Class 12 Chapter 16 Tangents and Normals

RD Sharma Solutions for Class 12 Maths Chapter 16-Tangents and Normals

Class 12: Maths Chapter 16 solutions. Complete Class 12 Maths Chapter 16 Notes.

RD Sharma Solutions for Class 12 Maths Chapter 16-Tangents and Normals

RD Sharma 12th Maths Chapter 16, Class 12 Maths Chapter 16 solutions
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClndCareer

Exercise 16.1 Page No: 16.10

1. Find the Slopes of the tangent and the normal to the following curves at the indicated points:
(i) $y=\sqrt{x^{3}}$ at $x=4$

Solution:

Given $\mathrm{y}=\sqrt{\mathrm{x}^{3}}$ at $\mathrm{x}=4$
First, we have to find $\frac{d y}{d x}$ of given function, $f(x)$ that is to find the derivative of f (x)
$y=\sqrt{x^{3}}$
$\therefore \sqrt[n]{\mathrm{x}}=\mathrm{x}^{\frac{1}{\mathrm{n}}}$
$\Rightarrow \mathrm{y}=\left(\mathrm{x}^{3}\right)^{\frac{1}{2}}$
$\Rightarrow \mathrm{y}=(\mathrm{x})^{\frac{3}{2}}$
$\therefore \frac{d y}{d x}\left(x^{n}\right)=n x^{n-1}$
We know that the Slope of the tangent is $\frac{d y}{d x}$
$\frac{d y}{d x}=\frac{3}{2}(x)^{\frac{3}{2}-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{3}{2}(\mathrm{x})^{\frac{1}{2}}$
Since, $x=4$
$\Rightarrow\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\mathrm{x}=4}=\frac{3}{2}(4)^{\frac{1}{2}}$

ClindCareer

$\Rightarrow\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\mathrm{x}=4}=\frac{3}{2} \times 2$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=4}=3$
The Slope of the tangent at $x=4$ is 3
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=4}=\frac{3}{2} \times \sqrt{4} \Rightarrow$ The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right) x=4}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=4}=\frac{3}{2} \times 2 \quad \Rightarrow$ The Slope of the normal $=\frac{-1}{3}$
(ii) $y=\sqrt{ } x$ at $x=9$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClndCareer

Given $\mathrm{y}=\sqrt{\mathrm{x}}$ at $\mathrm{x}=9$
First, we have to find $\frac{d y}{d x}$ of given function, $f(x)$ that is to find the derivative of $\mathrm{f}(\mathrm{x})$
$\Rightarrow y=\sqrt{x}$
$\therefore \sqrt[n]{\mathrm{x}}=\mathrm{x}^{\frac{1}{\mathrm{n}}}$
$\Rightarrow \mathrm{y}=(\mathrm{x})^{\frac{1}{2}}$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}$
The Slope of the tangent is $\frac{d y}{d x}$
$\Rightarrow y=(x)^{\frac{1}{2}}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}(\mathrm{x})^{\frac{1}{2}-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}(\mathrm{x})^{\frac{-1}{2}}$
Since, $x=9$
$\left(\frac{d y}{d x}\right)_{x=9}=\frac{1}{2}(9)^{\frac{-1}{2}}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}(x)^{\frac{1}{2}-1}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}(x)^{\frac{-1}{2}}$
Since, $x=9$
$\left(\frac{d y}{d x}\right)_{x=9}=\frac{1}{2}(9)^{\frac{-1}{2}}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=9}=\frac{1}{2} \times \frac{1}{(9)^{\frac{1}{2}}}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=9}=\frac{1}{2} \times \frac{1}{\sqrt{9}}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=9}=\frac{1}{2} \times \frac{1}{3}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=9}=\frac{1}{6}$
The Slope of the tangent at $x=9$ is $\frac{1}{6}$
-1
\Rightarrow The Slope of the normal $=$ The Slope of the tangent
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right) x=9}$
\Rightarrow The Slope of the normal $=\frac{\frac{-1}{\frac{1}{6}}}{6}$
\Rightarrow The Slope of the normal $=-6$
(iii) $y=x^{3}-x$ at $x=2$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClndCareer

First, we have to find $\frac{d y}{d x}$ of given function $f(x)$ that is to find the derivative of $\mathrm{f}(\mathrm{x})$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}{ }^{\mathrm{n}-1}$
The Slope of the tangent is $\frac{d y}{d x}$
$\Rightarrow \mathrm{y}=\mathrm{x}^{3}-\mathrm{x}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy}}{\mathrm{dx}\left(\mathrm{x}^{3}\right)+3} \times \frac{\mathrm{dy}}{\mathrm{dx}(\mathrm{x})}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=3 \cdot \mathrm{x}^{3-1}-1 \cdot \mathrm{x}^{1-0}$
$\Rightarrow \frac{d y}{d x}=3 x^{2}-1$
Since, $x=2$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=2}=3^{x}(2)^{2}-1$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=2}=\left(3^{\times} 4\right)-1$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=2}=12-1$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=2}=11$
\therefore The Slope of the tangent at $\mathrm{x}=2$ is 11
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClndCareer

\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right) x=2}$
\Rightarrow The Slope of the normal $=\frac{-1}{11}$
(iv) $y=2 x^{2}+3 \sin x$ at $x=0$

Solution:

ClndCareer

Given $\mathrm{y}=2 \mathrm{x}^{2}+3 \sin \mathrm{x}$ at $\mathrm{x}=0$
First, we have to find $\frac{d y}{d x}$ of given function $f(x)$ that is to find the derivative of $f(x)$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
The Slope of the tangent is $\frac{d y}{d x}$

$$
\begin{aligned}
& \Rightarrow y=2 x^{2}+3 \sin x \\
& \Rightarrow \frac{d y}{d x}=2 d y / d x\left(x^{2}\right)+3 d y / d x(\sin x) \\
& \Rightarrow \frac{d y}{d x}=2\left(2 x^{2-1}\right)+3(\cos x) \\
& \therefore \frac{d}{d x}(\sin x)=\cos x \\
& \Rightarrow \frac{d y}{d x}=4 x+3 \cos x
\end{aligned}
$$

Since, $x=2$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=0}=4(0)+3 \cos (0)$
We know $\cos (0)=1$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=0}=0+3(1)$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=0}=3$
\therefore The Slope of the tangent at $\mathrm{x}=0$ is 3

$$
-1
$$

\Rightarrow The Slope of the normal $=$ The Slope of the tangent
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right) x^{x}=0}$
\Rightarrow The Slope of the normal $=\frac{-1}{3}$
\Rightarrow The Slope of the normal $=\frac{-1}{3}$
(v) $x=a(\theta-\sin \theta), y=a(1+\cos \theta)$ at $\theta=-\pi / 2$

Solution:

Given $x=a(\theta-\sin \theta), y=a(1+\cos \theta)$ at $\theta=-\pi / 2$
Here, to find $\frac{d y}{d x}$, we have to find $\frac{\frac{d y}{d \theta}}{d} \& \frac{d x}{d \theta}$ and divide $\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$ and we get our desireddx.
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow x=a(\theta-\sin \theta)$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}\left\{\frac{\mathrm{dx}}{\mathrm{d} \theta}(\theta)-\frac{\mathrm{dx}}{\mathrm{d} \theta}(\sin \theta)\right\}$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}(1-\cos \theta)$.
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}(\operatorname{Sin} \mathrm{x})=\operatorname{Cos} \mathrm{x}$
$\Rightarrow y=a(1+\cos \theta)$
$\left.\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \theta}=a^{\frac{\mathrm{dx}}{\mathrm{d} \theta}(1)+\frac{\mathrm{dx}}{\mathrm{d} \theta}}(\cos \theta)\right]$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}(\operatorname{Cos} \mathrm{x})=-\sin \mathrm{x}$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}($ Constant $)=0$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{a}(0+(-\sin \theta))$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{a}(-\sin \theta)$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \theta}=-\mathrm{a} \sin \theta \ldots$
$\Rightarrow \frac{d y}{\frac{d y}{d x}}=\frac{\frac{d y}{d \theta}}{d \mathrm{dx}}=\frac{-a \sin \theta}{a(1-\cos \theta)}$
$\Rightarrow \frac{d y}{d x}=\frac{-\sin \theta}{(1-\cos \theta)}$
The Slope of the tangent is $\frac{-\sin \theta}{(1-\cos \theta)}$
Since, ${ }^{\theta}=\frac{-\pi}{2}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{-\pi}{2}}=\frac{-\sin \frac{-\pi}{2}}{\left(1-\cos \frac{\pi}{2}\right)}$
We know $\operatorname{Cos}(\pi / 2)=0$ and $\sin (\pi / 2)=1$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{-\pi}{2}}=\frac{-(-1)}{(1-(-0))}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{-\pi}{2}}=\frac{1}{(1-0)}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{-\pi}{2}}=1$
\therefore The slope of the tangent at $\mathrm{x}=-\frac{\pi}{2}$ is 1

ClndCareer

\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right)_{\theta=\frac{-\pi}{2}}}$
\Rightarrow The Slope of the normal $=\frac{-1}{1}$
\Rightarrow The Slope of the normal $=-1$
(vi) $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$ at $\theta=\pi / 4$

Solution:

ClndCareer

Given $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$ at $\theta=\pi / 4$
Here, to find $\frac{d y}{d x}$, we have to find $\frac{d y}{d \theta} \& \frac{d x}{d \theta}$ and divide $\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$ and we get $\frac{d y}{d x}$.
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \mathrm{x}=\operatorname{acos}^{3} \theta$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}\left(\frac{\mathrm{dx}}{(\mathrm{d} \theta}\left(\cos ^{3} \theta\right)\right)$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}(\operatorname{Cos} \mathrm{x})=-\sin \mathrm{x}$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}\left(3 \cos ^{3-1} \theta \mathrm{x}-\sin \theta\right)$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}\left(3 \cos ^{2} \theta \times-\sin \theta\right)$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{d} \theta}=-3 \operatorname{acos}^{2} \theta \sin \theta \ldots$
$\Rightarrow \mathrm{y}=\operatorname{asin}^{3} \theta$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{a}\left(\frac{\mathrm{dy}}{\mathrm{d} \theta}\left(\sin ^{3} \theta\right)\right)$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}(\operatorname{Sin} \mathrm{x})=\cos \mathrm{x}$
$\Rightarrow \stackrel{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{a}\left(3 \sin ^{3-1} \theta \cos \theta\right)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClndCareer

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{-3 \operatorname{acos}^{2} \theta \sin \theta}{3 \operatorname{ain}^{2} \theta \cos \theta} \\
\Rightarrow & \frac{d y}{d x}=\frac{-\cos \theta}{\sin \theta} \\
\Rightarrow & \frac{d y}{d x}=-\tan \theta
\end{aligned}
$$

The Slope of the tangent is $-\tan \theta$
Since, $\theta=\pi / 4$

$$
\begin{aligned}
& \Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{4}}=-\tan (\pi / 4) \\
& \Rightarrow \quad\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{4}}=-1
\end{aligned}
$$

We know $\tan (\pi / 4)=1$
The Slope of the tangent at $x=\pi / 4$ is -1

$$
\Rightarrow \frac{\mathrm{dy}}{\mathrm{~d} \theta}=\mathrm{a}\left(3 \sin ^{2} \theta \cos \theta\right)
$$

$$
\Rightarrow \frac{\mathrm{dy}}{\mathrm{~d} \theta}=3 \mathrm{a} \sin ^{2} \theta \cos \theta \ldots \text { (2) }
$$

$$
\begin{aligned}
& \Rightarrow \text { The Slope of the normal }=\frac{-1}{\text { The Slope of the tangent }} \\
& \Rightarrow \text { The Slope of the normal }=\frac{-1}{\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{4}}^{4}} \\
& \Rightarrow \text { The Slope of the normal }=\frac{-1}{-1} \\
& \Rightarrow \text { The Slope of the normal }=1
\end{aligned}
$$

(vii) $x=a(\theta-\sin \theta), y=a(1-\cos \theta) a t \theta=\pi / 2$

Solution:

