

NCERT Solutions for 12th Class Maths: Chapter 7-Integrals

Class 12: Maths Chapter 7 solutions. Complete Class 12 Maths Chapter 7 Notes.
NCERT Solutions for 12th Class Maths: Chapter 7-Integrals

Class 12: Maths Chapter 7 solutions. Complete Class 12 Maths Chapter 7 Notes.
Ex 7.1 Class 12 Maths Question 1.
$\sin 2 x$
Solution:

ClndCareer

$\int \sin 2 x \quad d x=-\frac{\cos 2 x}{2}+C$

Ex 7.1 Class 12 Maths Question 2.

$\cos 3 \mathrm{x}$
Solution:
$\int \cos 3 x \quad d x=\frac{\sin 3 x}{3}+C$

Ex 7.1 Class 12 Maths Question 3.

$e^{2 x}$

Solution:
$\int e^{2 x} d x=\frac{e^{2 x}}{2}+C$
Ex 7.1 Class 12 Maths Question 4.
$(a x+c)^{2}$
Solution:
$\int(a x+b)^{2} d x=\frac{(a x+b)^{3}}{3 a}+C$
Ex 7.1 Class 12 Maths Question 5.
$\sin 2 x-4 e^{3 x}$

Solution:
$\int\left(\sin 2 x-4 e^{3 x}\right) d x=-\frac{\cos 2 x}{2}-\frac{4 e^{3 x}}{3}+C$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

Find the following integrals in Exercises 6 to 20 :
Ex 7.1 Class 12 Maths Question 6.
$\int\left(4 e^{3 x}+1\right) d x$

Solution:

$=\int 4 e^{3 x} d x+\int d x=\frac{4}{3} e^{3 x}+x+c$

Ex 7.1 Class 12 Maths Question 7.

$\int x^{2}\left(1-\frac{1}{x^{2}}\right) d x$

Solution:
$=\int x^{2}\left(1-\frac{1}{x^{2}}\right) d x=\frac{x^{3}}{3}-x+C$
Ex 7.1 Class 12 Maths Question 8.
$\int\left(a x^{2}+b x+c\right) d x$

Solution:
$=\frac{a x^{3}}{3}+\frac{b x^{2}}{2}+c x+d$

Ex 7.1 Class 12 Maths Question 9.

$\int\left(2 x^{2}+e^{x}\right) d x$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

Solution:

$=\frac{2 x^{3}}{3}+e^{x}+c$
Ex 7.1 Class 12 Maths Question 10.
$\int\left[\sqrt{x}-\frac{1}{\sqrt{x}}\right]^{2} d x$

Solution:

$=\frac{x^{2}}{2}+\log x-2 x+C$

Ex 7.1 Class 12 Maths Question 11.

$\int \frac{x^{3}+5 x^{2}-4}{x^{2}} d x$

Solution:

$\int\left(\frac{x^{3}}{x^{2}}+\frac{5 x^{2}}{x^{2}}-\frac{4}{x^{2}}\right)$
$=\int x d x+5 \int 1 d x-4 \int x^{2} d x$
$=\frac{x^{2}}{2}+5 x+\frac{4}{x}+c$
Ex 7.1 Class 12 Maths Question 12.
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/
$\int \frac{x^{3}+3 x+4}{\sqrt{x}} d x$

Solution:

$=\int\left(x^{\frac{5}{2}}+3 x^{\frac{1}{2}}+4 x^{-\frac{1}{2}}\right) d x$
$=\frac{2}{7} x^{\frac{7}{2}}+2 x^{\frac{3}{2}}+8 \sqrt{x}+c$
Ex 7.1 Class 12 Maths Question 13.
$\int \frac{x^{3}-x^{2}+x-1}{x-1} d x$

Solution:

$=\int \frac{x^{2}(x-1)+(x-1)}{x-1} d x$
$=\int\left(x^{2}+1\right) d x=\frac{x^{3}}{3}+x+c$
Ex 7.1 Class 12 Maths Question 14.

Solution:
$=\int x^{\frac{1}{2}}-x^{\frac{3}{2}} d x=\frac{2}{3} x^{\frac{3}{2}}-\frac{2}{5} x^{\frac{5}{2}}$
Ex 7.1 Class 12 Maths Question 15.
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

$$
\int \sqrt{x}\left(3 x^{2}+2 x+3\right) d x
$$

Solution:

$=\int\left(3 x^{\frac{5}{2}}+2^{\frac{3}{2}}+3 x^{\frac{1}{2}}\right) d x$
$=\frac{6}{7} x^{\frac{7}{2}}+\frac{4}{5} x^{\frac{5}{2}}+\frac{6}{3} x^{\frac{3}{2}}+c$

Ex 7.1 Class 12 Maths Question 16.

