides. $\Rightarrow(P 2, P 1) \in R$ for all $P 1, P 2 \in A S o$, $R$ is symmetric on A.Transitivity: Let ( $P 1, P 2$ ), ( $P 2, P 3$ ) $\in R \Rightarrow P 1$ and $P 2$ have the same number of sides and $P 2$ and $P 3$ have the same number of sides. $\Rightarrow P 1, P 2$ and $P 3$ have the same number of sides. $\Rightarrow P 1$ and $P 3$ have the same number of sides. $\Rightarrow(P 1, P 3) \in R$ for all P1, P3 ASo, R is transitive on A.Reflexivity: Let P1 be an arbitrary element of A. Then, polygon P 1 and P 1 have the same number of sides, since they are one and the same. $\Rightarrow P 1, P 1 \in R$ for all $P 1 \in A S o, R$ is reflexive on $A$.Symmetry: Let $P 1, P 2 \in R \Rightarrow P 1$ and $P 2$ have the same number of sides. $\Rightarrow P 2$ and $P 1$ have the same number of sides. $\Rightarrow P 2, P 1 \in R$ for all $P 1, P 2 \in A S o, R$ is symmetric on $A$. Transitivity: Let $P 1, P 2, P 2$, $P 3 \in R \Rightarrow P 1$ and $P 2$ have the same number of sides and $P 2$ and $P 3$ have the same number of sides. $\Rightarrow P 1, P 2$ and $P 3$ have the same number of sides. $\Rightarrow P 1$ and $P 3$ have the same number of sides. $\Rightarrow P 1, P 3 \in R$ for all $P 1, P 3 A S o, R$ is transitive on $A$.

Hence, $R$ is an equivalence relation on the set $A$.

## https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClindCareer

Also, the set of all the triangles $\in \in A$ is related to the right angle triangle $T$ with the sides $3,4,5$.

RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.27:

## Question 11:

Let $O$ be the origin. We define a relation between two points $P$ and $Q$ in a plane if $O P=$ OQ. Show that the relation, so defined is an equivalence relation.

## ANSWER:

Let $A$ be the set of all points in a plane such that
$A=\{P: P$ is a point in the plane $\}$ Let $R$ be the relation such that $R=\{(P, Q): P, Q \in A$ and $O P=O Q$, where $O$ is the origin $\} A=\{P: P$ is a point in the plane $\}$ Let $R$ be the relation such that $R=P, Q: P, Q \in A$ and $O P=O Q$, where $O$ is the origin

We observe the following properties of $R$.

Reflexivity: Let $P$ be an arbitrary element of $R$.
The distance of a point $P$ will remain the same from the origin.
So, OP = OP
$\Rightarrow(P, P) \in R$ So, $R$ is reflexive on A.Symmetry: Let $(P, Q) \in R \Rightarrow O P=O Q \Rightarrow O Q=O P \Rightarrow(Q$,
$P) \in R S o, R$ is symmetric on A.Transitivity: Let $(P, Q),(Q, R) \in R \Rightarrow O P=O Q$ and $O Q=O R \Rightarrow O P=O Q=O R \Rightarrow O P=O R \Rightarrow(P, R) \in R S o, R$ is transitive on $A . \Rightarrow P, P \in R S o, R$ is reflexive on A.Symmetry: Let $P, Q \in R \Rightarrow O P=O Q \Rightarrow O Q=O P \Rightarrow Q, P \in R S o, R$ is symmetric on A.Transitivity: Let $P, Q, Q, R \in R \Rightarrow O P=O Q$ and $O Q=O R \Rightarrow O P=O Q=O R \Rightarrow O P=O R \Rightarrow P$, $R \in R S o, R$ is transitive on $A$.

## https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClindCareer

Hence, $R$ is an equivalence relation on $A$.
RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.27:

## Question 12:

Let $R$ be the relation defined on the set $A=\{1,2,3,4,5,6,7\}$ by $R=\{(a, b)$ : both $a$ and $b$ are either odd or even\}. Show that $R$ is an equivalence relation. Further, show that all the elements of the subset $\{1,3,5,7\}$ are related to each other and all the elements of the subset $\{2,4,6\}$ are related to each other, but no element of the subset $\{1,3,5,7\}$ is related to any element of the subset $\{2,4,6\}$.

## ANSWER:

We observe the following properties of $R$.

Reflexivity:

Let a be an arbitrary element of $R$. Then,$a \in R \Rightarrow(a, a) \in R$ for all $a \in A S o, R$ is reflexive on A.Symmetry: Let $(a, b) \in R \Rightarrow B$ oth $a$ and $b$ are either even or odd. $\Rightarrow$ Both $b$ and $a$ are either even or odd. $\Rightarrow(b, a) \in R$ for all $a, b \in A S o, R$ is symmetric on A.Transitivity: Let ( $a$, $b)$ and $(b, c) \in R \Rightarrow$ Both $a$ and $b$ are either even or odd and both $b$ and $c$ are either even or odd. $\Rightarrow a, b$ and $c$ are either even or odd. $\Rightarrow a$ and $c$ both are either even or odd. $\Rightarrow(a, c)$ $\in R$ for all $a, c \in A S o, R$ is transitive on $A$. Let a be an arbitrary element of $R$.
Then $, a \in R \Rightarrow a, a \in R$ for all $a \in A S o, R$ is reflexive on A.Symmetry: Let $a, b \in R \Rightarrow$ Both $a$ and $b$ are either even or odd. $\Rightarrow$ Both $b$ and $a$ are either even or odd. $\Rightarrow b, a \in R$ for all $a$, $b \in A S o, R$ is symmetric on A. Transitivity: Let $a, b$ and $b, c \in R \Rightarrow$ Both $a$ and $b$ are either even or odd and both $b$ and $c$ are either even or odd. $\Rightarrow a, b$ and $c$ are either even or odd. $\Rightarrow a$ and $c$ both are either even or odd. $\Rightarrow a, c \in R$ for all $a, c \in A S o, R$ is transitive on A.

Thus, $R$ is an equivalence relation on $A$.

## ClindCareer

We observe that all the elements of the subset $\{1,3,5,7\}$ are odd. Thus, they are related to each other.

This is because the relation $R$ on $A$ is an equivalence relation.

Similarly, the elements of the subset $\{2,4,6\}$ are even. Thus, they are related to each other because every element is even.

Hence proved.
RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.27:

## Question 13:

Let $S$ be a relation on the set $R$ of all real numbers defined by

$$
S=\left\{(a, b) \in R \times R: a^{2}+b^{2}=1\right\}
$$

Prove that $S$ is not an equivalence relation on $R$.

## ANSWER:

We observe the following properties of $S$.

Reflexivity:Let a be an arbitrary element of $R$. Then, $\quad a \in R \Rightarrow a 2+a 2 \neq 1 \forall a \in R \Rightarrow(a$, a) $\ddagger$ SSo, $S$ is not reflexive on $R$.Symmetry: Let $(a, b) \in R \Rightarrow a 2+b 2=1 \Rightarrow b 2+a 2=1 \Rightarrow(b$, $a) \in S$ for all $a, b \in R S o, S$ is symmetric on R.Transitivity: Let $(a, b)$ and $(b$, $c) \in S \Rightarrow a 2+b 2=1$ and $b 2+c 2=1$ Adding the above two, we geta2+c2=2-2b2$=1$ for $a l l a, b$, $c \in R S o, S$ is not transitive on R.Reflexivity:Let a be an arbitrary element of $R$. Then, $a \in R \Rightarrow a 2+a 2 \neq 1 \forall a \in R \Rightarrow a, a \notin S S o$, $S$ is not reflexive on $R$.Symmetry: Let $a$, $b \in R \Rightarrow a 2+b 2=1 \Rightarrow b 2+a 2=1 \Rightarrow b, a \in S$ for all $a, b \in R S o, S$ is symmetric on R.Transitivity:

## https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClindCareer

Let $a, b$ and $b, c \in S \Rightarrow a 2+b 2=1$ and $b 2+c 2=1$ Adding the above two, we geta2+c2 $=2-2 b 2 \neq 1$ for all $a, b, c \in R S o, S$ is not transitive on $R$.

Hence, $S$ is not an equivalence relation on $R$.

## Page No 1.27:

## Question 14:

Let $Z$ be the set of all integers and $Z_{0}$ be the set of all non-zero integers. Let a relation $R$ on $Z \times Z_{0}$ be defined as
$(a, b) R(c, d) \Leftrightarrow a d=b c$ for all $(a, b),(c, d) \in Z \times Z_{0}$,
Prove that $R$ is an equivalence relation on $Z \times Z_{0}$.

## ANSWER:

We observe the following properties of $R$.

## Reflexivity:

Let ( $a, b$ ) be an arbitrary element of $Z \times Z 0$. Then, $(a, b) \in Z \times Z 0 \Rightarrow a, b \in Z$, $Z 0 \Rightarrow a b=b a \Rightarrow(a, b) \in R$ for all $(a, b) \in Z \times Z 0$ So, $R$ is reflexive on $Z \times Z 0$. Let $a, b$ be an arbitrary element of $Z \times Z 0$. Then, $a, b \in Z \times Z 0 \Rightarrow a, b \in Z, Z 0 \Rightarrow a b=b a \Rightarrow a, b \in R$ for all $a$, $b \in Z \times Z 0$ So, $R$ is reflexive on $Z \times Z 0$.

Symmetry:
Let $(a, b),(c, d) \in Z \times Z 0$ such that $(a, b) R(c, d)$. Then, $(a, b) R(c$, $d) \Rightarrow a d=b c \Rightarrow c b=d a \Rightarrow(c, d) R(a, b)$ Thus, $(a, b) R(c, d) \Rightarrow(c, d) R(a, b)$ for all $(a, b),(c$, $d) \in Z \times Z 0$ So, $R$ is symmetric on $Z \times Z 0$. Let $a, b, c, d \in Z \times Z 0$ such that $a, b R c, d$. Then, $a$, $b R c, d \Rightarrow a d=b c \Rightarrow c b=d a \Rightarrow c, d R a, b T h u s, a, b R c, d \Rightarrow c, d R a, b$ for $a l l a, b, c$, $d \in Z \times Z 0$ So, $R$ is symmetric on $Z \times Z 0$.