ClndCareer

Given $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$ at $\theta=\pi / 2$
Here, to finddx, we have to find $\frac{d y}{d \theta} \& \frac{d x}{d \theta}$ and divide $\frac{\frac{d y}{d \theta}}{d \theta}$ and we get $\frac{\frac{d y}{d x}}{}$.
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \mathrm{x}=\mathrm{a}(\theta-\sin \theta)$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{d} \mathrm{\theta}}=\mathrm{a}\left\{\frac{\mathrm{dx}}{\mathrm{d} \theta}(\theta)-\frac{\mathrm{dx}}{\mathrm{d} \theta}(\sin \theta)\right\}$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{d} \theta}=a(1-\cos \theta) \ldots$ (1)
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}(\operatorname{Sin} \mathrm{x})=\cos \mathrm{x}$
$\Rightarrow \mathrm{y}=\mathrm{a}(1-\cos \theta)$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{a}\left(\frac{\mathrm{dx}}{\mathrm{d} \theta}(1)-\frac{\mathrm{dx}}{\mathrm{d} \mathrm{\theta}}(\cos \theta)\right)$
$\therefore \frac{d}{d x}(\operatorname{Cos} x)=-\sin x \quad \Rightarrow \frac{d y}{d x}=\frac{-\sin \theta}{(1-\cos \theta)}$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}($ Constant $)=0$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \theta}=a(\theta-(-\sin \theta))$
The Slope of the tangent is $\frac{-\sin \theta}{(1-\cos \theta)}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \theta}=a \sin \theta \ldots$ (2)
Since, $\theta=\frac{\pi}{2}$
$\Rightarrow \frac{d y}{\frac{d y}{d x}}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{a \sin \theta}{a(1-\cos \theta)}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=\frac{\sin \frac{\pi}{2}}{\left(1-\cos \frac{\pi}{2}\right)}$
We know $\cos (\pi / 2)=0$ and $\sin (\pi / 2)=1$

ClndCareer

We know $\cos (\pi / 2)=0$ and $\sin (\pi / 2)=1$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=\frac{(1)}{(1-(-0))}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=\frac{1}{(1-0)}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=1$
The slope of the tangent at $x=\frac{\pi}{2}$ is 1
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}}$
\Rightarrow The Slope of the normal $=\frac{-1}{1}$
\Rightarrow The Slope of the normal $=-1$
(viii) $y=(\sin 2 x+\cot x+2)^{2}$ at $x=\pi / 2$

Solution:

ClindCareer

Given $\mathrm{y}=(\sin 2 \mathrm{x}+\cot \mathrm{x}+2)^{2}$ at $\mathrm{x}=\pi / 2$
First, we have to find $\frac{d y}{d x}$ of given function $f(x)$ that is to find the derivative of $\mathrm{f}(\mathrm{x})$
$\therefore \frac{d y}{d x}\left(x^{n}\right)=n x^{n-1}$
The Slope of the tangent is $\frac{d y}{d x}$
$\Rightarrow \mathrm{y}=(\sin 2 \mathrm{x}+\cot \mathrm{x}+2)^{2}$
$\left.\frac{d y}{d x}=2 \times(\sin 2 x+\cot x+2)^{2-1} \frac{d y}{d x}(\sin 2 x)+\frac{d y}{d x}(\cot x)+\frac{d y}{d x}(2)\right\}$

Clnd Career

$$
\begin{aligned}
& \frac{d y}{d x}=2 \times(\sin 2 x+\cot x+2)^{2-1}\left\{\frac{d y}{d x}(\sin 2 x)+\frac{d y}{d x}(\cot x)+\frac{d y}{d x}(2)\right\} \\
& \Rightarrow \frac{d y}{d x}=2(\sin 2 x+\cot x+2)\left\{(\cos 2 x) \times 2+\left(-\operatorname{cosec}^{2} x\right)+(0)\right\} \\
& \therefore \frac{d}{d x}(\sin x)=\cos x \\
& \therefore \frac{d}{d x}(\operatorname{Cot} x)=-\operatorname{cosec}^{2} x \\
& \Rightarrow \frac{d y}{d x}=2(\sin 2 x+\cot x+2)\left(2 \cos 2 x-\operatorname{cosec}^{2} x\right) \\
& \text { Since, } x=\pi / 2 \\
& \left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=2 \times(\sin 2(\pi / 2)+\cot (\pi / 2)+2)\left(2 \cos 2(\pi / 2)-\operatorname{cosec}^{2}(\pi / 2)\right) \\
& \left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=2 \times(\sin (\pi)+\cot (\pi / 2)+2) \times\left(2 \cos (\pi)-\operatorname{cosec}^{2}(\pi / 2)\right) \\
& \Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=2 \times(0+0+2) \times(2(-1)-1) \\
& \text { We know } \sin (\pi)=0, \cos (\pi)=-1 \\
& \text { Cot }(\pi / 2)=0, \operatorname{cosec}(\pi / 2)=1 \\
& \left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}^{2}=2(2) \times(-2-1)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=4 x-3 \\
& \Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=-12
\end{aligned}
$$

The Slope of the tangent at $x=\frac{\pi}{2}$ is -12

$$
\Rightarrow \text { The Slope of the normal }=\frac{-1}{\text { The Slope of the tangent }}
$$

\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}}$
\Rightarrow The Slope of the normal $=\frac{-1}{-12}$
\Rightarrow The Slope of the normal $=\frac{1}{12}$
(ix) $x^{2}+3 y+y^{2}=5$ at $(1,1)$

Solution:

ClndCareer

Given $x^{2}+3 y+y^{2}=5$ at $(1,1)$
Here we have to differentiate the above equation with respect to x.

$$
\begin{aligned}
& \Rightarrow \frac{d}{d x}\left(x^{2}+3 y+y^{2}\right)=\frac{d}{d x}(5) \\
& \Rightarrow \frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(3 y)+\frac{d}{d x}\left(y^{2}\right)=\frac{d}{d x}(5) \\
& \therefore \frac{d y}{d x}\left(x^{n}\right)=n x^{n-1} \\
& \Rightarrow 2 x+3 \times \frac{d y}{d x}+2 y \times \frac{d y}{d x}=0 \\
& \Rightarrow 2 x+\frac{d y}{d x}(3+2 y)=0 \\
& \Rightarrow \frac{d y}{d x}(3+2 y)=-2 x \\
& \Rightarrow \frac{d y}{d x}=\frac{-2 x}{(3+2 y)}
\end{aligned}
$$

The Slope of the tangent at $(1,1)$ is

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{-2 \times 1}{(3+2 \times 1)} \\
& \Rightarrow \frac{d y}{d x}=\frac{-2}{(3+2)} \\
& \Rightarrow \frac{d y}{d x}=\frac{-2}{5}
\end{aligned}
$$

$\Rightarrow \frac{d y}{d x}=\frac{-2}{5}$
The Slope of the tangent at $(1,1)$ is $\frac{-2}{5}$
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right)}$
\Rightarrow The Slope of the normal $=\frac{\frac{-1}{\frac{-2}{5}}}{5}$
\Rightarrow The Slope of the normal $=\frac{5}{2}$
(x) $x y=6$ at $(1,6)$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClndCareer

Given $x y=6$ at $(1,6)$
Here we have to use the product rule for above equation, then we get

$$
\begin{aligned}
& \frac{d}{d x}(x y)=\frac{d}{d x}(6) \\
& \Rightarrow x \times \frac{d}{d x}(y)+\frac{d}{d x}(x)=\frac{d}{d x}(5) \\
& \therefore \frac{d}{d x}(\text { Constant })=0 \\
& \Rightarrow \frac{d y}{d x}+y=0 \\
& \Rightarrow \frac{d y}{d x}=-y \\
& \Rightarrow \frac{d y}{d x}=\frac{-y}{x}
\end{aligned}
$$

The Slope of the tangent at $(1,6)$ is

$$
\Rightarrow \frac{d y}{d x}=\frac{-6}{1}
$$

$$
\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=-6
$$

The Slope of the tangent at $(1,6)$ is -6

$$
\Rightarrow \text { The Slope of the normal }=\frac{-1}{\text { The Slope of the tangent }}
$$

\Rightarrow The Slope of the normal $=\frac{-1}{\frac{-1}{\left(\frac{y}{d x}\right)}}$
\Rightarrow The Slope of the normal $=\frac{-1}{-6}$
\Rightarrow The Slope of the normal $=\frac{1}{6}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClindCareer

2. Find the values of a and b if the Slope of the tangent to the curve $x y+a x+b y=2$ at $(1,1)$ is 2 .

Solution:

Given the Slope of the tangent to the curve $x y+a x+b y=2$ at $(1,1)$ is 2
First, we will find The Slope of tangent by using product rule, we get
$\Rightarrow x y+a x+b y=2$
$\Rightarrow x^{\frac{d}{d x}}(y)+y^{\frac{d}{d x}}(x)+a \frac{d}{d x}(x)+b^{\frac{d}{d x}}(y)+=\frac{d}{d x}(2)$
$\Rightarrow x^{\frac{d y}{d x}}+y+a+b^{\frac{d y}{d x}}=0$
$\Rightarrow \frac{d y}{d x}(x+b)+y+a=0$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}(\mathrm{x}+\mathrm{b})=-(\mathrm{a}+\mathrm{y})$
$\Rightarrow \frac{d y}{d x}=\frac{-(a+y)}{x+b}$
$\Rightarrow \frac{d y}{d x}=\frac{-(a+y)}{x+b}$
Since, the Slope of the tangent to the curve $x y+a x+b y=2$ at $(1,1)$ is 2 that is, $\frac{d y}{d x}=2$
$\Rightarrow\left\{\frac{-(a+y)}{x+b}\right\}_{(x=1, y=1)}=2$

$$
\Rightarrow \frac{-(a+1)}{1+b}=2
$$

$\Rightarrow-a-1=2(1+b)$
$\Rightarrow-\mathrm{a}-1=2+2 \mathrm{~b}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/
$\Rightarrow a+2 b=-3$
Also, the point $(1,1)$ lies on the curve $x y+a x+b y=2$, we have
$1 \times 1+a \times 1+b \times 1=2$
$\Rightarrow 1+a+b=2$
$\Rightarrow a+b=1 \ldots$
From (1) \& (2), we get $b=-4$
Substitute $b=-4$ in $a+b=1$
$a-4=1$
$\Rightarrow \mathrm{a}=5$
So the value of $a=5 \& b=-4$
3. If the tangent to the curve $y=x^{3}+a x+b$ at $(1,-6)$ is parallel to the line $x-y+5=0$, find a and b

Solution:

ClndCareer

Given the Slope of the tangent to the curve $y=x^{3}+a x+b$ at $(1,-6)$
First, we will find the slope of tangent
$y=x^{3}+a x+b$
$\frac{d y}{d x}=\frac{d}{d x}\left(x^{3}\right)+\frac{d}{d x}(a x)+\frac{d}{d x}(b)$
$\Rightarrow \frac{d y}{d x}=3 x^{3-1}+a\left(\frac{d x}{d x}\right)+0$
$\Rightarrow \frac{d y}{d x}=3 x^{2}+a$
The Slope of the tangent to the curve $y=x^{3}+a x+b$ at $(1,-6)$ is

$$
\begin{align*}
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}(\mathrm{x}=1, \mathrm{y}=-6)=3(1)^{2}+\mathrm{a} \\
& \Rightarrow \frac{\mathrm{dy}^{\mathrm{dx}}}{(x=1, y=-6)}=3+\mathrm{a} \ldots \tag{1}\\
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=3 \mathrm{x}^{2}+\mathrm{a}
\end{align*}
$$

The Slope of the tangent to the curve $y=x^{3}+a x+b$ at $(1,-6)$ is

$$
\begin{gather*}
\Rightarrow{ }^{\frac{\mathrm{dy}}{\mathrm{dx}}}(\mathrm{x}=1, \mathrm{y}=-6)=3(1)^{2}+a \\
\Rightarrow{ }^{\frac{\mathrm{dy}}{\mathrm{dx}}}(\mathrm{x}=1, \mathrm{y}=-6)=3+\mathrm{a} \ldots(\tag{1}
\end{gather*}
$$

The given line is $x-y+5=0$
$y=x+5$ is the form of equation of a straight line $y=m x+c$, where m is the Slope of the line.
So the slope of the line is $y=1 \times x+5$
So the Slope is $1 . \ldots$ (2)
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClndCareer

Also the point $(1,-6)$ lie on the tangent, so
$x=1 \& y=-6$ satisfies the equation, $y=x^{3}+a x+b$
$-6=1^{3}+a \times 1+b$
$\Rightarrow-6=1+a+b$
$\Rightarrow \mathrm{a}+\mathrm{b}=-7$
Since, the tangent is parallel to the line, from (1) \& (2)
Hence, $3+\mathrm{a}=1$
$\Rightarrow \mathrm{a}=-2$
From (3)
$a+b=-7$
$\Rightarrow-2+b=-7$
$\Rightarrow b=-5$
So the value is $a=-2 \& b=-5$
4. Find a point on the curve $y=x^{3}-3 x$ where the tangent is parallel to the chord joining $(1,-2)$ and $(2,2)$.

Solution:

ClindCareer

Given curve $y=x^{3}-3 x$
First, we will find the Slope of the tangent

$$
\begin{aligned}
& y=x^{3}-3 x \\
& \frac{d y}{d x}=\frac{d}{d x}\left(x^{3}\right)-\frac{d}{d x}(3 x) \\
& \Rightarrow \frac{d y}{d x}=3 x^{3-1}-3\left(\frac{d x}{d x}\right) \\
& \Rightarrow \frac{d y}{d x}=3 x^{2}-3 \ldots(1)
\end{aligned}
$$

$$
\begin{align*}
& \frac{d y}{d x}=\frac{d}{d x}\left(x^{3}\right)-\frac{d}{d x}(3 x) \\
& \Rightarrow \frac{d y}{d x}=3 x^{3-1}-3\left(\frac{d x}{d x}\right) \\
& \Rightarrow \frac{d y}{d x}=3 x^{2}-3 \ldots(1) \tag{1}
\end{align*}
$$

The equation of line passing through $\left(x_{0}, y_{0}\right)$ and The Slope m is $y-y_{0}=m(x-$ x_{0}).