$\int\left(2 x-3 \cos x+e^{x}\right) d x$

Solution:
$=\frac{2 x^{2}}{2}-3 \sin x+e^{x}+c$
$=x^{2}-3 \sin x+e^{x}+c$

Ex 7.1 Class 12 Maths Question 17.

$\int\left(2 x^{2}-3 \sin x+5 \sqrt{x}\right) d x$

Solution:

$=\frac{2 x^{3}}{3}+3 \cos x+5 \frac{x^{\frac{3}{2}}}{\frac{3}{2}}+c$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

Clnd Career

$=\frac{2}{3} x^{3}+3 \cos x+\frac{10}{3} x^{\frac{3}{2}}+c$
Ex 7.1 Class 12 Maths Question 18.
$\int \sec x(\sec x+\tan x) d x$

Solution:
$=\int\left(\sec ^{2} x+\sec x \tan x\right) d x$
$=\tan x+\sec x+c$
Ex 7.1 Class 12 Maths Question 19.
$\int \frac{\sec ^{2} x}{\operatorname{cosec}^{2} x} d x$

Solution:

$=\int \frac{1}{\cos ^{2} x} \sin ^{2} x d x$
$=\int \tan ^{2} x d x=\int\left(\sec ^{2} x-1\right) d x=\tan x-x+c$
Ex 7.1 Class 12 Maths Question 20.
$\int \frac{2-3 \sin x}{\cos ^{2} x} d x$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

Solution:
$=\int\left(\frac{2}{\cos ^{2} x}-3 \frac{\sin x}{\cos ^{2} x}\right) d x=\int\left(2 \sec ^{2} x-3 \sec x t a n x\right) d x$
$=2 \tan x-3 \sec x+c$
Choose the correct answer in Exercises 21 and 22.
Ex 7.1 Class 12 Maths Question 21.
The antiderivative
$\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)$
equals
(a)
$\frac{1}{3} x^{\frac{1}{3}}+2 x^{\frac{1}{2}}+c$
(b)
$\frac{2}{3} x^{\frac{2}{3}}+\frac{1}{2} x^{2}+c$
(c)
$\frac{2}{3} x^{\frac{3}{2}}+2 x^{\frac{1}{2}}+c$
(d)
$\frac{3}{2} x^{\frac{3}{2}}+\frac{1}{2} x^{\frac{1}{2}}+c$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

Solution:

(c)

$$
\begin{aligned}
& \int\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) d x \\
& =\int\left(x^{\frac{1}{2}}+x^{\frac{1}{2}}\right) d x \\
& =\frac{2}{3} x^{\frac{3}{2}}+2 x^{\frac{1}{2}}+c
\end{aligned}
$$

Ex 7.1 Class 12 Maths Question 22.
If
$\frac{d}{d x} f(x)=4 x^{3}-\frac{3}{x^{4}}$
such that $f(2)=0$ then $f(x)$ is
(a)
$x^{4}+\frac{1}{x^{3}}-\frac{129}{8}$
(b)
$x^{3}+\frac{1}{x^{4}}+\frac{129}{8}$
(c)
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/
$x^{4}+\frac{1}{x^{3}}+\frac{129}{8}$
(d)

$$
x^{3}+\frac{1}{x^{4}}-\frac{129}{8}
$$

Solution:

(a)
$f(x)=\int\left(4 x^{3}-\frac{3}{x^{4}}\right) d x$
$=x^{4}+\frac{1}{x^{3}}+c$
$\therefore f(2)=(2)^{4}+\frac{1}{(2)^{3}}+c=0=-\frac{129}{8}$
Ex 7.1 Class 12 Maths Question 1.
$\frac{2 x}{1+x^{2}}$

Solution:

Let $\mathbf{1 + \mathbf { x } ^ { 2 }}=\mathbf{t}$
$\Rightarrow 2 \mathrm{xdx}=\mathrm{dt}$
$\therefore \int \frac{2 x}{1+x^{2}} d x=\int \frac{d t}{t}=\log t+C=\log \left(1+x^{2}\right)+C$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ElndCareer

Ex 7.2 Class 12 Maths Question 2.

$\frac{(\log x)^{2}}{x}$

Solution:
Let $\log x=\mathbf{t}$
\Rightarrow
$\frac{1}{x} d x=d t \therefore \int \frac{(\log x)^{2}}{x} d x=\int t^{2} d t=\frac{t^{3}}{3}+c=\frac{1}{3}(\log x)^{3}+c$
Ex 7.2 Class 12 Maths Question 3.
$\frac{1}{x+x \log x}$

Solution:

Put $1+\log x=t$
\therefore
$\frac{1}{x} d x=d t \int \frac{1}{x(1+\log x)} d x=\int \frac{1}{t} d t=\log |t|+c$
$=\log |1+\log x|+c$
Ex 7.2 Class 12 Maths Question 4.
$\sin x \sin (\cos x)$

Solution:

Put $\cos x=t,-\sin x d x=d t$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/
$\int \sin x \sin (\cos x) d x=-\int \sin (\cos x)(-\sin x) d x$
$=-\int \sin t d t=\cos t+c=\cos (\cos x)+c$

Ex 7.2 Class 12 Maths Question 5.