## https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClindCareer

Transitivity:
Let $(a, b),(c, d),(e, f) \in N \times N 0$ such that $(a, b) R(c, d)$ and $(c, d) R(e, f)$. Then, $(a, b) R$ $(c, d) \Rightarrow a d=b c(c, d) R(e, f) \Rightarrow c f=d e\} \Rightarrow(a d)(c f)=(b c)(d e) \Rightarrow a f=b e \Rightarrow(a, b) R(e, f)$ Thus, $(a$, b) $R(c, d)$ and $(c, d) R(e, f) \Rightarrow(a, b) R(e, f) \Rightarrow(a, b) R(e, f)$ for all values $(a, b),(c, d),(e$, f) $\in N \times N 0$ So, $R$ is transitive on $N \times N 0$. Let $a, b, c, d, e, f \in N \times N 0$ such that $a, b R c, d$ and $c, d R e, f$. Then, $a, b R c, d \Rightarrow a d=b c c, d R e, f \Rightarrow c f=d e \Rightarrow a d c f=b c d e \Rightarrow a f=b e \Rightarrow a, b R e$, fThus, $a, b R c, d$ and $c, d R e, f \Rightarrow a, b R e, f \Rightarrow a, b R e, f$ for all values $a, b, c, d, e$, $f \in N \times N O S o, R$ is transitive on $N \times N 0$.

RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.27:

## Question 15:

If $R$ and $S$ are relations on a set $A$, then prove that
(i) $R$ and $S$ are symmetric $\Rightarrow R \cap S$ and $R \cup S$ are symmetric
(ii) $R$ is reflexive and $S$ is any relation $\Rightarrow R \cup S$ is reflexive.

## ANSWER:

(i) $R$ and $S$ are symmetric relations on the set $A$.
$\Rightarrow R \subset A \times A$ and $S \subset A \times A \Rightarrow R \cap S \subset A \times A$ Thus, $R \cap S$ is a relation on A.Let $a, b \in A$ such that $(a, b) \in R \cap S$. Then,$(a, b) \in R \cap S \Rightarrow(a, b) \in R$ and $(a, b) \in S \Rightarrow(b, a) \in R$ and $(b, a) \in S$ $[$ Since $R$ and $S$ are symmetric] $\Rightarrow(b, a) \in R \cap S T h u s,(a, b) \in R \cap S \Rightarrow(b, a) \in R \cap S$ for all $a$, $b \in A S o, R \cap S$ is symmetric on $A . \Rightarrow R \subset A \times A$ and $S \subset A \times A \Rightarrow R \cap S \subset A \times A$ Thus, $R \cap S$ is a relation on $A$.Let $a, b \in A$ such that $a, b \in R \cap S$. Then, $a, b \in R \cap S \Rightarrow a, b \in R$ and $a$, $b \in S \Rightarrow b, a \in R$ and $b, a \in S \quad$ Since $R$ and $S$ are symmetric $\Rightarrow b, a \in R \cap S$ Thus, $a, b \in R \cap S \Rightarrow b, a \in R \cap S$ for all $a, b \in A S o, R \cap S$ is symmetric on $A$.

Also,
Let $a, b \in A$ such that $(a, b) \in R \cup S \Rightarrow(a, b) \in R$ or $(a, b) \in S \Rightarrow(b, a) \in R$ or $(b, a) \in S$
[Since $R$ and $S$ are symmetric] $\Rightarrow(b, a) \in R \cup S S o, R \cup S$ is symmetric on A.Let $a, b \in A$ https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/
such that $a, b \in R \cup S \Rightarrow a, b \in R$ or $a, b \in S \Rightarrow b, a \in R$ or $b, a \in S$
Since $R$ and $S$ are symmetric $\Rightarrow b, a \in R \cup S S o, R \cup S$ is symmetric on $A$.
(ii) $R$ is reflexive and $S$ is any relation.

Suppose $a \in A$. Then, $\quad(a, a) \in R \quad[$ Since $R$ is reflexive] $\Rightarrow(a$,
$a) \in R \cup S \Rightarrow R \cup S$ is reflexive on A.Suppose $a \in A$. Then, $a, a \in R$ Since $R$ is reflexive $\Rightarrow a, a \in R \cup S \Rightarrow R \cup S$ is reflexive on $A$.

## Page No 1.27:

## Question 16:

If $R$ and $S$ are transitive relations on a set $A$, then prove that $R \cup S$ may not be a transitive relation on $A$.

## ANSWER:

Let $A=\{a, b, c\}$ and $R$ and $S$ be two relations on $A$, given by
$R=\{(a, a),(a, b),(b, a),(b, b)\}$ and
$S=\{(b, b),(b, c),(c, b),(c, c)\}$

Here, the relations $R$ and $S$ are transitive on $A$.
$(a, b) \in R \cup S$ and $(b, c) \in R \cup S B u t(a, c) \notin R \cup S a, b \in R \cup S$ and $b, c \in R \cup S B u t a$, $c \notin R \cup S$

Hence, $R \cup \cup S$ is not a transitive relation on $A$.
RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

Page No 1.27:

## Question 17:

Let $C$ be the set of all complex numbers and $C_{0}$ be the set of all no-zero complex numbers. Let a relation $R$ on $C_{0}$ be defined as
$z 1 z 1 R z 2 \Leftrightarrow z 1-z 2 z 1+z 2 z 2 \Leftrightarrow z 1-z 2 z 1+z 2$ is real for all $z 1, z 2 \in z 1, z 2 \in C_{0}$.

Show that $R$ is an equivalence relation.

## ANSWER:

(i) Test for reflexivity:

Since, $z 1-z 1 z 1+z 1=0 z 1-z 1 z 1+z 1=0$, which is a real number.

So, $(z 1, z 1) \in R z 1, z 1 \in R$

Hence, $R$ is relexive relation.
(ii) Test for symmetric:

Let $(z 1, z 2) \in R z 1, z 2 \in R$.

Then, $z 1-z 2 z 1+z 2=x z 1-z 2 z 1+z 2=x$, where $x$ is real
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

$\Rightarrow-(z 1-z 2 z 1+z 2)=-x \Rightarrow(z 2-z 1 z 2+z 1)=-x$, is also a real number $\Rightarrow-z 1-z 2 z 1+z 2=-x \Rightarrow z 2-z 1 z 2+z 1=-x$, is also a real number

So, $(z 2, z 1) \in R z 2, z 1 \in R$

Hence, $R$ is symmetric relation.
(iii) Test for transivity:

Let $(z 1, z 2) \in R$ and $(z 2, z 3) \in R z 1, z 2 \in R$ and $z 2, z 3 \in R$.

Then,
$z 1-z 2 z 1+z 2=x$, where $x$ is a real
number. $\Rightarrow z 1-z 2=x z 1+x z 2 \Rightarrow z 1-x z 1=z 2+x z 2 \Rightarrow z 1(1-x)=z 2(1+x) \Rightarrow z 1 z 2=(1+x)(1-x)$
$\ldots(1) z 1-z 2 z 1+z 2=x$, where $x$ is a real
number. $\Rightarrow z 1-z 2=x z 1+x z 2 \Rightarrow z 1-x z 1=z 2+x z 2 \Rightarrow z 11-x=z 21+x \Rightarrow z 1 z 2=1+x 1-x$... 1

Also,
$z 2-z 3 z 2+z 3=y$, where $y$ is a real
number. $\Rightarrow z 2-z 3=y z 2+Y z 3 \Rightarrow z 2-y z 2=z 3+y z 3 \Rightarrow z 2(1-y)=z 3(1+y) \Rightarrow z 2 z 3=(1+y)(1-y)$
$\ldots(2) z 2-z 3 z 2+z 3=y$, where $y$ is a real
number. $\Rightarrow z 2-z 3=y z 2+Y z 3 \Rightarrow z 2-y z 2=z 3+y z 3 \Rightarrow z 21-y=z 31+y \Rightarrow z 2 z 3=1+y 1-y$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

Dividing (1) and (2), we get
$z 1 z 3=(1+x 1-x) \times(1-y 1+y)=z$, where $z$ is a real number. $\Rightarrow z 1-z 3 z 1+z 3=z-1 z+1$, which is real $\Rightarrow(z 1, z 3) \in R z 1 z 3=1+x 1-x \times 1-y 1+y=z$, where $z$ is a real number. $\Rightarrow z 1-z 3 z 1+z 3=z-1 z+1$, which is real $\Rightarrow z 1, z 3 \in R$

Hence, $R$ is transitive relation.

From (i), (ii), and (iii),
$R$ is an equivalenve relation.
RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.29:

## Question 1:

Let $R$ be a relation on the set $N$ given by
$R=\{(a, b): a=b-2, b>6\}$. Then,
(a) $(2,4) \in R$
(b) $(3,8) \in R$
(c) $(6,8) \in R$
(d) $(8,7) \in R$

## ANSWER:

(c) $(6,8) \in R$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

$(6,8) \in R$ Then, $a=b-2 \Rightarrow 6=8-2$ and $b=8>6$ Hence, $(6,8) \in R 6,8 \in R$ Then, $a=b-2 \Rightarrow 6=8-2$ and $b=8>6$ Hence, $6,8 \in R$

## Page No 1.29:

## Question 2:

If a relation $R$ is defined on the set $Z$ of integers as follows:
$(a, b) \in R \Leftrightarrow a^{2}+b^{2}=25$. Then, domain $(R)$ is
(a) $\{3,4,5\}$
(b) $\{0,3,4,5\}$
(c) $\{0, \pm 3, \pm 4, \pm 5\}$
(d) none of these

ANSWER:
(c) $\{0, \pm 3, \pm 4, \pm 5\}$
$R=\{(a, b): a 2+b 2=25, a, b \in Z\} \Rightarrow a \in\{-5,-4,-3,-2,-1,0,1,2,3,4,5\}$ and $b \in\{-5,-4,-3,-2,-1,0,1,2,3,4,5\} \quad R=a, b: a 2+b 2=25, a, b \in Z \Rightarrow a \in-5,-4,-3,-2$, $-1,0,1,2,3,4,5$ and $\quad b \in-5,-4,-3,-2,-1,0,1,2,3,4,5$

So, domain $(R)=\{0, \pm 3, \pm 4, \pm 5\}$ So, domain $(R)=0, \pm 3, \pm 4, \pm 5$
RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.30:

## Question 3:

$R$ is a relation on the set $Z$ of integers and it is given by

## ClndCareer

$(x, y) \in R \Leftrightarrow|x-y| \leq 1$. Then, $R$ is
(a) reflexive and transitive
(b) reflexive and symmetric
(c) symmetric and transitive
(d) an equivalence relation

## ANSWER:

(b) reflexive and symmetric

Reflexivity: Let $x \in R$. Then, $x-x=0<1 \Rightarrow|x-x| \leq 1 \Rightarrow(x, x) \in R$ for all $x \in Z$ So, $R$ is reflexive on Z.Symmetry: Let $(x, y) \in R$. Then, $|x-y| \leq 0 \Rightarrow|-(y-x)| \leq 1 \Rightarrow|y-x| \leq 1$
[Since $|x-y|=|y-x|] \Rightarrow(y, x) \in R$ for all $x, y \in Z S o, R$ is symmetric on Z.Transitivity: Let $(x, y) \in R$ and $(y, z) \in R$. Then, $|x-y| \leq 1$ and $|y-z| \leq 1 \Rightarrow \mid t$ is not always true that $|x-y| \leq 1 . \Rightarrow(x$, $z) \notin R S o, R$ is not transitive on Z.Reflexivity: Let $x \in R$. Then, $x-x=0<1 \Rightarrow x-x \leq 1 \Rightarrow x, x \in R$ for all $x \in Z$ So, $R$ is reflexive on Z. Symmetry: Let $x, y \in R$. Then, $x-y \leq 0 \Rightarrow-(y-x) \leq 1 \Rightarrow y-x$ $\leq 1$ Since $x-y=y-x \Rightarrow y, x \in R$ for all $x, y \in Z$ So, $R$ is symmetric on Z. Transitivity: Let $x, y \in R$ and $y, z \in R$. Then, $x-y \leq 1$ and $y-z \leq 1 \Rightarrow I t$ is not always true that $x-y \leq 1 . \Rightarrow x$, $z \notin R S o, R$ is not transitive on $Z$.