So the Slope, $m=\frac{y-y_{0}}{x-x_{0}}$
The Slope of the chord joining $(1,-2) \&(2,2)$

$$
\begin{align*}
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2-(-2)}{2-1} \\
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{4}{1} \\
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=4 \ldots(2) \tag{2}
\end{align*}
$$

From (1) \& (2)
$3 x^{2}-3=4$
$\Rightarrow 3 x^{2}=7$
$\Rightarrow x^{2}=\frac{7}{3}$

$$
\begin{array}{ll}
& \Rightarrow y= \pm \sqrt{\frac{7}{3}}\left(\frac{7}{3}-3\right) \\
\Rightarrow x= \pm \sqrt{\frac{7}{3}} & \Rightarrow y= \pm \sqrt{\frac{7}{3}} \frac{-2}{(3)} \\
y=x^{3}-3 x & \Rightarrow y=\mp \frac{-2}{(3)} \sqrt{\frac{7}{3}} \\
\Rightarrow y=x\left(x^{2}-3\right) & \text { Thus, the required point is } x= \pm \sqrt{\frac{7}{3}} \& y=\mp \frac{-2}{(3)} \sqrt{\frac{7}{3}}
\end{array}
$$

5. Find a point on the curve $y=x^{3}-2 x^{2}-2 x$ at which the tangent lines are parallel to the line $y=2 x-3$.

Solution:

Given the curve $y=x^{3}-2 x^{2}-2 x$ and a line $y=2 x-3$
First, we will find the slope of tangent
$y=x^{3}-2 x^{2}-2 x$

$$
\begin{align*}
& \frac{d y}{d x}=\frac{d}{d x}\left(x^{3}\right)-\frac{d}{d x}\left(2 x^{2}\right)-\frac{d}{d x}(2 x) \\
& \Rightarrow \frac{d y}{d x}=3 x^{3-1}-2 \times 2\left(x^{2-1}\right)-2 \times x^{1-1} \\
& \Rightarrow \frac{d y}{d x}=3 x^{2}-4 x-2 \ldots(1) \tag{1}
\end{align*}
$$

$y=2 x-3$ is the form of equation of a straight line $y=m x+c$, where m is the Slope of the line.
So the slope of the line is $y=2 \times(x)-3$
Thus, the Slope $=2 \ldots$ (2)
From (1) \& (2)
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClndCareer

$\Rightarrow 3 x^{2}-4 x-2=2$
$\Rightarrow 3 x^{2}-4 x=4$
$\Rightarrow 3 x^{2}-4 x-4=0$
We will use factorization method to solve the above Quadratic equation.
$\Rightarrow 3 x^{2}-6 x+2 x-4=0$
$\Rightarrow 3 x(x-2)+2(x-2)=0$
$\Rightarrow(x-2)(3 x+2)=0$
$\Rightarrow(x-2)=0 \&(3 x+2)=0$
$\Rightarrow x=2$ or
$x=-2 / 3$
Substitute $x=2 \& x=-2 / 3$ in $y=x^{3}-2 x^{2}-2 x$
When $\mathrm{x}=2$
$\Rightarrow \mathrm{y}=(2)^{3}-2 \times(2)^{2}-2 \times(2)$
$\Rightarrow y=8-(2 \times 4)-4$
$\Rightarrow y=8-8-4$
$\Rightarrow y=-4$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

When $\mathrm{x}=\frac{-2}{3}$
$\Rightarrow y=\left(\frac{-2}{3}\right)^{3}-2 \times\left(\frac{-2}{3}\right)^{2}-2 \times\left(\frac{-2}{3}\right)$
$\left.\Rightarrow y=\frac{-8}{(27}\right)-2 \times\left(\frac{4}{9}\right)+\left(\frac{4}{3}\right)$
$\left.\Rightarrow y=\left(\frac{-8}{27}\right)-\frac{8}{9}\right)+\left(\frac{4}{3}\right)$
Taking LCM
$\Rightarrow \mathrm{y}=\frac{(-8 \times 1)-(8 \times 3)+(4 \times 9)}{27}$
$\Rightarrow \mathrm{y}=\frac{-8-24+36}{27}$
$\Rightarrow y=\frac{4}{27}$
Thus, the points are $(2,-4) \&\left(\frac{-2}{3}, \frac{4}{27}\right)$
6. Find a point on the curve $y^{2}=2 x^{3}$ at which the Slope of the tangent is 3

Solution:

Given the curve $y^{2}=2 x^{3}$ and the Slope of tangent is 3
$y^{2}=2 x^{3}$
Differentiating the above with respect to x
$\Rightarrow 2 y^{2-1} \frac{d y}{d x}=2 \times 3 x^{3-1}$
$\Rightarrow \frac{d y}{\frac{d y}{d x}}=3 x^{2}$
$\Rightarrow \frac{d y}{d x}=\frac{3 x^{2}}{y}$
Since, The Slope of tangent is 3
$\frac{3 x^{2}}{y}=3$
$\Rightarrow \frac{x^{2}}{y}=1$
$\Rightarrow \mathrm{x}^{2}=\mathrm{y}$
Substituting $x^{2}=y$ in $y^{2}=2 x^{3}$,
$\left(x^{2}\right)^{2}=2 x^{3}$
$x^{4}-2 x^{3}=0$
$x^{3}(x-2)=0$
$x^{3}=0$ or $(x-2)=0$
$\mathrm{x}=0$ or $\mathrm{x}=2$
If $x=0$
$\Rightarrow \frac{d y}{d x}=\frac{3(0)^{2}}{y}$
$d y / d x=0$ which is not possible.
So we take $x=2$ and substitute it in $y^{2}=2 x^{3}$, we get
$y^{2}=2(2)^{3}$
$y^{2}=2 \times 8$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/
$y^{2}=16$
$y=4$
Thus, the required point is $(2,4)$
7. Find a point on the curve $\mathbf{x y + 4}=\mathbf{0}$ at which the tangents are inclined at an angle of 45° with the x -axis.

Solution:

ClndCareer

Given the curve is $x y+4=0$
If a tangent line to the curve $y=f(x)$ makes an angle θ with x - axis in the positive direction, then
$\frac{d y}{d x}=$ The Slope of the tangent $=\tan \theta$
$x y+4=0$
Differentiating the above with respect to x

$$
\begin{aligned}
& \Rightarrow x^{\frac{d}{d x}}(y)+y \frac{d}{d x}(x)+\frac{d}{d x}(4)=0 \\
& \Rightarrow x^{\frac{d y}{d x}}+y=0 \\
& \Rightarrow \frac{d y}{d x}=-y \\
& \Rightarrow \frac{d y}{d x}=\frac{-y}{x} \ldots \text { (1) }
\end{aligned}
$$

$$
\text { Also, } \frac{d y}{d x}=\tan 45^{\circ}=1 \ldots \text { (2) }
$$

From (1) \& (2), we get,
$\Rightarrow \stackrel{\frac{-y}{x}}{x}=1$

$$
\Rightarrow x=-y
$$

Substitute in $x y+4=0$, we get
$\Rightarrow x(-x)+4=0$
$\Rightarrow-x^{2}+4=0$
$\Rightarrow x^{2}=4$
$\Rightarrow \mathrm{x}=$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/
± 2
So when $\mathrm{x}=2, \mathrm{y}=-2$
And when $\mathrm{x}=-2, \mathrm{y}=2$
Thus, the points are $(2,-2) \&(-2,2)$
8. Find a point on the curve $y=x^{2}$ where the Slope of the tangent is equal to the x coordinate of the point.

Solution:

Given the curve is $y=x^{2}$
$y=x^{2}$
Differentiating the above with respect to x

$$
\begin{align*}
& \Rightarrow \frac{d y}{d x}=2 x^{2-1} \\
& \Rightarrow \frac{d y}{d x}=2 x \ldots \tag{1}
\end{align*}
$$

Also given the Slope of the tangent is equal to the x-coordinate, $\frac{d y}{d x}=x .$.

From (1) \& (2), we get,
$2 x=x$
$\Rightarrow \mathrm{x}=0$.
Substituting this in $y=x^{2}$, we get,
$y=0^{2}$
$\Rightarrow y=0$
Thus, the required point is $(0,0)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClndCareer

9. At what point on the circle $x^{2}+y^{2}-2 x-4 y+1=0$, the tangent is parallel to $x-$ axis. Solution:
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClindCareer

Given the curve is $\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}-4 \mathrm{y}+1=0$
Differentiating the above with respect to x

$$
\begin{align*}
& \Rightarrow x^{2}+y^{2}-2 x-4 y+1=0 \\
& \Rightarrow 2 x^{2-1}+2 y^{2-1} \times \frac{d y}{d x}-2-4^{\times \frac{d y}{d x}}+0=0 \\
& \Rightarrow 2 x+2 y \frac{d y}{d x}-2-4 \frac{d y}{d x}=0 \\
& \Rightarrow \frac{d y}{d x}(2 y-4)=-2 x+2 \\
& \Rightarrow \frac{d y}{d x}=\frac{-2(x-1)}{2(y-2)} \\
& \Rightarrow \frac{d y}{d x}=\frac{-(x-1)}{(y-2)} \ldots \text { (1) } \tag{1}
\end{align*}
$$

$\therefore \frac{d y}{d x}=$ The Slope of the tangent $=\tan \theta$
Since, the tangent is parallel to x-axis
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\tan (0)=0$
Because tan (0) $=0$
From (1) \& (2), we get,
$\Rightarrow \frac{\frac{-(x-1)}{(y-2)}}{y}=0$

$$
\begin{align*}
& \Rightarrow \frac{d y}{d x}(2 y-4)=-2 x+2 \\
& \Rightarrow \frac{d y}{d x}=\frac{-2(x-1)}{2(y-2)} \\
& \Rightarrow \frac{d y}{d x}=\frac{-(x-1)}{(y-2)} \ldots \text { (1) } \tag{1}
\end{align*}
$$

$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=$ The Slope of the tangent $=\tan \theta$
Since, the tangent is parallel to x - axis
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\tan (0)=0$
Because tan $(0)=0$
From (1) \& (2), we get,
$\Rightarrow \frac{-(x-1)}{(y-2)}=0$
$\Rightarrow-(x-1)=0$
$\Rightarrow x=1$
Substituting $x=1$ in $x^{2}+y^{2}-2 x-4 y+1=0$, we get,
$\Rightarrow 1^{2}+y^{2}-2(1)-4 y+1=0$
$\Rightarrow 1-y^{2}-2-4 y+1=0$
$\Rightarrow y^{2}-4 y=0$
$\Rightarrow \mathrm{y}(\mathrm{y}-4)=0$
$\Rightarrow \mathrm{y}=0$ and $\mathrm{y}=4$
Thus, the required point is $(1,0)$ and $(1,4)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClndCareer

10. At what point of the curve $y=x^{2}$ does the tangent make an angle of 45° with the x-axis?

Solution:

Given the curve is $y=x^{2}$
Differentiating the above with respect to x
$\Rightarrow y=x^{2}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

$$
\begin{align*}
& \Rightarrow \frac{d y}{d x}=2 x^{2-1} \\
& \Rightarrow \frac{d y}{d x}=2 x \ldots \tag{1}
\end{align*}
$$

$\therefore \frac{d y}{d x}=$ The Slope of the tangent $=\tan \theta$
Since, the tangent make an angle of 45° with x - axis
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\tan \left(45^{\circ}\right)=1 \ldots$ (2)
Because tan $\left(45^{\circ}\right)=1$
From (1) \& (2), we get,
$\Rightarrow 2 x=1$
$\Rightarrow x=\frac{1}{2}$
Substituting $\mathrm{x}=\frac{\mathbf{1}}{\mathbf{2}}$ in $\mathrm{y}=\mathrm{x}^{2}$, we get,
$\Rightarrow \mathrm{y}=\left(\frac{\mathbf{1}}{\mathbf{2}}\right)^{2}$
$\Rightarrow \mathrm{y}=\frac{\mathbf{1}}{4}$
Thus, the required point is $\left(\frac{\mathbf{1}}{\mathbf{2}}, \frac{\mathbf{1}}{\mathbf{4}}\right)$

Exercise 16.2 Page No: 15.27

1. Find the equation of the tangent to the curve $\sqrt{ } \mathbf{x}+\sqrt{ } \mathbf{y}=\mathbf{a}$, at the point $\left(\mathbf{a}^{2} / 4, \mathbf{a}^{2} / 4\right)$.