## Page No 1.30:

## Question 4:

The relation $R$ defined on the set $A=\{1,2,3,4,5\}$ by
$R=\left\{(a, b):\left|a^{2}-b^{2}\right|<16\right\}$ is given by
(a) $\{(1,1),(2,1),(3,1),(4,1),(2,3)\}$
(b) $\{(2,2),(3,2),(4,2),(2,4)\}$
(c) $\{(3,3),(4,3),(5,4),(3,4)\}$
(d) none of these

## ANSWER:

(d) none of these
$R$ is given by $\{(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),(1,3),(3,1),(1,4)$, $(4,1),(2,4),(4,2)\}$, which is not mentioned in (a), (b) or (c).

## Page No 1.30:

## Question 5:

Let $R$ be the relation over the set of all straight lines in a plane such that $I_{1} R I_{2} \Leftrightarrow I_{1} \perp$ $I_{2}$. Then, $R$ is
(a) symmetric
(b) reflexive
(c) transitive
(d) an equivalence relation

ANSWER:
(a) symmetric
$A=$ Set of all straight lines in the plane
$R=\{(I 1, I 2): I 1,|2 \in A: I 1 \perp| 2\}$ Reflexivity: $I 1$ is not $\perp I 1 \Rightarrow(I 1, I 1) \notin R S o, R$ is not reflexive on A.Symmetry: Let $(I 1, I 2) \in R \Rightarrow|1 \perp| 2 \Rightarrow \mid 2 \perp I 1 \Rightarrow(I 2, I 1) \in R S o, R$ is symmetric on A.Transitivity: Let $(I 1, I 2) \in R$, $(I 2, I 3) \in R \Rightarrow I 1 \perp I 2$ and $I 2 \perp I 3 B u t I 1$ is not $\perp I 3 \Rightarrow(I 1$, $I 3) \notin R S o, R$ is not transitive on $A . R=I 1, I 2: I 1, I 2 \in A: I 1 \perp I 2$ Reflexivity: $I 1$ is not $\perp I 1 \Rightarrow \mid 1$, $I 1 \notin R S o, R$ is not reflexive on $A$.Symmetry: Let $I 1, I 2 \in R \Rightarrow|1 \perp| 2 \Rightarrow|2 \perp| 1 \Rightarrow \mid 2, I 1 \in R S o, R$ is symmetric on A.Transitivity: Let $I 1, I 2 \in R, I 2, I 3 \in R \Rightarrow I 1 \perp I 2$ and $I 2 \perp I 3 B u t \mid 1$ is not $\perp$ $I 3 \Rightarrow I 1, I 3 \notin R S$, $R$ is not transitive on $A$.

## ClndCareer

RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.30:

## Question 6:

If $A=\{a, b, c\}$, then the relation $R=\{(b, c)\}$ on $A$ is
(a) reflexive only
(b) symmetric only
(c) transitive only
(d) reflexive and transitive only

## ANSWER:

(c) transitive only

The relation $R=\{(\mathrm{b}, \mathrm{c})\}$ is neither reflexive nor symmetric because every element of $A$ is not related to itself. Also, the ordered pair of $R$ obtained by interchanging its elements is not contained in $R$.

We observe that $R$ is transitive on $A$ because there is only one pair.

## Page No 1.30:

## Question 7:

Let $A=\{2,3,4,5, \ldots, 17,18\}$. Let ' $\sim$ ' be the equivalence relation on $A \times A$, cartesian product of $A$ with itself, defined by $(a, b) \simeq(c, d)$ if $a d=b c$. Then, the number of ordered pairs of the equivalence class of $(3,2)$ is
(a) 4
(b) 5
(c) 6
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/
(d) 7

## ANSWER:

(c) 6

The ordered pairs of the equivalence class of $(3,2)$ are $\{(3,2),(6,4),(9,6),(12,8),(15$, 10), $(18,12)$ \}.

We observe that these are 6 pairs.
RD Sharma 12th Maths Chapter 1, Class 12 Maths Chapter 1 solutions

## Page No 1.30:

## Question 8:

Let $A=\{1,2,3\}$. Then, the number of relations containing $(1,2)$ and $(1,3)$ which are reflexive and symmetric but not transitive is
(a) 1
(b) 2
(c) 3
(d) 4

ANSWER:
(a) 1

The required relation is $R$.
$R=\{(1,2),(1,3),(1,1),(2,2),(3,3),(2,1),(3,1)\}$

Hence, there is only 1 such relation that is reflexive and symmetric, but not transitive.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

## Page No 1.30:

## Question 9:

The relation ' $R$ ' in $N \times N$ such that
$(a, b) R(c, d) \Leftrightarrow a+d=b+c$ is
(a) reflexive but not symmetric
(b) reflexive and transitive but not symmetric
(c) an equivalence relation
(d) none of the these

## ANSWER:

(c) an equivalence relation

We observe the following properties of relation $R$.

Reflexivity: Let $(a, b) \in N \times N \Rightarrow a, b \in N \Rightarrow a+b=b+a \Rightarrow(a, b) \in R$ So, $R$ is reflexive on $N \times N$.Symmetry: Let $(a, b),(c, d) \in N \times N$ such that $(a, b) R(c$,
$d) \Rightarrow a+d=b+c \Rightarrow d+a=c+b \Rightarrow(d, c),(b, a) \in R$ So, $R$ is symmetric on $N \times N$.Transitivity: Let $(a, b),(c, d),(e, f) \in N \times N$ such that $(a, b) R(c, d)$ and $(c, d) R(e, f) \Rightarrow a+d=b+c$ and $c+f=d+e \Rightarrow a+d+c+f=b+c+d+e \Rightarrow a+f=b+e \Rightarrow(a, b) R(e, f) S o, R$ is transitive on $N \times N$.Reflexivity: Let $(a, b) \in N \times N \Rightarrow a, b \in N \Rightarrow a+b=b+a \Rightarrow a, b \in R$ So, $R$ is reflexive on $N \times N$.Symmetry: Let $a, b, c, d \in N \times N$ such that $a, b R c, d \Rightarrow a+d=b+c \Rightarrow d+a=c+b \Rightarrow d, c, b$, $a \in R$ So, $R$ is symmetric on $N \times N$.Transitivity: Let $a, b, c, d, e, f \in N \times N$ such that $a, b R$ $c$, $d$ and $c, d R e, f \Rightarrow a+d=b+c$ and $c+f=d+e \Rightarrow a+d+c+f=b+c+d+e \Rightarrow a+f=b+e \Rightarrow a$, $b R e$, $f$ So, $R$ is transitive on $N \times N$.

Hence, $R$ is an equivalence relation on $N$.

## Page No 1.30:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

## Question 10:

If $A=\{1,2,3\}, B=\{1,4,6,9\}$ and $R$ is a relation from $A$ to $B$ defined by 'x is greater than $y^{\prime}$. The range of $R$ is
(a) $\{1,4,6,9\}$
(b) $\{4,6,9\}$
(c) $\{1\}$
(d) none of these

## ANSWER:

(c) $\{1\}$

Here,
$R=\{(x, y): x \in A$ and $y \in B: x>y\} \Rightarrow R=\{(2,1),(3,1)\} R=x, y: x \in A$ and $y \in B: x>$ $y \Rightarrow R=2,1,3,1$

Thus,
Range of $R=\{1\}$

## Page No 1.30:

## Question 11:

A relation $R$ is defined from $\{2,3,4,5\}$ to $\{3,6,7,10\}$ by : $x R y \Leftrightarrow x$ is relatively prime to $y$. Then, domain of $R$ is
(a) $\{2,3,5\}$
(b) $\{3,5\}$
(c) $\{2,3,4\}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/
(d) $\{2,3,4,5\}$

## ANSWER:

(d) $\{2,3,4,5\}$

The relation $R$ is defined as
$R=\{(x, y): x \in\{2,3,4,5\}, y \in\{3,6,7,10\}: x$ is relatively prime to $y\} \Rightarrow R=\{(2,3),(2$, 7), (3, 7), (3, 10), (4, 7), (5, 3), (5, 7)\} $R=x, y: x \in 2,3,4,5, y \in 3,6,7,10: x$ is relatively prime to $y \Rightarrow R=2,3,2,7,3,7,3,10,4,7,5,3,5,7$

Hence, the domain of $R$ includes all the values of $x$, i.e. $\{2,3,4,5\}$.

## Page No 1.30:

## Question 12:

A relation $\phi$ from $C$ to $R$ is defined by $x \phi y \Leftrightarrow|x|=y$. Which one is correct?
(a) $(2+3 i) \phi 13$
(b) $3 \phi(-3)$
(c) $(1+i) \phi 2$
(d) $i \phi 1$

## ANSWER:

(d) $i \phi 1$
$\because|2+3 i|=13--\sqrt{ } \neq 13 \quad|3| \neq-3 \quad|1+i|=2-\sqrt{ } \neq 2$ and $|i|=1$ So, $(i, 1) \in \phi \because 2+3 i=13 \neq 13$
$3 \neq-3 \quad 1+\mathrm{i}=2 \neq 2$ and $\mathrm{i}=1 \mathrm{So}, \mathrm{i}, 1 \in \phi$

## Page No 1.30:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

## Question 13:

Let $R$ be a relation on $N$ defined by $x+2 y=8$. The domain of $R$ is
(a) $\{2,4,8\}$
(b) $\{2,4,6,8\}$
(c) $\{2,4,6\}$
(d) $\{1,2,3,4\}$

ANSWER:
(c) $\{2,4,6\}$

The relation $R$ is defined as
$R=\{(x, y): x, y \in N$ and $x+2 y=8\} \Rightarrow R=\{(x, y): x, y \in N$ and $y=(8-x) 2\} \quad R=x, y: x$, $y \in N$ and $x+2 y=8 \Rightarrow R=x, y: x, y \in N$ and $y=8-x 2$

Domain of $R$ is all values of $x \in \in N$ satisfying the relation $R$. Also, there are only three values of $x$ that result in $y$, which is a natural number. These are $\{2,6,4\}$.

## Page No 1.30:

## Question 14:

$R$ is a relation from $\{11,12,13\}$ to $\{8,10,12\}$ defined by $y=x-3$. Then, $R^{-1}$ is
(a) $\{(8,11),(10,13)\}$
(b) $\{(11,8),(13,10)\}$
(c) $\{(10,13),(8,11)\}$
(d) none of these

## ANSWER:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/
(a) $\{(8,11),(10,13)\}$

The relation $R$ is defined by

$$
\begin{aligned}
& \quad R=\{(x, y): x \in\{11,12,13\}, y \in\{8,10,12\}: y=x-3\} \Rightarrow R=\{(11,8),(13,10)\} \text { So, } \\
& R-1=\{(8,11),(10,13)\} \quad R=x, y: x \in 11,12,13, y \in 8,10,12: y=x-3 \Rightarrow R=11,8,(13 \\
& \text { 10)So, } R-1=8,11,10,13
\end{aligned}
$$

## Page No 1.30:

## Question 15:

Let $R=\{(a, a),(b, b),(c, c),(a, b)\}$ be a relation on set $A=a, b, c$. Then, $R$ is
(a) identify relation
(b) reflexive
(c) symmetric
(d) antisymmetric

ANSWER:
(b) reflexive

Reflexivity: Since $(a, a) \in R \forall a \in A, R$ is reflexive on A.Symmetry: Since $(a, b) \in R$ but (b, a) $\ddagger R, R$ is not symmetric on $A . \Rightarrow R$ is not antisymmetric on A.Also, $R$ is not an identity relation on A.Reflexivity: Since $a, a \in R \forall a \in A, R$ is reflexive on A.Symmetry: Since $a, b \in R$ but $b, a \notin R, R$ is not symmetric on $A . \Rightarrow R$ is not antisymmetric on A.Also, $R$ is not an identity relation on $A$.

## Page No 1.30:

## Question 16:

Let $A=\{1,2,3\}$ and $B=\{(1,2),(2,3),(1,3)\}$ be a relation on $A$. Then, $R$ is
(a) neither reflexive nor transitive
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/
(b) neither symmetric nor transitive
(c) transitive
(d) none of these

## ANSWER:

(c) transitive

Reflexivity: Since $(1,1) \notin B, B$ is not reflexive on A.Symmetry: Since $(1,2) \in B$ but $(2$, $1) \notin B, B$ is not symmetric on A.Transitivity: Since $(1,2) \in B,(2,3) \in B$ and $(1,3) \in B, B$ is transitive on A.Reflexivity: Since $(1,1) \notin B, B$ is not reflexive on $A$.Symmetry: Since 1, $2 \in B$ but $2,1 \notin B$, $B$ is not symmetric on $A$. Transitivity: Since $1,2 \in B, 2,3 \in B$ and 1 , $3 \in B, B$ is transitive on $A$.

## Page No 1.30:

## Question 17:

If $R$ is the largest equivalence relation on a set $A$ and $S$ is any relation on $A$, then
(a) $R \subset S$
(b) $S \subset R$
(c) $R=S$
(d) none of these

## ANSWER:

(b) $S \subset R$

Since $R$ is the largest equivalence relation on set $A$,
$R \subseteq A \times A R \subseteq A \times A$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

Since $S$ is any relation on $A$,
$S \subset A \times A S \subset A \times A$

So, $S \subset R$

## Page No 1.30:

## Question 18:

If $R$ is a relation on the set $A=\{1,2,3,4,5,6,7,8,9\}$ given by $x R y \Leftrightarrow y=3 x$, then $R$ $=$
(a) $\{(3,1),(6,2),(8,2),(9,3)\}$
(b) $\{(3,1),(6,2),(9,3)\}$
(c) $\{(3,1),(2,6),(3,9)\}$
(d) none of these

ANSWER:
(d) none of these

The relation $R$ is defined as
$R=\{(x, y): x, y \in A: y=3 x\} \Rightarrow R=\{(1,3),(2,6),(3,9)\} \quad R=x, y: x, y \in A: y=$ $3 x \Rightarrow R=1,3,2,6,3,9$

## Page No 1.31:

## Question 19:

If $R$ is a relation on the set $A=\{1,2,3\}$ given by $R=\{(1,1),(2,2),(3,3)\}$, then $R$ is
(a) reflexive
(b) symmetric
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

# ClindCareer 

(c) transitive
(d) all the three options

## ANSWER:

(d) all the three options
$R=\{(a, b): a=b$ and $a, b \in A\}$ Reflexivity: Let $a \in A$. Then,$a=a \Rightarrow(a, a) \in R$ for all $a \in A S o, R$ is reflexive on A.Symmetry: Let $a, b \in A$ such that $(a, b) \in R$. Then, $(a$, $b) \in R \Rightarrow a=b \Rightarrow b=a \Rightarrow(b, a) \in R$ for all $a \in A S o, R$ is symmetric on A.Transitivity: Let $a, b$, $c \in A$ such that $(a, b) \in R$ and $(b, c) \in R$. Then, $(a, b) \in R \Rightarrow a=b a n d(b$,
c) $\in R \Rightarrow b=c \Rightarrow a=c \Rightarrow(a, c) \in R$ for all $a \in A S o, R$ is transitive on A. $R=a, b: a=b$ and $a$, $b \in$ AReflexivity: Let $a \in A$. Then $, a=a \Rightarrow a, a \in R$ for all $a \in A S o, R$ is reflexive on A.Symmetry: Let $a, b \in A$ such that $a, b \in R$. Then $, a, b \in R \Rightarrow a=b \Rightarrow b=a \Rightarrow b, a \in R$ for all $a \in A S o, R$ is symmetric on A.Transitivity: Let $a, b, c \in A$ such that $a, b \in R$ and $b, c \in R$. Then $, a, b \in R \Rightarrow a=b$ and $b, c \in R \Rightarrow b=c \Rightarrow a=c \Rightarrow a, c \in R$ for all $a \in A S o, R$ is transitive on A.

Hence, $R$ is an equivalence relation on $A$.

## Page No 1.31:

## Question 20:

If $A=\{a, b, c, d\}$, then a relation $R=\{(a, b),(b, a),(a, a)\}$ on $A$ is
(a) symmetric and transitive only
(b) reflexive and transitive only
(c) symmetric only
(d) transitive only

## ANSWER:

(a) symmetric and transitive only

## https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

Reflexivity: Since (b, b) $\ddagger \mathrm{R}, \mathrm{R}$ is not reflexive on A.Symmetry: Since $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ and $(\mathrm{b}$, $a) \in R, R$ is symmetric on $A$. Transitivity: Since $(a, b) \in R,(b, a) \in R$ and $(a, a) \in R, R$ is transitive on A.Reflexivity: Since $b, b \notin R, R$ is not reflexive on A.Symmetry: Since $a$, $b \in R$ and $b, a \in R, R$ is symmetric on $A$. Transitivity: Since $a, b \in R, b, a \in R$ and $a$, $a \in R, R$ is transitive on $A$.

## Page No 1.31:

## Question 21:

If $A=\{1,2,3\}$, then a relation $R=\{(2,3)\}$ on $A$ is
(a) symmetric and transitive only
(b) symmetric only
(c) transitive only
(d) none of these

## ANSWER:

(c) transitive only

The relation $R$ is not reflexive because every element of $A$ is not related to itself. Also, $R$ is not symmetric since on interchanging the elements, the ordered pair in $R$ is not contained in it.
$R$ is transitive by default because there is only one element in it.

## Page No 1.31:

## Question 22:

Let $R$ be the relation on the set $A=\{1,2,3,4\}$ given by
$R=\{(1,2),(2,2),(1,1),(4,4),(1,3),(3,3),(3,2)\}$. Then, https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## Clnd Career

(a) $R$ is reflexive and symmetric but not transitive
(b) $R$ is reflexive and transitive but not symmetric
(c) $R$ is symmetric and transitive but not reflexive
(d) $R$ is an equivalence relation

## ANSWER:

(b) R is reflexive and transitive but not symmetric.

Reflexivity: Clearly, $(a, a) \in R \forall a \in A S o, R$ is reflexive on A.Symmetry: Since $(1,2) \in R$, but $(2,1) \notin R, R$ is not symmetric on A.Transitivity: Since, $(1,3),(3,2) \in R$ and $(1,2) \in R, R$ is transitive on A.Reflexivity: Clearly, $(a, a) \in R \forall a \in A S o, R$ is reflexive on
A.Symmetry: Since $1,2 \in R$, but $2,1 \notin R, R$ is not symmetric on A.Transitivity: Since, 1, 3, $3,2 \in R$ and $1,2 \in R, R$ is transitive on $A$.