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClndCareer

Given $V \mathrm{x}+\mathrm{Vy}=\mathrm{a}$
To find the slope of the tangent of the given curve we have to differentiate the given equation

$$
\begin{aligned}
& \frac{1}{2 \sqrt{x}}+\frac{1}{2 \sqrt{y}}\left(\frac{d y}{d x}\right)=0 \\
& \frac{d y}{d x}=-\frac{\sqrt{x}}{\sqrt{y}} \\
& \text { At }\left(\frac{a^{2}}{4}, \frac{a^{2}}{4}\right) \text { slope } m, \text { is }-1
\end{aligned}
$$

The equation of the tangent is given by $y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{aligned}
& y-\frac{a^{2}}{4}=-1\left(x-\frac{a^{2}}{4}\right) \\
& x+y=\frac{a^{2}}{2}
\end{aligned}
$$

2. Find the equation of the normal to $y=2 x^{3}-x^{2}+3$ at (1, 4).

Solution:

ClindCareer

Given $y=2 x^{3}-x^{2}+3$
By differentiating the given curve, we get the slope of the tangent
$m=\frac{d y}{d x}=6 x^{2}-2 x$
$m=4$ at (1,4)
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
$m($ normal $)=-\frac{1}{4}$
Equation of normal is given by $y-y_{1}=m$ (normal) $\left(x-x_{1}\right)$
$y-4=\left(-\frac{1}{4}\right)(x-1)$
$x+4 y=17$
$m($ normal $)=-\frac{1}{4}$
Equation of normal is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (normal) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-4=\left(-\frac{1}{4}\right)(x-1)$
$x+4 y=17$
3. Find the equation of the tangent and the normal to the following curves at the indicated points:
(i) $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $(0,5)$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClndCareer

Given $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $(0,5)$
By differentiating the given curve, we get the slope of the tangent
$\frac{d y}{d x}=4 x^{3}-18 x^{2}+26 x-10$
m (tangent) at $(0,5)=-10$
m (normal) at $(0,5)=\frac{1}{10}$
Equation of tangent is given by $y-y_{1}=m$ (tangent) $\left(x-x_{1}\right)$
$y-5=-10 x$
$y+10 x=5$
Equation of normal is given by $y-y_{1}=m$ (normal) $\left(x-x_{1}\right)$
$y-5=\frac{1}{10} x$
(ii) $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $x=1 y=3$

Solution:

ClndCareer

Given $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $x=1 y=3$
By differentiating the given curve, we get the slope of the tangent

$$
\frac{d y}{d x}=4 x^{3}-18 x^{2}+26 x-10
$$

m (tangent) at $(x=1)=2$
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
m (normal) at $(\mathrm{x}=1)=-\frac{1}{2}$
Equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-3=2(x-1)$
$y=2 x+1$
Equation of normal is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (normal) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-3=-\frac{1}{2}(x-1)$
$2 \mathrm{y}=7-\mathrm{x}$
(iii) $y=x^{2}$ at (0,0)

Solution:

Given $\mathrm{y}=\mathrm{x}^{2}$ at $(0,0)$
By differentiating the given curve, we get the slope of the tangent
$\frac{d y}{d x}=2 x$
m (tangent) at $(\mathrm{x}=0)=0$
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClindCareer

m (normal) at $(\mathrm{x}=0)=\frac{1}{0}$
We can see that the slope of normal is not defined
Equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y=0$
Equation of normal is given by $y-y_{1}=m$ (normal) $\left(x-x_{1}\right)$
$x=0$
(iv) $y=2 x^{2}-3 x-1$ at $(1,-2)$

Solution:

Given $y=2 x^{2}-3 x-1$ at $(1,-2)$
By differentiating the given curve, we get the slope of the tangent
$\frac{d y}{d x}=4 x-3$
m (tangent) at $(1,-2)=1$
Normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at $(1,-2)=-1$
Equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y+2=1(x-1)$
$y=x-3$
Equation of normal is given by $y-y_{1}=m$ (normal) $\left(x-x_{1}\right)$
$y+2=-1(x-1)$
$y+x+1=0$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/
(v) $y^{2}=\frac{x^{3}}{4-x}$

Solution:

By differentiating the given curve, we get the slope of the tangent
$2 y \frac{d y}{d x}=\frac{(4-x) 3 x^{2}+x^{4}}{(4-x)^{2}}$
$\frac{d y}{d x}=\frac{(4-x) 3 x^{2}+x^{4}}{2 y(4-x)^{2}}$
m (tangent) at $(2,-2)=-2$
m (normal) at $(2,-2)=\frac{1}{2}$

Equation of tangent is given by $y-y_{1}=m$ (tangent) $\left(x-x_{1}\right)$
$y+2=-2(x-2)$
$y+2 x=2$
Equation of normal is given by $y-y_{1}=m$ (normal) $\left(x-x_{1}\right)$
$y+2=\frac{1}{2}(x-2)$
$2 y+4=x-2$
$2 y-x+6=0$
4. Find the equation of the tangent to the curve $x=\theta+\sin \theta, y=1+\cos \theta$ at $\theta=\pi / 4$.

Solution:
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClindCareer

Given $x=\theta+\sin \theta, y=1+\cos \theta$ at $\theta=\pi / 4$
By differentiating the given equation with respect to θ, we get the slope of the tangent

$$
\begin{aligned}
& \frac{d x}{d \theta}=1+\cos \theta \\
& \frac{d y}{d \theta}=-\sin \theta
\end{aligned}
$$

Dividing both the above equations

$$
\frac{d y}{d x}=-\frac{\sin \theta}{1+\cos \theta}
$$

$$
\text { m at } \theta=(\pi / 4)=-1+\frac{1}{\sqrt{2}}
$$

Equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$

$$
y-1-\frac{1}{\sqrt{2}}=\left(-1+\frac{1}{\sqrt{2}}\right)\left(x-\frac{\pi}{4}-\frac{1}{\sqrt{2}}\right)
$$

5. Find the equation of the tangent and the normal to the following curves at the indicated points:
(i) $x=\theta+\sin \theta, y=1+\cos \theta$ at $\theta=\pi / 2$

Solution:

Given $x=\theta+\sin \theta, y=1+\cos \theta$ at $\theta=\pi / 2$
By differentiating the given equation with respect to θ, we get the slope of the tangent

$$
\begin{aligned}
& \frac{d x}{d \theta}=1+\cos \theta \\
& \frac{d y}{d \theta}=-\sin \theta
\end{aligned}
$$

Dividing both the above equations
$\frac{d y}{d x}=-\frac{\sin \theta}{1+\cos \theta}$
m (tangent) at $\theta=(\pi / 2)=-1$
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
m (normal) at $\theta=(\pi / 2)=1$
Equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-1=-1\left(x-\frac{\pi}{2}-1\right)$
Equation of normal is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (normal) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-1=1\left(x-\frac{\pi}{2}-1\right)$
(ii) $x=\frac{2 a t^{2}}{1+t^{2}}, y=\frac{2 a t^{3}}{1+t^{2}} a t t=\frac{1}{2}$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClndCareer

By differentiating the given equation with respect to t, we get the slope of th ϵ tangent

$$
\begin{aligned}
& \frac{d x}{d t}=\frac{\left(1+t^{2}\right) 4 a t-2 a^{2}(2 t)}{\left(1+t^{2}\right)^{2}} \\
& \frac{d x}{d t}=\frac{4 a t}{\left(1+t^{2}\right)^{2}} \\
& \frac{d y}{d t}=\frac{\left(1+t^{2}\right) 6 a^{2}-2 a t^{3}(2 t)}{\left(1+t^{2}\right)^{2}} \\
& \frac{d y}{d t}=\frac{6 a t^{2}+2 a t^{4}}{\left(1+t^{2}\right)^{2}}
\end{aligned}
$$

ClndCareer

$$
\frac{d y}{d t}=\frac{6 a t^{2}+2 a t^{4}}{\left(1+t^{2}\right)^{2}}
$$

Now dividing $\frac{\mathrm{dy}}{\mathrm{dt}}$ and $\frac{\mathrm{dx}}{\mathrm{dt}}$ to obtain the slope of tangent $\frac{d y}{d x}=\frac{6 a t^{2}+2 a t^{4}}{4 a t}$
m (tangent) at $t=\frac{1}{2}$ is $\frac{13}{16}$
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
m (normal) at $\mathrm{t}=\frac{1}{2}$ is $-\frac{16}{13}$
Equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-\frac{a}{5}=\frac{13}{16}\left(x-\frac{2 a}{5}\right)$
Equation of normal is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (normal) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-\frac{a}{5}=-\frac{16}{13}\left(x-\frac{2 a}{5}\right)$
(iii) $\mathrm{x}=\mathrm{at}^{2}, \mathrm{y}=2 \mathrm{at} \mathrm{at} \mathrm{t}=1$.

Solution:

ClindCareer

Given $\mathrm{x}=\mathrm{at}^{2}, \mathrm{y}=2$ at at $\mathrm{t}=1$.
By differentiating the given equation with respect to t, we get the slope of the tangent
$\frac{d x}{d t}=2 a t$
$\frac{d y}{d t}=2 a$
Now dividing $\frac{\mathrm{dy}}{\mathrm{dt}}$ and $\frac{\mathrm{dx}}{\mathrm{dt}}$ to obtain the slope of tangent
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\mathrm{t}}$
$\frac{d y}{d x}=\frac{1}{t}$
m (tangent) at $\mathrm{t}=1$ is 1
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
m (normal) at $\mathrm{t}=1$ is -1
Equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-2 a=1(x-a)$
Equation of normal is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (normal) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-2 a=-1(x-a)$
(iv) $x=a \sec t, y=b \tan t$ at t.

Solution:

ClindCareer

Given $\mathrm{x}=\mathrm{a} \sec \mathrm{t}, \mathrm{y}=\mathrm{b} \tan \mathrm{t}$ at t .
By differentiating the given equation with respect to t, we get the slope of the tangent
$\frac{\mathrm{dx}}{\mathrm{dt}}=\operatorname{asectan} \mathrm{t}$
$\frac{d y}{d t}=\operatorname{bsec}^{2} t$
Now dividing $\frac{\mathrm{dy}}{\mathrm{dt}}$ and $\frac{\mathrm{dx}}{\mathrm{dt}}$ to obtain the slope of tangent
$\frac{d y}{d x}=\frac{b \operatorname{cosec} t}{a}$
m (tangent) at $\mathrm{t}=\frac{\mathrm{bcosec} t}{\mathrm{a}}$
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
m (normal) at $\mathrm{t}=-\frac{\mathrm{a}}{\mathrm{b}} \sin \mathrm{t}$
Equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-b \tan t=\frac{b \operatorname{cosec} t}{a}(x-a \sec t)$
Equation of normal is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (normal) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-b \tan t=-\frac{a \sin t}{b}(x-a \sec t)$

ClndCareer

Equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-b \tan t=\frac{b \operatorname{cosec} t}{a}(x-a \sec t)$
Equation of normal is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (normal) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-b \tan t=-\frac{a \sin t}{b}(x-a \sec t)$
(v) $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$ at θ

Solution:

ClndCareer

Given $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$ at θ
By differentiating the given equation with respect to θ, we get the slope of the tangent
$\frac{d x}{d \theta}=a(1+\cos \theta)$
$\frac{d y}{d \theta}=a(\sin \theta)$
Now dividing $\frac{d y}{d \theta}$ and $\frac{d x}{d \theta}$ to obtain the slope of tangent
$\frac{d y}{d x}=\frac{\sin \theta}{1+\cos \theta}$
m (tangent) at theta is $\frac{\sin \theta}{1+\cos \theta}$
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
m (normal) at theta is $-\frac{\sin \theta}{1+\cos \theta}$
Equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-a(1-\cos \theta)=\frac{\sin \theta}{1+\cos \theta}(x-a(\theta+\sin \theta))$
Equation of normal is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (normal) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-a(1-\cos \theta)=\frac{1+\cos \theta}{-\sin \theta}(x-a(\theta+\sin \theta))$
$y-a(1-\cos \theta)=\frac{1+\cos \theta}{-\sin \theta}(x-a(\theta+\sin \theta))$
(vi) $x=3 \cos \theta-\cos ^{3} \theta, y=3 \sin \theta-\sin ^{3} \theta$

Solution:
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClndCareer

Given $x=3 \cos \theta-\cos ^{3} \theta, y=3 \sin \theta-\sin ^{3} \theta$
By differentiating the given equation with respect to θ, we get the slope of the tangent
$\frac{\mathrm{dx}}{\mathrm{d} \theta}=-3 \sin \theta+3 \cos ^{2} \theta \sin \theta$
$\frac{d y}{d \theta}=3 \cos \theta-3 \sin ^{2} \theta \cos \theta$
Now dividing $\frac{d y}{d \theta}$ and $\frac{d x}{d \theta}$ to obtain the slope of tangent
$\frac{d y}{d x}=\frac{3 \cos \theta-3 \sin ^{2} \theta \cos \theta}{-3 \sin \theta+3 \cos ^{2} \theta \sin \theta}=-\tan ^{3} \theta$
m (tangent) at theta is $-\tan ^{3} \theta$
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
m (normal) at theta is $\cot ^{3} \theta$
Equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-3 \sin \theta+\sin ^{3} \theta=-\tan ^{3} \theta\left(x-3 \cos \theta+3 \cos ^{3} \theta\right)$
Equation of normal is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (normal) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-3 \sin \theta+\sin ^{3} \theta=\cot ^{3} \theta\left(x-3 \cos \theta+3 \cos ^{3} \theta\right)$
6. Find the equation of the normal to the curve $x^{2}+2 y^{2}-4 x-6 y+8=0$ at the point whose abscissa is 2 .

Solution:

ClndCareer

Given $x^{2}+2 y^{2}-4 x-6 y+8=0$
By differentiating the given curve, we get the slope of the tangent

$$
\begin{aligned}
& 2 x+4 y \frac{d y}{d x}-4-6 \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=\frac{4-2 x}{4 y-6}
\end{aligned}
$$

Finding y co - ordinate by substituting x in the given curve
$2 y^{2}-6 y+4=0$
$y^{2}-3 y+2=0$
$y=2$ or $y=1$
m (tangent) at $x=2$ is 0
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
m (normal) at $x=2$ is $1 / 0$, which is undefined
Equation of normal is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (normal) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$x=2$
7. Find the equation of the normal to the curve $a y^{2}=x^{3}$ at the point $\left(a m^{2}, a m^{3}\right)$.

Solution:

ClndCareer

Given $\mathrm{ay}^{2}=\mathrm{x}^{3}$
By differentiating the given curve, we get the slope of the tangent
2ay $\frac{d y}{d x}=3 x^{2}$
$\frac{d y}{d x}=\frac{3 x^{2}}{2 a y}$
m (tangent) at $\left(\mathrm{am}^{2}, \mathrm{am}^{3}\right)$ is $\frac{3 \mathrm{~m}}{2}$
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
m (normal) at $\left(\mathrm{am}^{2}, \mathrm{am}^{3}\right)$ is $-\frac{2}{3 \mathrm{~m}}$
Equation of normal is given by $y-y_{1}=m$ (normal) $\left(x-x_{1}\right)$
$y-\mathrm{am}^{3}=-\frac{2}{3 \mathrm{~m}}\left(\mathrm{x}-\mathrm{am}^{2}\right)$
$y-a m^{3}=-\frac{2}{3 m}\left(x-a m^{2}\right)$
8. The equation of the tangent at $(2,3)$ on the curve $y^{2}=a x^{3}+b$ is $y=4 x-5$. Find the values of a and b.

Solution:

Given $y^{2}=a x^{3}+b$ is $y=4 x-5$
By differentiating the given curve, we get the slope of the tangent

$$
2 y \frac{d y}{d x}=3 a x^{2}
$$

$$
\frac{d y}{d x}=\frac{3 a x^{2}}{2 y}
$$

m (tangent) at $(2,3)=2 \mathrm{a}$
Equation of tangent is given by $y-y_{1}=m$ (tangent) $\left(x-x_{1}\right)$
Now comparing the slope of a tangent with the given equation
$2 \mathrm{a}=4$
$a=2$
Now $(2,3)$ lies on the curve, these points must satisfy
$3^{2}=2 \times 2^{3}+b$
$b=-7$
9. Find the equation of the tangent line to the curve $y=x^{2}+4 x-16$ which is parallel to the line $3 x-y+1=0$.

Solution:

ClindCareer

Given $y=x^{2}+4 x-16$
By differentiating the given curve, we get the slope of the tangent

$$
\begin{aligned}
& \frac{d y}{d x}=2 x+4 \\
& m \text { (tangent) }=2 x+4
\end{aligned}
$$

Equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
Now comparing the slope of a tangent with the given equation
$2 x+4=3$
$\mathrm{x}=-\frac{1}{2}$
Now substituting the value of x in the curve to find y
$y=\frac{1}{4}-2-16=-\frac{71}{4}$
Therefore, the equation of tangent parallel to the given line is

$$
y+\frac{71}{4}=3\left(x+\frac{1}{2}\right)
$$

$2 x+4=3$
$\mathrm{x}=-\frac{1}{2}$
Now substituting the value of x in the curve to find y

$$
y=\frac{1}{4}-2-16=-\frac{71}{4}
$$

Therefore, the equation of tangent parallel to the given line is

$$
y+\frac{71}{4}=3\left(x+\frac{1}{2}\right)
$$

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClindCareer

10. Find the equation of normal line to the curve $y=x^{3}+2 x+6$ which is parallel to the line $x+14 y+4=0$.

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClindCareer

Given $\mathrm{y}=\mathrm{x}^{3}+2 \mathrm{x}+6$
By differentiating the given curve, we get the slope of the tangent
$\frac{d y}{d x}=3 x^{2}+2$
m (tangent) $=3 x^{2}+2$
Normal is perpendicular to tangent so, $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
$m($ normal $)=\frac{-1}{3 \mathrm{x}^{2}+2}$
Equation of normal is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (normal) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
Now comparing the slope of normal with the given equation
$m($ normal $)=-\frac{1}{14}$
$-\frac{1}{14}=-\frac{1}{3 x^{2}+2}$
$\mathrm{x}=2$ or -2
Hence the corresponding value of y is 18 or -6
So, equations of normal are
$y-18=-\frac{1}{14}(x-2)$ Or
$y+6=-\frac{1}{14}(x+2)$

Hence the corresponding value of y is 18 or -6
So, equations of normal are
$y-18=-\frac{1}{14}(x-2)$
Or
$y+6=-\frac{1}{14}(x+2)$

Exercise 16.3 Page No: 16.40

1. Find the angle to intersection of the following curves:
(i) $y^{2}=x$ and $x^{2}=y$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

Given curves $\mathrm{y}^{2}=\mathrm{x} \ldots$ (1)
And $x^{2}=y$... (2)
First curve is $\mathrm{y}^{2}=\mathrm{x}$
Differentiating above with respect to x ,
$\Rightarrow 2 y \cdot \frac{d y}{d x}=1$
$\Rightarrow m_{1}=\frac{d y}{d x}=\frac{1}{2 x}$.
The second curve is $x^{2}=y$
$\Rightarrow 2 \mathrm{x}=\frac{\mathrm{dy}}{\mathrm{dx}}$
$\Rightarrow \mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x} \ldots$
Substituting (1) in (2), we get
$\Rightarrow \mathrm{x}^{2}=\mathrm{y}$
$\Rightarrow\left(y^{2}\right)^{2}=y$
$\Rightarrow \mathrm{y}^{4}-\mathrm{y}=0$
$\Rightarrow \mathrm{y}\left(\mathrm{y}^{3}-1\right)=0$
$\Rightarrow \mathrm{y}=0$ or $\mathrm{y}=1$
Substituting $y=0 \& y=1$ in (1) in (2),
$x=y^{2}$
When $\mathrm{y}=0, \mathrm{x}=0$
When $\mathrm{y}=1, \mathrm{x}=1$
Substituting above values for $\mathrm{m}_{1} \& \mathrm{~m}_{2}$, we get,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClndCareer

When $\mathrm{x}=0$,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/
$\mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2 \times 0}=\infty$
When $\mathrm{x}=1$,
$\mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2 \times 1}=\frac{1}{2}$
Values of m_{1} is $\infty \& \frac{1}{2}$
When $\mathrm{y}=0$,
$\mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x}=2 \times 0=0$
When $\mathrm{x}=1$,
$\mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}=3 \mathrm{x}=2 \times 1=2$
Values of m_{2} is 0 \& 2
When $\mathrm{m}_{1}=\infty \& \mathrm{~m}_{2}=0$
$\operatorname{Tan} \theta=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
$\operatorname{Tan} \theta=\left|\frac{0-\infty}{1+\infty \times 0}\right|$
$\operatorname{Tan} \theta=\infty$
$\theta=\tan ^{-1}(\infty)$
$\therefore \operatorname{Tan}^{-1}(\infty)=\frac{\pi}{2}$

ClndCareer

$\theta=\frac{\pi}{2}$
When $m_{1}=\frac{1}{2} \& m_{2}=2$
Angle of intersection of two curves is given by $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
$\operatorname{Tan} \theta=\left|\frac{2-\frac{1}{2}}{1+\frac{1}{2} \times 2}\right|$
$\operatorname{Tan} \theta=\left|\frac{2-\frac{1}{2}}{1+\frac{1}{2} \times 2}\right|$
$\operatorname{Tan} \theta=\left|\frac{\frac{3}{2}}{2}\right|$
$\operatorname{Tan} \theta=\left|\frac{3}{4}\right|$
$\theta=\tan ^{-1}\left(\frac{3}{4}\right)$
$\theta \cong 36.86$
(ii) $\mathrm{y}=\mathrm{x}^{2}$ and $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathbf{2 0}$

Solution:

ClndCareer

Given curves $\mathrm{y}=\mathrm{x}^{2} \ldots$ (1) and $\mathrm{x}^{2}+\mathrm{y}^{2}=20 \ldots$ (2)
Now consider first curve $\mathrm{y}=\mathrm{x}^{2}$
$\Rightarrow m_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x}$
Consider second curve is $\mathrm{x}^{2}+\mathrm{y}^{2}=20$
Differentiating above with respect to x ,

$$
\begin{aligned}
& \Rightarrow 2 x+2 y \cdot \frac{d y}{d x}=0 \\
& \Rightarrow y \cdot \frac{d y}{d x}=-x
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow m_{2}=\frac{d y}{d x}=\frac{-x}{y} \ldots \tag{4}
\end{equation*}
$$

Substituting (1) in (2), we get
$\Rightarrow y+y^{2}=20$
$\Rightarrow \mathrm{y}^{2}+\mathrm{y}-20=0$
We will use factorization method to solve the above Quadratic equation
$\Rightarrow \mathrm{y}^{2}+5 \mathrm{y}-4 \mathrm{y}-20=0$
$\Rightarrow y(y+5)-4(y+5)=0$
$\Rightarrow(y+5)(y-4)=0$
$\Rightarrow(y+5)(y-4)=0$
$\Rightarrow y=-5 \& y=4$
Substituting $y=-5 \& y=4$ in (1) in (2),
$y=x^{2}$
When $\mathrm{y}=-5$,
$\Rightarrow-5=x^{2}$
$\Rightarrow \mathrm{x}=\sqrt{-5}$
When $\mathrm{y}=4$,
$\Rightarrow 4=x^{2}$
$\Rightarrow \mathrm{x}= \pm 2$
Substituting above values for $m_{1} \& m_{2}$, we get,
Values of m_{1} is $4 \&-4$
When $\mathrm{x}=2$,
When $y=4 \& x=2$

$$
\begin{aligned}
& m_{1}=\frac{d y}{d x}=2 \times 2 \\
& =4
\end{aligned}
$$

$$
\begin{aligned}
& m_{2}=\frac{d y}{d x}=\frac{-x}{y}=\frac{-2}{4}=\frac{-1}{2} \\
& \text { When } y=4 \& x=-2
\end{aligned}
$$

$$
m_{2}=\frac{d y}{d x}=\frac{-x}{y}=\frac{2}{4}=\frac{1}{2}
$$

$m_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=2 \times-2$
$=-4$
Values of m_{2} is $\frac{-1}{2} \& \frac{1}{2}$
When $\mathrm{m}_{1}=\infty$ \& $\mathrm{m}_{2}=0$

ClndCareer

Values of m_{2} is $\frac{-1}{2} \& \frac{1}{2}$
When $\mathrm{m}_{1}=\infty \& \mathrm{~m}_{2}=0$
Angle of intersection of two curves is given by $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
$\operatorname{Tan} \theta=\left|\frac{\frac{-1}{2}-4}{1+2 \times 4}\right|$
$\operatorname{Tan} \theta=\left|\frac{\frac{-9}{2}}{1-2}\right|$
$\operatorname{Tan} \theta=\left|\frac{9}{2}\right|$
$\theta=\tan ^{-1}\left(\frac{9}{2}\right)$
(iii) $2 y^{2}=x^{3}$ and $y^{2}=32 x$

Solution:

Clnd Career

Given curves $2 y^{2}=x^{3} \ldots$ (1) and $y^{2}=32 x \ldots$ (2)
First curve is $2 y^{2}=x^{3}$
Differentiating above with respect to x ,

$$
\begin{align*}
& \Rightarrow 4 y \cdot \frac{d y}{d x}=3 x^{2} \\
& \Rightarrow m_{1}=\frac{d y}{d x}=\frac{3 x^{2}}{4 y} \ldots \tag{3}
\end{align*}
$$