## Page No 1.31:

## Question 23:

Let $A=\{1,2,3\}$. Then, the number of equivalence relations containing (1,2) is
(a) 1
(b) 2
(c) 3
(d) 4

## ANSWER:

(b) 2

There are 2 equivalence relations containing $\{1,2\}$.
$R=\{(1,2)\}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

$S=\{(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2),(1,3),(3,1)\}$

## Page No 1.31:

## Question 24:

The relation $R=\{(1,1),(2,2),(3,3)\}$ on the set $\{1,2,3\}$ is
(a) symmetric only
(b) reflexive only
(c) an equivalence relation
(d) transitive only

## ANSWER:

(c) an equivalence relation
$R=\{(a, b): a=b$ and $a, b \in A\}$ Reflexivity: Let $a \in A$ Here,$a=a \Rightarrow(a, a) \in R$ for all $a \in A$ So, $R$ is reflexive on A.Symmetry: Let $a, b \in A$ such that $(a, b) \in R$. Then, $(a$,
$b) \in R \Rightarrow a=b \Rightarrow b=a \Rightarrow(b, a) \in R$ for all $a \in A S o, R$ is symmetric on A.Transitive: Let $a, b$, $c \in A$ such that $(a, b) \in R$ and $(b, c) \in R$. Then, $(a, b) \in R \Rightarrow a=$ band $(b$,
$c) \in R \Rightarrow b=c \Rightarrow a=c \Rightarrow(a, c) \in R$ for all $a \in A S o, R$ is transitive on $A . R=a, b: a=b$ and $a$, $b \in$ AReflexivity: Let $a \in A$ Here $, a=a \Rightarrow a, a \in R$ for all $a \in A S o, R$ is reflexive on A. Symmetry: Let $a, b \in A$ such that $a, b \in R$. Then, $a, b \in R \Rightarrow a=b \Rightarrow b=a \Rightarrow b, a \in R$ for all $a \in A S o, R$ is symmetric on $A$. Transitive: Let $a, b, c \in A$ such that $a, b \in R$ and $b, c \in R$. Then, $a, b \in R \Rightarrow a=b a n d b, c \in R \Rightarrow b=c \Rightarrow a=c \Rightarrow a, c \in R$ for all $a \in A S o, R$ is transitive on A.

Hence, $R$ is an equivalence relation on $A$.

## Page No 1.31:

## Question 25:

$S$ is a relation over the set $R$ of all real numbers and it is given by
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/
$(a, b) \in S \Leftrightarrow a b \geq 0$. Then, $S$ is
(a) symmetric and transitive only
(b) reflexive and symmetric only
(c) antisymmetric relation
(d) an equivalence relation

ANSWER:
(d) an equivalence relation

Reflexivity: Let $a \in \in R$
Then,
$a a=a 2>0 \Rightarrow(a, a) \in R \forall a \in R a a=a 2>0 \Rightarrow a, a \in R \forall a \in R$

So, $S$ is reflexive on $R$.

Symmetry: Let $(a, b) \in \in S$
Then,
$(a, b) \in S \Rightarrow a b \geq 0 \Rightarrow b a \geq 0 \Rightarrow(b, a) \in S \forall a, b \in R a, b \in S \Rightarrow a b \geq 0 \Rightarrow b a \geq 0 \Rightarrow b, a \in S \forall a$, $b \in R$

So, $S$ is symmetric on $R$.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

Transitivity:

If $(a, b)$, $(b, c) \in S \Rightarrow a b \geq 0$ and $b c \geq 0 \Rightarrow a b \times b c \geq 0 \Rightarrow a c \geq 0 \quad[\because b 2 \geq 0] \Rightarrow(a$, c) $\in$ S for all $a, b, c \in$ set RIf $a, b, b, c \in S \Rightarrow a b \geq 0$ and $b c \geq 0 \Rightarrow a b \times b c \geq 0 \Rightarrow a c \geq 0$
$\because b 2 \geq 0 \Rightarrow a, c \in S$ for all $a, b, c \in$ set $R$

Hence, $S$ is an equivalence relation on $R$.

## Page No 1.31:

## Question 26:

In the set $Z$ of all integers, which of the following relation $R$ is not an equivalence relation?
(a) $x R y$ : if $x \leq y$
(b) $x R y$ : if $x=y$
(c) $x R y$ : if $x-y$ is an even integer
(d) $x R y$ : if $x \equiv y(\bmod 3)$

ANSWER:
(a) $x R y$ : if $x \leq y$

Clearly, $R$ is not symmetric because $x<y$ does not imply $y<x$.

Hence, (a) is not an equivalence relation.

## Page No 1.31:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

## Question 27:

Mark the correct alternative in the following question:

Let $A=\{1,2,3\}$ and consider the relation $R=\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\}$. Then, $R$ is
(a) reflexive but not symmetric
(b) reflexive but not transitive
(c) symmetric and transitive
(d) neither symmetric nor transitive

## ANSWER:

We have,
$R=\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\}$

As, $(a, a) \in R \quad \forall a \in$ ASo, $R$ is reflexive relationAlso, $(1,2) \in R$ but $(2,1) \notin R S o, R$ is not symmetric relationAnd, $(1,2) \in R,(2,3) \in R$ and $(1,3) \in R S o, R$ is transitive relationAs, $a, a \in R \forall a \in A S o, R$ is reflexive relationAlso, $1,2 \in R$ but $2,1 \notin R S o, R$ is not symmetric relationAnd, $1,2 \in R, 2,3 \in R$ and $1,3 \in R S o, R$ is transitive relation

Hence, the correct alternative is option (a).

## Page No 1.31:

## Question 28:

Mark the correct alternative in the following question:

## ClndCareer

The relation $S$ defined on the set $\mathbf{R}$ of all real number by the rule $a S b$ iff $a \geq \geq b$ is
(a) an equivalence relation
(b) reflexive, transitive but not symmetric
(c) symmetric, transitive but not reflexive
(d) neither transitive nor reflexive but symmetric

## ANSWER:

We have,
$S=\{(a, b): a \geq \geq b ; a, b \in \in \mathbf{R}\}$

As, $a=a \forall a \in R \Rightarrow(a, a) \in S S o$, $S$ is reflexive relationLet $(a, b) \in S \Rightarrow a \geq b B u t$ $b \leq a \Rightarrow(b, a) \notin S S o, S$ is not symmetric relationLet $(a, b) \in S$ and $(b, c) \in S \Rightarrow a \geq b$ and $b \geq c \Rightarrow a \geq c \Rightarrow(a, c) \in S S o, S$ is transitive relationAs, $a=a \forall a \in R \Rightarrow a, a \in S S o, S$ is reflexive relationLet $a, b \in S \Rightarrow a \geq b B u t b \leq a \Rightarrow b, a \neq S S o$, $S$ is not symmetric relationLet $a, b \in S$ and $b, c \in S \Rightarrow a \geq b$ and $b \geq c \Rightarrow a \geq c \Rightarrow a, c \in S S o, S$ is transitive relation

Hence, the correct alternative is option (b).

## Page No 1.31:

## Question 29:

Mark the correct alternative in the following question:

The maximum number of equivalence relations on the set $A=\{1,2,3\}$ is

## ClindCareer

(a) 1
(b) 2
(c) 3
(d) 5

## ANSWER:

Consider the relation $\mathrm{R} 1=\{(1,1)\}$ It is clearly reflexive, symmetric and transitiveSimilarly, $R 2=\{(2,2)\}$ and $\mathrm{R} 3=\{(3,3)\}$ are reflexive, symmetric and transitiveAlso, $R 4=\{(1,1),(2,2),(3,3),(1,2),(2,1)\} \mathrm{It}$ is reflexive as $(a, a) \in R 4$ for all $a \in\{1,2,3\} \mathrm{It}$ is symmetric as $(a, b) \in R 4 \Rightarrow(b, a) \in R 4$ for all $a \in\{1,2,3\}$ Also, it is transitive as $(1,2) \in R 4,(2,1) \in R 4 \Rightarrow(1,1) \in R 4$ The relation defined by $R 5=\{(1,1),(2,2),(3,3),(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)\}$ is reflexive, symmetric and transitive as well.Thus, the maximum number of equivalence relation on set $A=\{1,2,3\}$ is 5.Consider the relation $\mathrm{R} 1=1,1 \mathrm{It}$ is clearly reflexive, symmetric and transitiveSimilarly, $R 2=2,2$ and $R 3=3,3$ are reflexive, symmetric and transitiveAlso, $R 4=1,1,2,2,3,3,1,2,2,1 \mathrm{It}$ is reflexive as $a, a \in R 4$ for all $a \in 1,2,3$ It is symmetric as $a, b \in R 4 \Rightarrow b, a \in R 4$ for all $a \in 1,2,3$ Also, it is transitive as $1,2 \in R 4,2,1 \in R 4 \Rightarrow(1,1) \in R 4$ The relation defined by $R 5=1,1,2,2,3,3,1,2,1,3,2,1,2,3,3,1,3,2$ is reflexive, symmetric and transitive as well.Thus, the maximum number of equivalence relation on $\operatorname{set} A=\{1,2,3\}$ is 5 .

Hence, the correct alternative is option (d).

## Page No 1.31:

## Question 30:

Mark the correct alternative in the following question:

Let $R$ be a relation on the set $\mathbf{N}$ of natural numbers defined by $n R m$ iff $n$ divides $m$. Then, $R$ is
(a) Reflexive and symmetric
(b) Transitive and symmetric
(c) Equivalence
but not symmetric

## https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ANSWER:

We have,
$R=\{(m, n): n$ divides $m ; m, n \in \in \mathbf{N}\}$

As, $m$ divides $m \Rightarrow(m, m) \in R \forall m \in N S o, R$ is reflexiveSince, $(2,1) \in R$ i.e. 1 divides $2 b u t$ 2 cannot divide 1 i.e. $(2,1) \notin R S o, R$ is not symmetricLet $(m, n) \in R$ and $(n, p) \in R$. Then, $n$ divides $m$ and $p$ divides $n \Rightarrow p$ divides $m \Rightarrow(m, p) \in R S o, R$ is transitiveAs, $m$ divides $m \Rightarrow m, m \in R \forall m \in N S o, R$ is reflexiveSince, $2,1 \in R$ i.e. 1 divides $2 b u t 2$ cannot divide 1 i.e. $2,1 \notin R S o, R$ is not symmetricLet $m, n \in R$ and $n, p \in R$. Then, $n$ divides $m$ and $p$ divides $n \Rightarrow p$ divides $m \Rightarrow m, p \in R S o, R$ is transitive

Hence, the correct alternative is option (d).