Second curve is $y^{2}=32 x$

$$
\begin{align*}
& \Rightarrow 2 y \cdot \frac{d y}{d x}=32 \\
& \Rightarrow y \cdot \frac{d y}{d x}=16 \\
& \Rightarrow m_{2}=\frac{d y}{d x}=\frac{16}{y} . \tag{4}
\end{align*}
$$

Substituting (2) in (1), we get

$$
\begin{aligned}
& \Rightarrow 2 y^{2}=x^{3} \\
& \Rightarrow 2(32 x)=x^{3} \\
& \Rightarrow 64 x=x^{3} \\
& \Rightarrow x^{3}-64 x=0 \\
& \Rightarrow x\left(x^{2}-64\right)=0 \\
& \Rightarrow x=0 \&\left(x^{2}-64\right)=0
\end{aligned}
$$

Substituting (2) in (1), we get
$\Rightarrow 2 y^{2}=x^{3}$
$\Rightarrow 2(32 \mathrm{x})=\mathrm{x}^{3}$
$\Rightarrow 64 \mathrm{x}=\mathrm{x}^{3}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/
$\Rightarrow x^{3}-64 x=0$
$\Rightarrow x\left(x^{2}-64\right)=0$
$\Rightarrow x=0 \&\left(x^{2}-64\right)=0$
$\Rightarrow x=0 \& \pm 8$
Substituting $x=0 \& x= \pm 8$ in (1) in (2),
$y^{2}=32 x$
When $x=0, y=0$
When $x=8$
$\Rightarrow y^{2}=32 \times 8$
$\Rightarrow y^{2}=256$
$\Rightarrow y= \pm 16$
Substituting above values for $m_{1} \& m_{2}$, we get,
When $\mathrm{x}=0, \mathrm{y}=16$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/
$\mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}$
$\Rightarrow \frac{16}{y}=\frac{16}{0}=\infty$
$\Rightarrow \frac{3 \times 0^{2}}{4 \times 8}$
When $\mathrm{y}=16$,
$=0$
$\mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}$
When $x=8, y=16$
$\mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}$
$\Rightarrow \frac{16}{y}=\frac{16}{16}$
$\Rightarrow \frac{3 \times 8^{2}}{4 \times 16}$
$=1$
$=3$
When $m_{1}=0 \& m_{2}=\infty$
Values of m_{1} is $0 \& 3$
$\Rightarrow \operatorname{Tan} \theta=\left|\frac{\mathrm{m}_{1-} \mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
When $x=0, y=0$,
$m_{2}=\frac{d y}{d x}$
$\Rightarrow \operatorname{Tan} \theta=\left|\frac{\infty-0}{1+\infty \times 0}\right|$
$\begin{array}{ll}\frac{16}{\mathrm{y}}=\frac{16}{0}=\operatorname{lan}_{\infty}=\infty & \Rightarrow \theta=\tan ^{-1}(\infty)\end{array}$
When $\mathrm{y}=16$,
$\therefore \operatorname{Tan}^{-1}(\infty)=\frac{\pi}{2}$
$m_{2}=\frac{d y}{d x}$
$\Rightarrow \theta=\frac{\pi}{2}$
$\Rightarrow \frac{16}{y}=\frac{16}{16}$
When $m_{1}=\frac{1}{2} \& m_{2}=2$

CIndCareer

Angle of intersection of two curves is given by $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
$\Rightarrow \operatorname{Tan} \theta=\left|\frac{3-1}{1+3 \times 1}\right|$
$\Rightarrow \operatorname{Tan} \theta=\left|\frac{2}{4}\right|$
$\Rightarrow \operatorname{Tan} \theta=\left|\frac{1}{2}\right|$
$\Rightarrow \theta=\tan ^{-1}\left(\frac{1}{2}\right)$
(iv) $x^{2}+y^{2}-4 x-1=0$ and $x^{2}+y^{2}-2 y-9=0$

Solution:

Given curves $x^{2}+y^{2}-4 x-1=0 \ldots$ (1) and $x^{2}+y^{2}-2 y-9=0 \ldots$
First curve is $x^{2}+y^{2}-4 x-1=0$
$\Rightarrow x^{2}-4 x+4+y^{2}-4-1=0$
$\Rightarrow(x-2)^{2}+y^{2}-5=0$
Now, Subtracting (2) from (1), we get
$\Rightarrow x^{2}+y^{2}-4 x-1-\left(x^{2}+y^{2}-2 y-9\right)=0$
$\Rightarrow x^{2}+y^{2}-4 x-1-x^{2}-y^{2}+2 y+9=0$
$\Rightarrow-4 \mathrm{x}-1+2 \mathrm{y}+9=0$
$\Rightarrow-4 x+2 y+8=0$
$\Rightarrow 2 y=4 x-8$
$\Rightarrow y=2 x-4$
Substituting $y=2 x-4$ in (3), we get,
$\Rightarrow(x-2)^{2}+(2 x-4)^{2}-5=0$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClindCareer

$$
\begin{aligned}
& \Rightarrow(x-2)^{2}+4(x-2)^{2}-5=0 \\
& \Rightarrow(x-2)^{2}(1+4)-5=0 \\
& \Rightarrow 5(x-2)^{2}-5=0 \\
& \Rightarrow(x-2)^{2}-1=0 \\
& \Rightarrow(x-2)^{2}=1 \\
& \Rightarrow(x-2)= \pm 1 \\
& \Rightarrow x=1+2 \text { or } x=-1+2 \\
& \Rightarrow x=3 \text { or } x=1 \\
& \text { So, when } x=3 \\
& y=2 \times 3-4 \\
& \Rightarrow y=6-4=2 \\
& \text { So, when } x=3 \\
& y=2 \times 1-4 \\
& \Rightarrow y=2-4=-2
\end{aligned}
$$

The point of intersection of two curves are $(3,2) \&(1,-2)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClndCareer

Now, differentiating curves (1) \& (2) with respect to x, we get

$$
\begin{align*}
& \Rightarrow x^{2}+y^{2}-4 x-1=0 \\
& \Rightarrow 2 x+2 y \frac{d y}{d x}-4-0=0 \\
& \Rightarrow x+y \frac{d y}{d x}-2=0 \\
& \Rightarrow y \frac{d y}{d x}=2-x \\
& \Rightarrow \frac{d y}{d x}=\frac{2-x}{y} \ldots \text { (3) } \tag{3}\\
& \Rightarrow x^{2}+y^{2}-2 y-9=0 \\
& \Rightarrow 2 x+2 y \frac{d y}{d x}-\frac{d y}{d x}-0=0 \\
& \Rightarrow x+y \frac{d y}{d x}-\frac{d y}{d x}=0 \\
& \Rightarrow x+(y-1) \frac{d y}{d x}=0 \\
& \Rightarrow \frac{d y}{d x}=\frac{-x}{y-1} \ldots \text { (4) }
\end{align*}
$$

At $(3,2)$ in equation (3), we get
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2-3}{2}$
$\Rightarrow m_{1}=\frac{d y}{d x}=\frac{-1}{2}$

$$
\begin{aligned}
& \Rightarrow x+y^{\frac{d y}{d x}}-2=0 \\
& \Rightarrow y \frac{d y}{d x}=2-x \\
& \Rightarrow \frac{d y}{d x}=\frac{2-x}{y} \ldots \text { (3) } \\
& \Rightarrow x^{2}+y^{2}-2 y-9=0 \\
& \Rightarrow 2 x+2 y \frac{d y}{d x}-\frac{d y}{d x}-0=0 \\
& \Rightarrow x+y \frac{d y}{d x}-\frac{d y}{d x}=0 \\
& \Rightarrow x+(y-1) \frac{d y}{d x}=0 \\
& \Rightarrow \frac{d y}{d x}=\frac{-x}{y-1} \ldots \text { (4) }
\end{aligned}
$$

At $(3,2)$ in equation (3), we get
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2-3}{2}$
$\Rightarrow \mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-1}{2}$
At $(3,2)$ in equation (4), we get
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-3}{2-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=-3$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

Clnd Career

$\Rightarrow m_{2}=\frac{d y}{d x}=-3$
When $m_{1}=\frac{-1}{2} \& m_{2}=0$
Angle of intersection of two curves is given by $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$

$$
\begin{aligned}
& \quad=\left|\frac{\frac{-1}{2}+3}{1+\frac{3}{2}}\right|=1 \\
& \Rightarrow \operatorname{Tan} \theta \\
& \Rightarrow \theta=\tan ^{-1}(1)=\frac{\pi}{4} \\
& \qquad=\left|\frac{\frac{-1}{2}+3}{1+\frac{3}{2}}\right|=1 \\
& \Rightarrow \operatorname{Tan} \theta
\end{aligned} \begin{array}{ll}
\Rightarrow \theta=\tan ^{-1}(1)=\frac{\pi}{4} & \text { (v) } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \text { and } x^{2}+y^{2}=a b
\end{array}
$$

Solution:

ClndCareer

Given curves $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \ldots$ (1) and $x^{2}+y^{2}=a b \ldots$ (2)
Second curve is $x^{2}+y^{2}=a b$

$$
y^{2}=a b-x^{2}
$$

Substituting this in equation (1),

$$
\begin{align*}
& \Rightarrow \frac{x^{2}}{a^{2}}+\frac{a b-x^{2}}{b^{2}}=1 \\
& \Rightarrow \frac{x^{2} b^{2}+a^{2}\left(a b-x^{2}\right)}{a^{2} b^{2}}=1 \\
& \Rightarrow x^{2} b^{2}+a^{3} b-a^{2} x^{2}=a^{2} b^{2} \\
& \Rightarrow x^{2} b^{2}-a^{2} x^{2}=a^{2} b^{2}-a^{3} b \\
& \Rightarrow x^{2}\left(b^{2}-a^{2}\right)=a^{2} b(b-a) \\
& \Rightarrow x^{2}=\frac{a^{2} b(b-a)}{x^{2}\left(b^{2}-a^{2}\right)} \\
& \Rightarrow x^{2}=\frac{a^{2} b(b-a)}{x^{2}(b-a)(b+a)} \\
& \Rightarrow x^{2}=\frac{a^{2} b}{(b+a)} \\
& \therefore a^{2}-b^{2}=(a+b)(a-b) \\
& \Rightarrow x= \pm \sqrt{\frac{a^{2} b}{(b+a)}} \ldots \text { (3) } \tag{3}
\end{align*}
$$

$$
\begin{equation*}
\Rightarrow_{\mathrm{x}}= \pm \sqrt{\frac{\mathrm{a}^{2} \mathrm{~b}}{(\mathrm{~b}+\mathrm{a})}} \ldots \tag{3}
\end{equation*}
$$

Since, $y^{2}=a b-x^{2}$
$\Rightarrow y^{2}=a b-\frac{a^{2} b}{(b+a))}$
$\Rightarrow \mathrm{y}^{2}=\frac{\mathrm{ab}^{2}+\mathrm{a}^{2} \mathrm{~b}-\mathrm{a}^{2} \mathrm{~b}}{(\mathrm{~b}+\mathrm{a})}$
$\Rightarrow y^{2}=\frac{a^{2}}{(b+a)}$
$\Rightarrow y= \pm \sqrt{\frac{a b^{2}}{(b+a)}} \ldots$ (4)
Since, curves are $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \& x^{2}+y^{2}=a b$
Differentiating above with respect to x

$$
\begin{aligned}
& \Rightarrow \frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \cdot \frac{d y}{d x}=0 \\
& \Rightarrow \frac{y}{b^{2}} \cdot \frac{d y}{d x}=-\frac{x}{a^{2}} \\
& \Rightarrow \frac{d y}{d x}=\frac{-\frac{x}{2^{2}}}{b^{2}} \\
& \Rightarrow \frac{d y}{d x}=\frac{-b^{2} x}{a^{2} y}
\end{aligned}
$$

ClndCareer

$\Rightarrow m_{1}=\frac{d y}{d x}=\frac{-b^{2} x}{a^{2} y} .$.
Second curve is $x^{2}+y^{2}=a b$
$\Rightarrow 2 x+2 y \cdot \frac{d y}{d x}=0$
$\Rightarrow \mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{x}}{\mathrm{y}} \ldots$ (6)
Substituting (3) in (4), above values for $m_{1} \& m_{2}$, we get,

ClndCareer

At $\left(\sqrt{\frac{a^{2} b}{(b+a)}}, \sqrt{\frac{a b^{2}}{(b+a)}}\right.$ in equation (5), we get

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{-b^{2} \times \sqrt{\frac{a^{2} b}{(b+a)}}}{a^{2} \times \sqrt{\frac{a b^{2}}{(b+a)}}} \\
& \Rightarrow \frac{d y}{d x}=\frac{-b^{2} \times a \sqrt{\frac{b}{(b+a)}}}{a^{2} \times b \sqrt{\frac{a}{(b+a)}}} \\
& \Rightarrow \frac{d y}{d x}=\frac{-b^{2} a \sqrt{b}}{a^{2} b \sqrt{a}} \\
& \Rightarrow m_{1}=\frac{d y}{d x}=\frac{-b \sqrt{b}}{a \sqrt{a}} \\
& \text { At }\left(\sqrt{\frac{a^{2} b}{(b+a)}}, \sqrt{\frac{a^{2}}{(b+a)}}\right. \\
&
\end{aligned}
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{-\sqrt{\frac{a^{2} b}{(b+a)}}}{\sqrt{\frac{a b^{2}}{(b+a)}}}
$$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{-a \sqrt{b}}{b \sqrt{a}} \\
& \Rightarrow m_{2}=\frac{d y}{d x}=-\sqrt{\frac{a}{b}}
\end{aligned}
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{-a \sqrt{\frac{b}{(b+a)}}}{b \sqrt{\frac{a}{(b+a)}}}
$$

$$
\text { When } m_{1}=\frac{-b \sqrt{b}}{a \sqrt{a}} \& m_{2}=-\sqrt{\frac{a}{b}}
$$

CIndCareer

Angle of intersection of two curves is given by $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$

$$
\begin{aligned}
& \Rightarrow \quad=\left|\frac{\frac{-b \sqrt{b}}{\mathrm{a} \sqrt{a}}-\sqrt{\frac{a}{b}}}{1+\frac{-\mathrm{b} \sqrt{b}}{\mathrm{a} \sqrt{\mathrm{a}}} \times-\sqrt{\frac{a}{b}}}\right| \\
& \Rightarrow \operatorname{Tan} \theta \\
& \Rightarrow \operatorname{Tan} \theta \\
& \quad\left|\frac{\frac{-\mathrm{b} \sqrt{b}}{\mathrm{a} \sqrt{a}}+\sqrt{\frac{2}{b}}}{1+\frac{b}{a}}\right|
\end{aligned}
$$

$$
\Rightarrow \operatorname{Tan} \theta=\left|\frac{\frac{-b \sqrt{b} \times \sqrt{b}+a \sqrt{a} \times \sqrt{a}}{a \sqrt{a} \times \sqrt{b}}}{1+\frac{b}{a}}\right|
$$

$$
\Rightarrow \operatorname{Tan} \theta=\left|\frac{\frac{-\mathrm{b} \times \mathrm{b}+\mathrm{a} \times \mathrm{a}}{\mathrm{a} \sqrt{\mathrm{a}} \mathrm{~b}}}{1+\frac{b}{\mathrm{a}}}\right|
$$

$$
\Rightarrow \operatorname{Tan} \theta=\left|\frac{\frac{a^{2}-b^{2}}{\frac{a \sqrt{b} b}{}}}{\frac{a+b}{a}}\right|
$$

$$
\Rightarrow \operatorname{Tan} \theta=\left|\frac{\frac{(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})}{\sqrt{\mathrm{a} b}}}{\mathrm{a}+\mathrm{b}}\right|
$$

$$
\Rightarrow \operatorname{Tan} \theta=\left|\frac{(\mathrm{a}-\mathrm{b})}{\sqrt{\mathrm{a}} \mathrm{~b}}\right|
$$

$$
\left.\Rightarrow \theta=\tan ^{-1} \frac{(\mathrm{a}-\mathrm{b})}{\sqrt{\mathrm{a} b}}\right)
$$

2. Show that the following set of curves intersect orthogonally:
(i) $y=x^{3}$ and $6 y=7-x^{2}$

Solution:

Given curves $y=x^{3} \ldots$ (1) and $6 y=7-x^{2} \ldots$ (2)
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClndCareer

Solving (1) \& (2), we get
$\Rightarrow 6 y=7-x^{2}$
$\Rightarrow 6\left(x^{3}\right)=7-x^{2}$
$\Rightarrow 6 x^{3}+x^{2}-7=0$
Since $f(x)=6 x^{3}+x^{2}-7$,
We have to find $f(x)=0$, so that x is a factor of $f(x)$.
When $\mathrm{x}=1$
$f(1)=6(1)^{3}+(1)^{2}-7$
$f(1)=6+1-7$
$f(1)=0$
Hence, $x=1$ is a factor of $f(x)$.
Substituting $x=1$ in $y=x^{3}$, we get
$y=1^{3}$
$y=1$
The point of intersection of two curves is $(1,1)$
First curve $y=x^{3}$
Differentiating above with respect to x ,
$\Rightarrow 6 \frac{\mathrm{dy}}{\mathrm{dx}}=0-2 x$
$\Rightarrow \mathrm{m}_{2}=\frac{-2 \mathrm{x}}{6}$
$\Rightarrow m_{2}=\frac{-\mathrm{x}}{3} \ldots$ (4)
At (1, 1), we have,
$\mathrm{m}_{1}=3 \mathrm{x}^{2}$
$\Rightarrow 3 \times(1)^{2}$
$\mathrm{m}_{1}=3$
At (1, 1), we have,
$\Rightarrow \mathrm{m}_{2}=\frac{-\mathrm{x}}{3}$
$\Rightarrow \frac{-1}{3}$
$\Rightarrow m_{2}=\frac{-1}{3}$
When $m_{1}=3 \& m_{2}=\frac{-1}{3}$
Two curves intersect orthogonally if $m_{1} m_{2}=-1$
$\Rightarrow 3 \times \frac{-1}{3}=-1$
\therefore Two curves $\mathrm{y}=\mathrm{x}^{3} \& 6 \mathrm{y}=7-\mathrm{x}^{2}$ intersect orthogonally.
$\Rightarrow 3 \times \frac{-1}{3}=-1$
\therefore Two curves $\mathrm{y}=\mathrm{x}^{3} \& 6 \mathrm{y}=7-\mathrm{x}^{2}$ intersect orthogonally.
(ii) $x^{3}-3 x y^{2}=-2$ and $3 x^{2} y-y^{3}=2$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClndCareer

Given curves $x^{3}-3 x y^{2}=-2 \ldots$ (1) and $3 x^{2} y-y^{3}=2 \ldots$ (2)
Adding (1) \& (2), we get
$\Rightarrow x^{3}-3 x y^{2}+3 x^{2} y-y^{3}=-2+2$
$\Rightarrow x^{3}-3 x y^{2}+3 x^{2} y-y^{3}=-0$
$\Rightarrow(x-y)^{3}=0$
$\Rightarrow(x-y)=0$
$\Rightarrow \mathrm{x}=\mathrm{y}$
Substituting $x=y$ on $x^{3}-3 x y^{2}=-2$
$\Rightarrow x^{3}-3 \times x \times x^{2}=-2$
$\Rightarrow x^{3}-3 x^{3}=-2$
$\Rightarrow-2 x^{3}=-2$
$\Rightarrow x^{3}=1$
$\Rightarrow x=1$
Since $x=y$
$y=1$
The point of intersection of two curves is $(1,1)$
First curve $x^{3}-3 x y^{2}=-2$
Differentiating above with respect to x ,

ClndCareer

$$
\begin{aligned}
& \Rightarrow 3 x^{2}-3\left(1 x y^{2}+x \times 2 y \frac{d y}{d x}\right)=0 \\
& \Rightarrow 3 x^{2}-3 y^{2}-6 x y \frac{d y}{d x}=0 \\
& \Rightarrow 3 x^{2}-3 y^{2}=6 x y \frac{d y}{d x} \\
& \Rightarrow \frac{d y}{d x}=\frac{3 x^{2}-3 y^{2}}{6 x y} \\
& \Rightarrow \frac{d y}{d x}=\frac{3\left(x^{2}-y^{2}\right)}{6 x y}
\end{aligned}
$$

$\Rightarrow \mathrm{m}_{1}=\frac{\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)}{2 \mathrm{xy}} \ldots$ (3)
Second curve $3 x^{2} y-y^{3}=2$
Differentiating above with respect to x
$\Rightarrow 3\left(2 x \times y+x^{2} \times \frac{d y}{d x}\right)-3 y^{2} \frac{d y}{d x}=0$
$\Rightarrow 6 x y+3 x^{2} \frac{d y}{d x}-3 y^{2} \frac{d y}{d x}=0$
$\Rightarrow 6 x y+\left(3 x^{2}-3 y^{2}\right)^{\frac{d y}{d x}}=0$
$\Rightarrow \frac{d y}{d x}=\frac{-6 x y}{3 x^{2}-3 y^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{-2 x y}{x^{2}-y^{2}}$
$\Rightarrow \mathrm{m}_{2}=\frac{-2 \mathrm{xy}}{\mathrm{x}^{2}-\mathrm{y}^{2}}$.
When $m_{1}=\frac{\left(x^{2}-y^{2}\right)}{2 x y} \& m_{2}=\frac{-2 x y}{x^{2}-y^{2}}$
Two curves intersect orthogonally if $m_{1} m_{2}=-1$
$\Rightarrow \frac{\left(x^{2}-y^{2}\right)}{2 x y} \times \frac{-2 x y}{x^{2}-y^{2}}=-1$
\therefore Two curves $x^{3}-3 x y^{2}=-2 \& 3 x^{2} y-y^{3}=2$ intersect orthogonally.
(iii) $x^{2}+4 y^{2}=8$ and $x^{2}-2 y^{2}=4$.

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClindCareer

Given curves $x^{2}+4 y^{2}=8 \ldots$ (1) and $x^{2}-2 y^{2}=4 \ldots$ (2)
Solving (1) \& (2), we get,
From 2nd curve,
$x^{2}=4+2 y^{2}$
Substituting on $x^{2}+4 y^{2}=8$,
$\Rightarrow 4+2 y^{2}+4 y^{2}=8$
$\Rightarrow 6 \mathrm{y}^{2}=4$
$\Rightarrow y^{2}=\frac{4}{6}$

ClndCareer

Substituting on $x^{2}+4 y^{2}=8$,
$\Rightarrow 4+2 y^{2}+4 y^{2}=8$
$\Rightarrow 6 y^{2}=4$
$\Rightarrow y^{2}=\frac{4}{6}$
$\Rightarrow y= \pm \sqrt{\frac{2}{3}}$
Substituting on $y= \pm \sqrt{\frac{2}{3}}$, we get,
$\Rightarrow x^{2}=4+2\left(\pm \sqrt{\frac{2}{3}}\right)^{2}$
$\Rightarrow x^{2}=4+2\left(\frac{2}{3}\right)$
$\Rightarrow x^{2}=4+\frac{4}{3}$
$\Rightarrow x^{2}=\frac{16}{3}$
$\Rightarrow x= \pm \sqrt{\frac{16}{3}}$
$\Rightarrow x= \pm \frac{4}{\sqrt{3}}$
\therefore The point of intersection of two curves $\left(\frac{4}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right) \&\left(-\frac{4}{\sqrt{3}},-\sqrt{\frac{2}{3}}\right)$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClindCareer

Now, differentiating curves (1) \& (2) with respect to x, we get
$\Rightarrow x^{2}+4 y^{2}=8$
$\Rightarrow 2 x+8 y \cdot \frac{d y}{d x}=0$
$\Rightarrow 8 y \cdot \frac{d y}{d x}=-2 x$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

$$
\begin{align*}
& \Rightarrow \frac{d y}{d x}=\frac{-x}{4 y} \ldots \text { (3) } \tag{3}\\
& \Rightarrow x^{2}-2 y^{2}=4 \\
& \Rightarrow 2 x-4 y \cdot \frac{d y}{d x}=0 \\
& \Rightarrow x-2 y \cdot \frac{d y}{d x}=0 \\
& \Rightarrow 4 y \frac{d y}{d x}=x \\
& \Rightarrow \frac{d y}{d x}=\frac{x}{2 y} \ldots \text { (4) }
\end{align*}
$$

At $\left(\frac{4}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right)$ in equation (3), we get $\operatorname{At}\left(\frac{4}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right)$ in equation (4), we get
$\Rightarrow \frac{d y}{d x}=\frac{-\frac{4}{\sqrt{3}}}{4 \times \sqrt{\frac{2}{3}}}$
$\Rightarrow \frac{d y}{d x}=\frac{\frac{4}{\sqrt{3}}}{\left.2 \times \sqrt{\frac{2}{3}}\right)}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\frac{1}{\sqrt{3}}}{\sqrt{\frac{2}{3}}}$
$\Rightarrow \frac{d y}{d x}=\frac{\frac{2}{\sqrt{3}}}{\left.\sqrt{\frac{2}{3}}\right)}$
$\Rightarrow \mathrm{m}_{1}=\frac{-1}{\sqrt{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{2}{\sqrt{2}}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/
$\Rightarrow \frac{d y}{d x}=\frac{2}{\sqrt{2}}$
$\Rightarrow \frac{d y}{d x}=\sqrt{2}$
$\Rightarrow \mathrm{m}_{2}=1$
When $m_{1}=\frac{-1}{\sqrt{2}} \& m_{2}=\sqrt{2}$
Two curves intersect orthogonally if $m_{1} m_{2}=-1$
$\Rightarrow \frac{-1}{\sqrt{2}} \times \sqrt{2}=-1$
\therefore Two curves $\mathrm{x}^{2}+4 \mathrm{y}^{2}=8 \& \mathrm{x}^{2}-2 \mathrm{y}^{2}=4$ intersect orthogonally.
3. $x^{2}=4 y$ and $4 y+x^{2}=8$ at $(2,1)$