## Page No 1.31:

## Question 31:

Mark the correct alternative in the following question:

Let $L$ denote the set of all straight lines in a plane. Let a relation $R$ be defined by IRm iff I is perpendicular to $m$ for all $I, m \in \in L$. Then, $R$ is
(a) reflexive
(b) symmetric
(c) transitive
(d) none of these

## [NCERT EXEMPLAR]

## ANSWER:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

We have, $R=\{(I, m): I$ is perpendicular to $m ; I, m \in L\} A s, I$ is not perpencular to $I \Rightarrow(I, I) \notin R S o$, $R$ is not reflexive relationLet $(I, m) \in R \Rightarrow l$ is perpendicular to $m \Rightarrow m$ is also perpendicular to $l \Rightarrow(m, I) \in R S o, R$ is symmetric relationLet $(l, m) \in R$ and $(m, n) \in R \Rightarrow I$ is perpendicular to $m$ and $m$ is perpendicular to $n \Rightarrow l$ is parallel to $n$ (Lines perpendicular to same line are parallel $) \Rightarrow(m, I) \notin R S o, R$ is not transitive relationWe have, $R=I, m: I$ is perpendicular to $m ; I, m \in L A s, I$ is not perpencular to $I \Rightarrow I, I \notin R S o, R$ is not reflexive relationLet $I, m \in R \Rightarrow I$ is perpendicular to $m \Rightarrow m$ is also perpendicular to $I \Rightarrow m, I \in R S o, R$ is symmetric relationLet $I, m \in R$ and $m, n \in R \Rightarrow l$ is perpendicular to $m$ and $m$ is perpendicular to $n \Rightarrow$ is parallel to $n$ Lines perpendicular to same line are parallel $\Rightarrow m, l \notin R S o, R$ is not transitive relation

Hence, the correct alternative is option (b).

## Page No 1.32:

## Question 32:

Mark the correct alternative in the following question:

Let $T$ be the set of all triangles in the Euclidean plane, and let a relation $R$ on $T$ be defined as $a R b$ if $a$ is congruent to $b$ for all $a, b \in \in T$. Then, $R$ is
a) reflexive but not symmetric
transitive but not symmetric
c) equivalence
(d) none of these

## ANSWER:

We have, $R=\{(a, b)$ :a is congruent to $b ; a, b \in T\} A s, a \cong a \Rightarrow(a, a) \in R S o, R$ is reflexive relationLet $(a, b) \in R$. Then, $a \cong b \Rightarrow b \cong a \Rightarrow(b, a) \in R S o, R$ is symmetric relationLet $(a, b) \in R$ and $(b, c) \in R$. Then,$a \cong b$ and $b \cong c \Rightarrow a \cong c \Rightarrow(a, c) \in R S o, R$ is transitive relation. $\because R$ is an equivalence relationWe have, $R=a, b: a$ is congruent to $b ; a, b \in T A s, a \approx a \Rightarrow a, a \in R S o, R$ is reflexive relationLet $a, b \in R$. Then $, a \cong b \Rightarrow b \cong a \Rightarrow b, a \in R S o, R$ is symmetric relationLet https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClindCareer

$a, b \in R$ and $b, c \in R$. Then, $a \cong b$ and $b \cong c \Rightarrow a \cong c \Rightarrow a, c \in R S o, R$ is transitive relation. $\therefore R$ is an equivalence relation

Hence, the correct alternative is option (c).

## Page No 1.32:

## Question 33:

Mark the correct alternative in the following question:

Consider a non-empty set consisting of children in a family and a relation $R$ defined as $a R b$ if $a$ is brother of $b$. Then, $R$ is
(a) symmetric but not transitive
transitive but not symmetric
(c) neither symmetric nor transitive
(d) both symmetric and transitive

## ANSWER:

We have, $R=\{(a, b): a$ is brother of $b\}$ Let $(a, b) \in R$. Then, $a$ is brother of bbut $b$ is not necessary brother of a (As, b can be sister of $a) \Rightarrow(b, a) \notin R S o, R$ is not symmetricAlso, Let $(a, b) \in R$ and $(b, c) \in R \Rightarrow a$ is brother of $b$ and $b$ is brother of $c \Rightarrow a$ is brother of $c \Rightarrow(a, c) \in R S o, R$ is transitiveWe have, $R=a, b: a$ is brother of $b L e t a, b \in R$. Then, $a$ is brother of bbut $b$ is not necessary brother of $a \quad$ As, $b$ can be sister of $a \Rightarrow b, a \notin R S o, R$ is not symmetricAlso, Let $a, b \in R$ and $b, c \in R \Rightarrow a$ is brother of $b$ and $b$ is brother of $c \Rightarrow a$ is brother of $c \Rightarrow a, c \in R S o, R$ is transitive

Hence, the correct alternative is option (b).

## Page No 1.32:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

## Question 34:

Mark the correct alternative in the following question:

For real numbers $x$ and $y$, define $x R y$ iff $x-y+2-\sqrt{x}-y+2$ is an irrational number. Then the relation $R$ is
(a) reflexive
(b) symmetric
(c) transitive
(d) none of these

## ANSWER:

We have, $R=\{(x, y): x-y+2-\sqrt{ }$ is an irrational number; $x, y \in R\} A s, x-x+2-\sqrt{ }=2-\sqrt{ }$, which is an irrational number $\Rightarrow(x, x) \in R S o, R$ is reflexive relationSince, $(2-\sqrt{ }, 2) \in$ Ri.e. $2-\sqrt{ }-2+2-\sqrt{ }=22-\sqrt{ }-2$, which is an irrational numberbut $2-2-\sqrt{ }+2-\sqrt{ }=2$, which is a rational number $\Rightarrow(2,2-\sqrt{ }) \notin R$ So, $R$ is not symmetric relationAlso, $(2-\sqrt{ }, 2) \in R$ and $(2,22-\sqrt{ }) \in$ Ri.e. $2-\sqrt{ }-2+2-\sqrt{ }=22-\sqrt{ }-2$, which is an irrational number and $2-22-\sqrt{ }+2-\sqrt{ }=2-2-\sqrt{ }$, which is also an irrational numberBut $2-\sqrt{ }-22-\sqrt{ }+2-\sqrt{ }=0$, which is a rational number $\Rightarrow(2-\sqrt{ }, 22-\sqrt{ }) \notin R S o, R$ is not transitive relationWe have, $R=x, y: x-y+2$ is an irrational number; $x, y \in R A s, x-x+2=2$, which is an irrational number $\Rightarrow x, x \in R S o, R$ is reflexive relationSince, $2,2 \in$ Ri.e. $2-2+2=22-2$, which is an irrational numberbut $2-2+2=2$, which is a rational number $\Rightarrow 2,2 \notin R S$ o, $R$ is not symmetric relationAlso, $2,2 \in R$ and $2,22 \in$ Ri.e. $2-2+2=22-2$, which is an irrational number and $2-22+2=2-2$, which is also an irrational numberBut $2-22+2=0$, which is a rational number $\Rightarrow 2,22 \notin \mathrm{RSo}, \mathrm{R}$ is not transitive relation

Hence, the correct alternative is option (a).

## Page No 1.32:

## Question 35:

If a relation $R$ on the set $(1,2,3)$ be defined by $R=\{(1,2)\}$, then $R$ is
(a) reflexive
(b) transitive
(c) symmetric
(d) none of these
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ANSWER:

Given: A relation $R$ on the set $\{1,2,3\}$ be defined by $R=\{(1,2)\}$.
$R=\{(1,2)\}$

Since, $(1,1) \notin R$
Therefore, It is not reflexive.

Since, $(1,2) \in R$ but $(2,1) \notin R$
Therefore, It is not symmetric.

But there is no counter example to disapprove transitive condition.
Therefore, it is transitive.

Hence, the correct option is (b).

## Page No 1.32:

## Question 1:

If $R=\{(\mathrm{x}, \mathrm{y}): \mathrm{x} 2+\mathrm{y} 2 \leq 4, \mathrm{x}, \mathrm{y} \in \mathrm{Z}\} \mathrm{x}, \mathrm{y}: \mathrm{x} 2+\mathrm{y} 2 \leq 4, \mathrm{x}, \mathrm{y} \in \mathrm{Z}$ is a relation in Z , then the domain of $R$ is $\qquad$ .

ANSWER:
Given: $R=\{(\mathrm{x}, \mathrm{y}): \mathrm{x} 2+\mathrm{y} 2 \leq 4, \mathrm{x}, \mathrm{y} \in \mathrm{Z}\} \mathrm{x}, \mathrm{y}: \mathrm{x} 2+\mathrm{y} 2 \leq 4, \mathrm{x}, \mathrm{y} \in \mathrm{Z}$

## Clind Career

$R=\{(-2,0),(2,0),(0,2),(0,-2),(-1,1),(-1,-1),(1,-1),(1,1),(0,1),(1,0),(-1,0)$, $(0,-1),(0,0)\}$

Therefore, Domain of $R=\{-2,-1,0,1,2\}$

Hence, if $R=\{(\mathrm{x}, \mathrm{y}): \mathrm{x} 2+\mathrm{y} 2 \leq 4, \mathrm{x}, \mathrm{y} \in \mathrm{Z}\} \mathrm{x}, \mathrm{y}: \mathrm{x} 2+\mathrm{y} 2 \leq 4, \mathrm{x}, \mathrm{y} \in \mathrm{Z}$ is a relation in Z , then the domain of $R$ is $\{-2,-1,0,1,2\}$.

## Page No 1.32:

## Question 2:

Let $R$ be a relation in $N$ defined by $R=\{(x, y): x+2 y=8\}$, then the range of $R$ is
$\qquad$ -.

## ANSWER:

Given: $R=\{(x, y): x+2 y=8\}$ where $x, y \in N$
$R=\{(6,1),(4,2),(2,3)\}$

Therefore, Range of $\mathrm{R}=\{1,2,3\}$

Hence, the range of $R$ is $\{1,2,3\}$.

## Page No 1.32:

## Question 3:

The number of relations on a finite set having 5 elements is $\qquad$ .

## ANSWER:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

Let $R$ be a relation on $A$, where $A$ contains 5 elements.
$R$ is a subset of $A \times A$.

Number of elements in $A \times A=5 \times 5=25$

Number of relations $=$ Number of subsets of $A \times A=2^{25}$

Hence, the number of relations on a finite set having 5 elements is $2^{25}$.

## Page No 1.32:

## Question 4:

Let $A=\{1,2,3,4\}$ and $R$ be the relation on A defined by $\{(a, b): a, b \in A, a \times b$ is an even number\}, then the range of $R$ is $\qquad$ _.

## ANSWER:

Given: $R=\{(a, b): a, b \in A, a \times b$ is an even number $\}$, where $A=\{1,2,3,4\}$.
$R=\{(1,2),(1,4),(2,1),(2,2),(2,3),(2,4),(3,2),(3,4),(4,1),(4,2),(4,3),(4,4)\}$

Therefore, Range of $R=\{1,2,3,4\}$

Hence, the range of $R$ is $\{1,2,3,4\}$.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

## Page No 1.32:

## Question 5

Let $A=\{1,2,3,4,5\}$ The domain of the relation on $A$ defined by $R=\{(x, y)$ : $y=$ $2 x-1\}$, is $\qquad$ .