Solution:

https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClndCareer

Given curves $x^{2}=4 y \ldots$ (1) and $4 y+x^{2}=8 \ldots$ (2)
The point of intersection of two curves $(2,1)$
Solving (1) \& (2), we get,
First curve is $x^{2}=4 y$
Differentiating above with respect to x ,

$$
\begin{aligned}
& \Rightarrow 2 x=4 \cdot \frac{d y}{d x} \\
& \Rightarrow \frac{d y}{d x}=\frac{2 x}{4} \\
& \Rightarrow m_{1}=\frac{x}{2} \ldots \text { (3) }
\end{aligned}
$$

Second curve is $4 y+x^{2}=8$
$\Rightarrow 4 . \frac{\mathrm{dy}}{\mathrm{dx}}+2 \mathrm{x}=0$
$\Rightarrow \frac{d y}{d x}=\frac{-2 x}{4}$
$\Rightarrow \frac{d y}{d x}=\frac{-2 x}{4}$
$\Rightarrow \mathrm{m}_{2}=\frac{-\mathrm{x}}{2}$.
Substituting $(2,1)$ for $m_{1} \& m_{2}$, we get,
$\mathrm{m}_{1}=\frac{\mathrm{x}}{2}$
$\Rightarrow \frac{2}{2}$
$m_{1}=1 \ldots$ (5)
$\mathrm{m}_{2}=\frac{-\mathrm{x}}{2}$
$\Rightarrow \frac{-2}{2}$
$m_{2}=-1 \ldots(6)$
When $m_{1}=1 \& m_{2}=-1$
Two curves intersect orthogonally if $m_{1} m_{2}=-1$
$\Rightarrow 1 \times-1=-1$
\therefore Two curves $\mathrm{x}^{2}=4 \mathrm{y} \& 4 \mathrm{y}+\mathrm{x}^{2}=8$ intersect orthogonally.
(ii) $x^{2}=y$ and $x^{3}+6 y=7$ at $(1,1)$

Solution:

Given curves $x^{2}=y \ldots(1)$ and $x^{3}+6 y=7 \ldots$ (2)
The point of intersection of two curves $(1,1)$
Solving (1) \& (2), we get,
First curve is $x^{2}=y$
Differentiating above with respect to x ,
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

Second curve is $x^{3}+6 y=7$
Differentiating above with respect to x ,

$$
\begin{aligned}
& \Rightarrow 3 x^{2}+6 \cdot \frac{d y}{d x}=0 \\
& \Rightarrow \frac{d y}{d x}=\frac{-3 x^{2}}{6} \\
& \Rightarrow \frac{d y}{d x}=\frac{-x^{2}}{2} \\
& \Rightarrow m_{2}=\frac{-x^{2}}{2} \ldots \text { (4) }
\end{aligned}
$$

Substituting (1,1) for m_{1} \& m_{2}, we get,
$\mathrm{m}_{1}=2 \mathrm{x}$
$\Rightarrow 2 \times 1$
$\mathrm{m}_{1}=2 \ldots$ (5)
$m_{2}=\frac{-x^{2}}{2}$
$\Rightarrow \frac{-1^{2}}{2}$
$\Rightarrow 2 x=\frac{d y}{d x} \quad m_{2}=-\frac{-1}{2}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x} \quad$ When $\mathrm{m}_{1}=2 \& \mathrm{~m}_{2}=-\frac{-1}{2}$
$\Rightarrow m_{1}=2 x \ldots$ (3) Two curves intersect orthogonally if $m_{1} m_{2}=-1$
$\Rightarrow 2 x^{\frac{-1}{2}}=-1$
\therefore Two curves $\mathrm{x}^{2}=\mathrm{y} \& \mathrm{x}^{3}+6 \mathrm{y}=7$ intersect orthogonally.
(iii) $y^{2}=8 x$ and $2 x^{2}+y^{2}=10$ at ($1,2 \sqrt{ }$)
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

Clnd Career

Solution:

Given curves $y^{2}=8 x \ldots(1)$ and $2 x^{2}+y^{2}=10 \ldots$ (2)
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ElndCareer

The point of intersection of two curves are $(0,0) \&(1,2 \mathrm{~V}$
Now, differentiating curves (1) \& (2) w.r.t x, we get
$\Rightarrow \mathrm{y}^{2}=8 \mathrm{x}$
$\Rightarrow 2 y \cdot \frac{d y}{d x}=8$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{8}{2 \mathrm{y}}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{4}{\mathrm{y}}$..
$\Rightarrow 2 \mathrm{x}^{2}+\mathrm{y}^{2}=10$
Differentiating above with respect to x ,
$\Rightarrow 4 x+2 y \cdot \frac{d y}{d x}=0$
$\Rightarrow 2 x+y \cdot \frac{d y}{d x}=0$
$\Rightarrow y \cdot \frac{d y}{d x}=-2 x$
$\Rightarrow \frac{d y}{d x}=\frac{-2 x}{y}$.
Substituting (1, 2V2) for $m_{1} \& m_{2}$, we get,
$\mathrm{m}_{1}=\frac{4}{\mathrm{y}}$
$\Rightarrow \frac{4}{2 \sqrt{2}}$

$$
\begin{align*}
& m_{1}=\sqrt{2} \ldots \\
& m_{2}=\frac{-2 x}{y} \\
& \Rightarrow \frac{-2 \times 1}{2 \sqrt{2}} \\
& m_{2}=-\frac{-1}{\sqrt{2}} \ldots \tag{6}
\end{align*}
$$

When $m_{1}=\sqrt{2}$ \& $m_{2}=\frac{-1}{\sqrt{2}}$
When $m_{1}=\sqrt{2}$ \& $m_{2}=\frac{-1}{\sqrt{2}}$
Two curves intersect orthogonally if $m_{1} m_{2}=-1$
$\Rightarrow \sqrt{2} \times \frac{-1}{\sqrt{2}}=-1$
\therefore Two curves $\mathrm{y}^{2}=8 \mathrm{x} \& 2 \mathrm{x}^{2}+\mathrm{y}^{2}=10$ intersect orthogonally.
4. Show that the curves $4 x=y^{2}$ and $4 x y=k$ cut at right angles, if $k^{2}=512$.

Solution:

ClndCareer

Given curves $4 x=y^{2} \ldots$ (1) and $4 x y=k \ldots$ (2)
We have to prove that two curves cut at right angles if $\mathrm{k}^{2}=512$
Now, differentiating curves (1) \& (2) w.r.t x, we get
$\Rightarrow 4 \mathrm{x}=\mathrm{y}^{2}$
$\Rightarrow 4=2 y \cdot \frac{d y}{d x}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2}{\mathrm{y}}$
$\mathrm{m}_{1}=\frac{2}{\mathrm{y}}$...
$\Rightarrow 4 \mathrm{xy}=\mathrm{k}$
Differentiating above with respect to x ,
$\Rightarrow 4\left(y+x \frac{d y}{d x}\right)=0$
$\Rightarrow y+x \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=\frac{-y}{x}$
$\Rightarrow m_{2}=\frac{-y}{x} \ldots$
Two curves intersect orthogonally if $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
Since m_{1} and m_{2} cuts orthogonally,

Since m_{1} and m_{2} cuts orthogonally,

$$
\begin{aligned}
& \Rightarrow \frac{2}{y} \times \frac{-y}{x}=-1 \\
& \Rightarrow \frac{-2}{x}=-1 \\
& \Rightarrow x=2
\end{aligned}
$$

Now, Solving (1) \& (2), we get,

$$
\begin{aligned}
& 4 x y=k \& 4 x=y^{2} \\
& \Rightarrow\left(y^{2}\right) y=k \\
& \Rightarrow y^{3}=k \\
& \Rightarrow y=k^{\frac{1}{3}}
\end{aligned}
$$

Substituting $y=k^{\frac{1}{3}}$ in $4 x=y^{2}$, we get,

$$
\Rightarrow 4 x=\left(\mathrm{k}^{\frac{1}{3}}\right)^{2}
$$

$$
\Rightarrow 4 \times 2=\mathrm{k}^{\frac{2}{3}}
$$

$$
\Rightarrow \mathrm{k}^{\frac{2}{3}}=8
$$

$$
\Rightarrow \mathrm{k}^{2}=8^{3}
$$

$$
\Rightarrow \mathrm{k}^{2}=512
$$

5. Show that the curves $2 x=y^{2}$ and $2 x y=k$ cut at right angles, if $k^{2}=8$.

Solution:

Given curves $2 x=y^{2} \ldots$ (1) and $2 x y=k$
We have to prove that two curves cut at right angles if $k^{2}=8$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

Clnd Career

Now, differentiating curves (1) \& (2) with respect to x, we get
$\Rightarrow 2 x=y^{2}$
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/
$\Rightarrow 2=2 y \cdot \frac{d y}{d x}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\mathrm{y}}$
$\mathrm{m}_{1}=\frac{1}{\mathrm{y}} .$.
$\Rightarrow 2 x y=k$
Differentiating above with respect to x,
$\Rightarrow 2\left(y+x \frac{d y}{d x}\right)=0$
$\Rightarrow y+x \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=\frac{-y}{x}$
$\Rightarrow m_{2}=\frac{-y}{x} \ldots$ (4)
Two curves intersect orthogonally if $m_{1} m_{2}=-1$
Since m_{1} and m_{2} cuts orthogonally,

$$
\begin{aligned}
& \Rightarrow \frac{1}{y} \times \frac{-y}{x}=-1 \\
& \Rightarrow \frac{-1}{x}=-1 \\
& \Rightarrow x=1
\end{aligned}
$$

Now, solving (1) \& (2), we get,

ClndCareer

$$
\begin{array}{ll}
& \text { Substituting } y=k^{\frac{1}{3}} \text { in } 2 x=y^{2} \text {, we get, } \\
2 x y=k \& 2 x=y^{2} & \Rightarrow 2 x=\left(k^{\frac{1}{3}}\right)^{2} \\
\Rightarrow\left(y^{2}\right) y=k & \Rightarrow 2 \times 1=k^{\frac{2}{3}} \\
\Rightarrow y^{3}=k & \Rightarrow k^{\frac{2}{3}}=2 \\
\Rightarrow y=k^{\frac{1}{3}} & \Rightarrow k^{2}=2^{3} \\
\text { Substituting } y=k^{\frac{1}{3}} \text { in } 2 x=y^{2}, \text { we get, } & \Rightarrow k^{2}=8
\end{array}
$$

Chapterwise RD Sharma Solutions for Class 12 Maths :

- Chapter 1-Relation
- Chapter 2-Functions
- Chapter 3-Binary Operations
- Chapter 4-Inverse Trigonometric Functions
- Chapter 5-Algebra of Matrices
- Chapter 6-Determinants
- Chapter 7-Adjoint and Inverse of a Matrix
- Chapter 8-Solution of Simultaneous Linear Equations
- Chapter 9-Continuity
- Chapter 10-Differentiability
- Chapter 11-Differentiation
- Chapter 12-Higher Order Derivatives
- Chapter 13-Derivatives as a Rate Measurer
- Chapter 14-Differentials, Errors and Approximations
- Chapter 15-Mean Value Theorems
- Chapter 16-Tangents and Normals
- Chapter 17 -Increasing and Decreasing Functions
- Chapter 18-Maxima and Minima
- Chapter 19-Indefinite Integrals
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-12-maths-chapter-16-tangents -and-normals/

ClndCareer

About RD Sharma

RD Sharma isn't the kind of author you'd bump into at lit fests. But his bestselling books have helped many CBSE students lose their dread of maths. Sunday Times profiles the tutor turned internet star

He dreams of algorithms that would give most people nightmares. And, spends every waking hour thinking of ways to explain concepts like 'series solution of linear differential equations'. Meet Dr Ravi Dutt Sharma mathematics teacher and author of 25 reference books - whose name evokes as much awe as the subject he teaches. And though students have used his thick tomes for the last 31 years to ace the dreaded maths exam, it's only recently that a spoof video turned the tutor into a YouTube star.

R D Sharma had a good laugh but said he shared little with his on-screen persona except for the love for maths. "I like to spend all my time thinking and writing about maths problems. I find it relaxing," he says. When he is not writing books explaining mathematical concepts for classes 6 to 12 and engineering students, Sharma is busy dispensing his duty as vice-principal and head of department of science and humanities at Delhi government's Guru Nanak Dev Institute of Technology.