## ANSWER:

Given: $R=\{(x, y): y=2 x-1\}$, where $A=\{1,2,3,4,5\}$ and $x, y \in A$.
$R=\{(1,1),(2,3),(3,5)\}$

Therefore, Domain of $R=\{1,2,3\}$.

Hence, the domain of the relation on $A$ defined by $R=\{(x, y): y=2 x-1\}$, is $\{1,2,3\}$.

## Page No 1.32:

## Question 6:

If $R \mathrm{~s}$ a relation defined on set $A=\{1,2,3\}$ by the rule $(a, b)$ $\in \mathrm{R} \Leftrightarrow||\mathrm{a} 2-\mathrm{b} 2|| \leq 5, \in \mathrm{R} \Leftrightarrow \mathrm{a} 2-\mathrm{b} 2 \leq 5$, then $R^{-1}=$ $\qquad$ .

## ANSWER:

Given: $R=\{(a, b):||\mathrm{a} 2-\mathrm{b} 2|| \leq 5 \mathrm{a} 2-\mathrm{b} 2 \leq 5\}$, where $A=\{1,2,3\}$ and $a, b \in A$.
$R=\{(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3)\}$

Therefore, $R^{-1}=\{(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3)\}=R$

## ClindCareer

Hence, if $R$ is a relation defined on set $A=\{1,2,3\}$ by the rule $(a, b)$ $\in \mathrm{R} \Leftrightarrow||\mathrm{a} 2-\mathrm{b} 2|| \leq 5, \in \mathrm{R} \Leftrightarrow \mathrm{a} 2-\mathrm{b} 2 \leq 5$, then $R^{-1}=\underline{R}$.

## Page No 1.32:

## Question 7:

If $R$ is a relation from $A=\{11,12,13\}$ to $B=\{8,1012\}$ defined by $y=x-3$, then $R^{-1}$ $=$ $\qquad$ .

## ANSWER:

Given: $R=\{(x, y): y=x-3, x \in A$ and $y \in B\}$, where $A=\{11,12,13\}$ and $B=\{8,10$ 12\}.
$R=\{(11,8),(13,10)\}$

Therefore, $R^{-1}=\{(8,11),(10,13)\}$

Hence, $R^{-1}=\{(8,11),(10,13)\}$.

## Page No 1.32:

## Question 8:

The smallest equivalence relation on the set $A=\{a, b, c, d\}$ is
$\qquad$ -

## ANSWER:

Given: $A=\{a, b, c, d\}$

Identity relation is the smallest equivalence relation.

## ClndCareer

Therefore, $R=\{(a, a),(b, b),(c, c)\}$ is the smallest equivalence relation.

Hence, the smallest equivalence relation on the set $A=\{a, b, c, d\}$ is $\{(a, a),(b, b),(c$, c) $\}$.

## Page No 1.32:

## Question 9:

The largest equivalence relation on the set $A=\{1,2,3\}$ is $\qquad$ .

## ANSWER:

Given: $A=\{1,2,3\}$

The largest equivalence relation contains all the possible ordered pairs.

Therefore, $R=\{(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2),(1,3),(3,1)\}$ is the largest equivalence relation.

Hence, the largest equivalence relation on the set $A=\{1,2,3\}$ is $\{(1,1),(2,2),(3,3),(1$, $2),(2,1),(2,3),(3,2),(1,3),(3,1)\}$.

## Page No 1.32:

## Question 10:

Let $R$ be the equivalence relation on the set $Z$ of integers given by $R=\{(a, b)$ : 3 divides $a-b\}$. Then the equivalence class [0] is equal to $\qquad$ .

## ANSWER:

Given: $R$ is the equivalence relation on the set $Z$ of integers given by $R=\{(a, b)$ : 3 divides $a-b\}$.

## ClndCareer

To find the equivalence class [0], we put $b=0$ in the given relation and find all the possible values of $a$.

Thus,
$R=\{(a, 0): 3$ divides $a-0\}$
$\Rightarrow a-0$ is a multiple of 3
$\Rightarrow a$ is a multiple of 3
$\Rightarrow a=3 n$, where $n \in Z$
$\Rightarrow a=0, \pm 3, \pm 6, \pm 9, \ldots$.

Therefore, equivalence class $[0]=\{0, \pm 3, \pm 6, \pm 9, \ldots$.

Hence, the equivalence class $[0]$ is equal to $\{0, \pm 3, \pm 6, \pm 9, \ldots\}$.

## Page No 1.32:

## Question 11:

Let $R$ be a relation on the set $Z$ of all integers defined as $(x, y) \in R \Leftrightarrow x-y$ is divisible by 2. Then, the equivalence class [1] is $\qquad$ .

## ANSWER:

Given: $R$ is the equivalence relation on the set $Z$ of integers defined as $(x, y) \in R \Leftrightarrow x-$ $y$ is divisible by 2 .

To find the equivalence class [1], we put $y=1$ in the given relation and find all the possible values of $x$.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

Thus,
$R=\{(x, 1): x-1$ is divisible by 2$\}$
$\Rightarrow x-1$ is divisible by 2
$\Rightarrow x= \pm 1, \pm 3, \pm 6, \pm 9, \ldots$.

Therefore, equivalence class $[0]=\{ \pm 1, \pm 3, \pm 6, \pm 9, \ldots$.

Hence, the equivalence class $[1]$ is $\{ \pm 1, \pm 3, \pm 6, \pm 9, \ldots\}$.

## Page No 1.32:

## Question 12:

The relation $R=\{(1,2),,(1,3)\}$ on set $A=[1,2,3]$ is $\qquad$ only.

## ANSWER:

Given: A relation $R$ on the set $\{1,2,3\}$ be defined by $R=R=\{(1,2),,(1,3)\}$.
$R=\{(1,2),,(1,3)\}$

Since, $(1,1) \notin R$
Therefore, It is not reflexive.

Since, $(1,2) \in R$ but $(2,1) \notin R$
Therefore, It is not symmetric.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

But there is no counter example to disapprove transitive condition.
Therefore, it is transitive.

Hence, The relation $R=\{(1,2),,(1,3)\}$ on set $A=\{1,2,3\}$ is transitive only.

## Page No 1.33:

## Question 1:

Write the domain of the relation $R$ defined on the set $Z$ of integers as follows:
$(a, b) \in R \Leftrightarrow a^{2}+b^{2}=25$

## ANSWER:

Domain of $R$ is the set of values satisfying the relation $R$.
As a should be an integer, we get the given values of a:
$0, \pm 3, \pm 4, \pm 5$ Thus, Domain of $R=\{0, \pm 3, \pm 4, \pm 5\} 0, \pm 3, \pm 4, \pm 5$ Thus, Domain of $R=0, \pm 3, \pm 4$, $\pm 5$

## Page No 1.33:

## Question 2:

If $R=\left\{(x, y): x^{2}+y^{2} \leq 4 ; x, y \in Z\right\}$ is a relation on $Z$, write the domain of $R$.

## ANSWER:

Domain of $R$ is the set of values of $x$ satisfying the relation $R$.
As $x$ must be an integer, we get the given values of $x$ :

## ClndCareer

$0, \pm 1, \pm 2$ Thus, Domain of $R=\{0, \pm 1, \pm 2\} 0, \pm 1, \pm 2$ Thus, Domain of $R=0, \pm 1, \pm 2$

## Page No 1.33:

## Question 3:

Write the identity relation on set $A=\{a, b, c\}$.

## ANSWER:

Identity set of $A$ is
$I=\{(a, a),(b, b),(c, c)\}$

Every element of this relation is related to itself.

## Page No 1.33:

## Question 4:

Write the smallest reflexive relation on set $A=\{1,2,3,4\}$.

## ANSWER:

Here,
$A=\{1,2,3,4\}$
Also, a relation is reflexive iff every element of the set is related to itself.

So, the smallest reflexive relation on the set $A$ is
$R=\{(1,1),(2,2),(3,3),(4,4)\}$

## Page No 1.33:

## Question 5:

If $R=\{(x, y): x+2 y=8\}$ is a relation on $N$ by, then write the range of $R$.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

## ANSWER:

$R=\{(x, y): x+2 y=8, x, y \in \in N\}$
Then, the values of $y$ can be 1,2,3 only.
Also, $y=4$ cannot result in $x=0$ because $x$ is a natural number.

Therefore, range of $R$ is $\{1,2,3\}$.

## Page No 1.33:

## Question 6:

If $R$ is a symmetric relation on a set $A$, then write a relation between $R$ and $R^{-1}$.

## ANSWER:

Here, $R$ is symmetric on the set $A$.

Let $(a, b) \in R \Rightarrow(b, a) \in R \quad[$ Since $R$ is symmetric $] \Rightarrow(a, b) \in R-1 \quad[B y$ definition of inverse relation $] \Rightarrow R \subset R-1$ Let $(x, y) \in R-1 \Rightarrow(y, x) \in R \quad[B y$ definition of inverse relation] $\Rightarrow(x, y) \in R \quad[$ Since $R$ is symmetric] $\Rightarrow R-1 \subset R T h u s, R=R-1$ Let a, $b \in R \Rightarrow b, a \in R \quad$ Since $R$ is symmetric $\Rightarrow a, b \in R-1 \quad$ By definition of inverse relation $\Rightarrow R \subset R$-1Let $x, y \in R-1 \Rightarrow y, x \in R \quad$ By definition of inverse relation $\Rightarrow x, y \in R$ Since $R$ is symmetric $\Rightarrow R-1 \subset R$ Thus, $R=R-1$

## Page No 1.33:

## Question 7:

Let $R=\left\{(x, y):\left|x^{2}-y^{2}\right|<1\right)$ be a relation on set $A=\{1,2,3,4,5\}$. Write $R$ as a set of ordered pairs.

## ANSWER:

$R$ is the set of ordered pairs satisfying the above relation. Also, no two different elements can satisfy the relation; only the same elements can satisfy the given relation.
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

So, $R=\{(1,1),(2,2),(3,3),(4,4),(5,5)\}$

## Page No 1.33:

## Question 8:

If $A=\{2,3,4\}, B=\{1,3,7\}$ and $R=\{(x, y): x \in A, y \in B$ and $x<y\}$ is a relation from $A$ to $B$, then write $R^{-1}$.

## ANSWER:

Since $R=\{(x, y): x \in \in A, y \in \in A$ and $x<y\}$,
$R=\{(2,3),(2,7),(3,7),(4,7)\}$

So, $R^{-1}=\{(3,2),(7,2),(7,3),(7,4)\}$

## Page No 1.33:

## Question 9:

Let $A=\{3,5,7\}, B=\{2,6,10\}$ and $R$ be a relation from $A$ to $B$ defined by $R=\{(x, y): x$ and $y$ are relatively prime $\}$. Then, write $R$ and $R^{-1}$.

## ANSWER:

$R=\{(x, y): x$ and $y$ are relatively prime $\}$
Then,
$R=\{(3,2),(5,2),(7,2),(3,10),(7,10),(5,6),(7,6)\}$

So, $R^{-1}=\{(2,3),(2,5),(2,7),(10,3),(10,7),(6,5),(6,7)\}$
Page No 1.33:
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## Question 10:

Define a reflexive relation.

## ANSWER:

A relation $R$ on $A$ is said to be reflexive iff every element of $A$ is related to itself.
i.e. $R$ is reflexive $\Leftrightarrow(a, a) \in R$ for all $a \in A \Leftrightarrow a, a \in R$ for all $a \in A$

## Page No 1.33:

## Question 11:

Define a symmetric relation.

## ANSWER:

A relation $R$ on a set $A$ is said to be symmetric iff
$(a, b) \in R \Rightarrow(b, a) \in R$ for all $a, b \in$ Ai.e. $a R b \Rightarrow b R a$ for all $a, b \in A a, b \in R \Rightarrow b, a \in R$ for all $a, b \in$ Ai.e. $a R b \Rightarrow b R a$ for all $a, b \in A$

## Page No 1.33:

## Question 12:

Define a transitive relation.

## ANSWER:

A relation $R$ on a set $A$ is said to be transitive iff
$(a, b) \in R$ and $(b, c) \in R \Rightarrow(a, c) \in R$ for all $a, b, c \in$ Ri.e. $a R b$ and $b R c \Rightarrow a R c$ for all $a$, $b, c \in R \quad a, b \in R$ and $b, c \in R \Rightarrow a, c \in R$ for all $a, b, c \in R i . e$. $a R b$ and $b R c \Rightarrow a R c$ for all $a, b, c \in R$

## ClindCareer

## Page No 1.33:

## Question 13:

Define an equivalence relation.

## ANSWER:

A relation $R$ on set $A$ is said to be an equivalence relation iff
(i) it is reflexive,
(ii) it is symmetric and
(iii) it is transitive.

Relation $R$ on set $A$ satisfying all the above three properties is an equivalence relation.

## Page No 1.33:

## Question 14:

If $A=\{3,5,7\}$ and $B=\{2,4,9\}$ and $R$ is a relation given by "is less than", write $R$ as a set ordered pairs.

## ANSWER:

Since, $R=\{(x, y): x, y \in N$ and $x<y\}, R=\{(3,4),(3,9),(5,9),(7,9)\}$ Since, $R=x, y: x$, $y \in N$ and $x<y, R=\{(3,4),(3,9),(5,9),(7,9)\}$

## Page No 1.33:

## Question 15:

$A=\{1,2,3,4,5,6,7,8\}$ and if $R=\{(x, y): y$ is one half of $x ; x, y \in A\}$ is a relation on $A$, then write $R$ as a set of ordered pairs.

## ANSWER:

Since $R=\{(x, y): y$ is one half of $x ; x, y \in \in A\}$

## ClndCareer

So, $R=\{(2,1),(4,2),(6,3),(8,4)\}$

## Page No 1.33:

## Question 16:

Let $A=\{2,3,4,5\}$ and $B=\{1,3,4\}$. If $R$ is the relation from $A$ to $B$ given by a $R b$ if "a is a divisor of $b "$. Write $R$ as a set of ordered pairs.

## ANSWER:

Since $R=\{(a, b): a, b \in N: a$ is a divisor of $b\}$ Since $R=a, b: a, b \in N: a$ is a divisor of b

So, $R=\{(2,4),(3,3),(4,4)\}$

## Page No 1.33:

## Question 17:

State the reason for the relation $R$ on the set $\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ to be transitive.

## ANSWER:

Since $(1,2) \in R,(2,1) \in R$ but $(1,1) \notin R, R$ is not transitive on the set $\{1,2,3\}$.For $R$ to be in a transitive relation, we must have $(1,1) \in R$. Since $1,2 \in R, 2,1 \in R$ but $1,1 \notin R, R$ is not transitive on the set $1,2,3$.For $R$ to be in a transitive relation, we must have 1 , $1 \in R$.

## Page No 1.33:

## Question 18:

Let $R=\left\{\left(a, a^{3}\right): a\right.$ is a prime number less than 5$\}$ be a relation. Find the range of $R$. [CBSE 2014]

## ANSWER:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

We have,
$R=\left\{\left(a, a^{3}\right): a\right.$ is a prime number less than 5$\}$
Or,
$R=\{(2,8),(3,27)\}$

So, the range of $R$ is $\{8,27\}$.

## Page No 1.33:

## Question 19:

Let $R$ be the equivalence relation on the set $\mathbf{Z}$ of the integers given by $R=\{(a, b): 2$ divides $a-b\}$. Write the equivalence class [0].

## [NCERT EXEMPLAR]

## ANSWER:

We have,
An equivalence relation, $R=\{(a, b): 2$ divides $a-b\}$

If $b=0$, then $a-b=a-0=a A s, 2$ divides $a-b A n d$, the set of integers which are divided by 2 is $\{0, \pm 2, \pm 4, \pm 6, \ldots\}$ So, the equivalence class $[0]=\{0, \pm 2, \pm 4, \pm 6, \ldots\} \mid f b=0$, then $a-b=a-0=a A s$, 2 divides a-bAnd, the set of integers which are divided by 2 is $0, \pm 2, \pm 4, \pm 6, \ldots$ So, the equivalence class $[0]=0, \pm 2, \pm 4, \pm 6, \ldots$

## Page No 1.33:

## Question 20:

For the set $A=\{1,2,3\}$, define a relation $R$ on the set $A$ as follows:
$R=\{(1,1),(2,2),(3,3),(1,3)\}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClndCareer

Write the ordered pairs to be added to $R$ to make the smallest equivalence relation.

## ANSWER:

We have,
$R=\{(1,1),(2,2),(3,3),(1,3)\}$

As, $(a, a) \in \in R$, for all values of $a \in \in A$
So, $R$ is a reflexive relation
$R$ can be a symmetric and transitive relation only when element $(3,1)$ is added

Hence, the ordered pairs to be added to $R$ to make the smallest equivalence relation is $(3,1)$.

## Page No 1.33:

## Question 21:

Let $A=\{0,1,2,3\}$ and $R$ be a relation on $A$ defined as
$R=\{(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0),(3,3)\}$
Is $R$ reflexive? symmetric? transitive?

## ANSWER:

We have,
$R=\{(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0),(3,3)\}$

As, $(a, a) \in R \forall a \in A S o, R$ is a reflexive relationAlso, $(a, b) \in R$ and $(b, a) \in R S o, R$ is a symmetric relation as wellAnd, $(0,1) \in R$ but $(1,2) \notin R$ and $(2,3) \notin R S o, R$ is not a transitive https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

## ClindCareer

relationAs, $a, a \in R \forall a \in A S o, R$ is a reflexive relationAlso, $a, b \in R$ and $b, a \in R S o, R$ is a symmetric relation as wellAnd, $0,1 \in R$ but $1,2 \notin R$ and $2,3 \notin R S o, R$ is not a transitive relation

## Page No 1.33:

## Question 22:

Let the relation $R$ be defined on the set $A=\{1,2,3,4,5\}$ by $R=\left\{(a, b):\left|a^{2}--b^{2}\right|<8\right\}$. Write $R$ as a set of ordered pairs.

## ANSWER:

As, $R=\left\{(a, b):\left|a^{2}--b^{2}\right|<8\right\}$
So, $R=\{(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),(5,5)\}$

## Page No 1.34:

## Question 23:

Let the relation $R$ be defined on $\mathbf{N}$ by $a R b$ iff $2 a+3 b=30$. Then write $R$ as a set of ordered pairs.

ANSWER:
As, $R=\{(a, b): 2 a+3 b=30 ; a, b \in \in \mathbf{N}\}$

So, $R=\{(3,8),(6,6),(9,4),(12,2)\}$

## Page No 1.34:

## Question 24:

Write the smallest equivalence relation on the set $A=\{1,2,3\}$.

## ANSWER:

The smallest equivalence relation on the set $A=\{1,2,3\}$ is $R=\{(1,1),(2,2),(3,3)\}$

## ElndCareer



## Chapterwise RD Sharma Solutions for Class 12 Maths :

- Chapter 1-Relation
- Chapter 2-Functions
- Chapter 3-Binary Operations
- Chapter 4-Inverse Trigonometric Functions
- Chapter 5-Algebra of Matrices
- Chapter 6-Determinants
- Chapter 7-Adjoint and Inverse of a Matrix
- Chapter 8-Solution of Simultaneous Linear Equations
- Chapter 9-Continuity
- Chapter 10-Differentiability
- Chapter 11-Differentiation
- Chapter 12-Higher Order Derivatives
- Chapter 13-Derivatives as a Rate Measurer
- Chapter 14-Differentials, Errors and Approximations
- Chapter 15-Mean Value Theorems
- Chapter 16-Tangents and Normals
- Chapter 17-Increasing and Decreasing Functions
- Chapter 18-Maxima and Minima
- Chapter 19-Indefinite Integrals


## ClndCareer

## About RD Sharma

RD Sharma isn't the kind of author you'd bump into at lit fests. But his bestselling books have helped many CBSE students lose their dread of maths. Sunday Times profiles the tutor turned internet star

He dreams of algorithms that would give most people nightmares. And, spends every waking hour thinking of ways to explain concepts like 'series solution of linear differential equations'. Meet Dr Ravi Dutt Sharma mathematics teacher and author of 25 reference books - whose name evokes as much awe as the subject he teaches. And though students have used his thick tomes for the last 31 years to ace the dreaded maths exam, it's only recently that a spoof video turned the tutor into a YouTube star.

R D Sharma had a good laugh but said he shared little with his on-screen persona except for the love for maths. "I like to spend all my time thinking and writing about maths problems. I find it relaxing," he says. When he is not writing books explaining mathematical concepts for classes 6 to 12 and engineering students, Sharma is busy dispensing his duty as vice-principal and head of department of science and humanities at Delhi government's Guru Nanak Dev Institute of Technology.

[^0]
[^0]:    https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-1-relation/