$\sin (a x+b) \cos (a x+b)$
Solution:
let $\sin (a x+b)=t$
$\Rightarrow \cos (a x+b) d x=d t$
$\therefore \int \sin (a x+b) \cos (a x+b) d x=\frac{1}{a} \int t \quad d t$
$=\frac{1}{a} \cdot \frac{t^{2}}{2}+c=\frac{1}{2 a} \sin ^{2}(a x+b)+C$

Ex 7.2 Class 12 Maths Question 6.

$\sqrt{a x+b}$

Solution:
$\int \sqrt{a x+b} d x=\frac{2}{3 a}(a x+b)^{\frac{3}{2}}+C$

Ex 7.2 Class 12 Maths Question 7.

$x \sqrt{x+2}$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

Solution:

Let $\mathbf{x + 2}=\mathbf{t}^{\mathbf{2}}$
$\Rightarrow d x=2 t d t$

$$
\begin{aligned}
& \therefore \quad \int x \sqrt{x+2} d x=\int\left(t^{2}-2\right) t(2 t) d t \\
& =\quad 2 \int\left(t^{4}-2 t^{2}\right) d t=2 \frac{t^{5}}{5}-4 \frac{t^{3}}{3}+\mathrm{C} \\
& =\quad \frac{2}{5}(x+2)^{5 / 2}-\frac{4}{3}(x+2)^{3 / 2}+\mathrm{C}
\end{aligned}
$$

Ex 7.2 Class 12 Maths Question 8.

$x \sqrt{1+2 x^{2}}$

Solution:

$$
\begin{aligned}
& \text { let } 1+2 x^{2}=t^{2} \\
& \Rightarrow 4 x d x=2 t d t
\end{aligned}
$$

$$
=\frac{1}{2} \int t^{2} d t=\frac{t^{3}}{6}+c=\frac{1}{6}\left(1+2 x^{2}\right)^{\frac{3}{2}}+c
$$

Ex 7.2 Class 12 Maths Question 9.
$(4 x+2) \sqrt{x^{2}+x+1}$

Solution:
let $\mathbf{x}^{2}+\mathrm{x}+1=\mathrm{t}$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

$$
\begin{aligned}
& \Rightarrow(2 \mathrm{x}+1) \mathrm{dx} \mathrm{x} \mathrm{dt} \\
& \therefore \int(4 x+1) \sqrt{x^{2}+x+1} d x=2 \int \sqrt{t} d t \\
& =\frac{2 t^{\frac{3}{2}}}{\frac{3}{2}}+c=\frac{4}{3} \frac{4}{2}^{\frac{3}{2}}+c=\frac{4}{3}\left(x^{2}+x+1\right)^{\frac{3}{2}}+c
\end{aligned}
$$

Ex 7.2 Class 12 Maths Question 10.
$\frac{1}{x-\sqrt{x}}$

Solution:
$\int \frac{1}{x-\sqrt{x}} d x=\int \frac{1}{\sqrt{x}(\sqrt{x-1})} d x=I$

Let $\sqrt{ } \mathbf{x}-1=\mathbf{t}$
$\frac{1}{2} x^{-\frac{1}{2}} d x=d t I=2 \int \frac{d t}{t}$
$=2$ logt +c
$=2 \log (\sqrt{ } x-1)+c$
Ex 7.2 Class 12 Maths Question 11.
$\frac{x}{\sqrt{x+4}}, x>0$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

Solution:

$$
\begin{aligned}
& \text { let } \mathrm{x}+4=\mathrm{t} \\
& \begin{aligned}
\Rightarrow \mathrm{dx} & =\mathrm{dt}, \mathrm{x}=\mathrm{t}-4 \\
\therefore \int & \frac{x}{\sqrt{x+4}} d x=\int \frac{t-4}{\sqrt{t}} d t=\int\left(t^{1 / 2}-4 t^{-\frac{1}{2}}\right) d t \\
& =\frac{2}{3} t^{3 / 2}-4 \times 2 t^{1 / 2}+\mathrm{C} \\
& =\frac{2}{3}(x+4)^{3 / 2}-8(x+4)^{1 / 2}+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Ex 7.2 Class 12 Maths Question 12.
$\left(x^{3}-1\right)^{\frac{1}{3}} \cdot x^{5}$

Solution:

$$
\int\left(x^{3}-1\right)^{\frac{1}{3}} \cdot x^{5} \cdot d x=\frac{1}{7}\left(x^{3}-1\right)^{\frac{7}{3}}+\frac{1}{4}\left(x^{3}-1\right)^{\frac{4}{3}}+c
$$

Ex 7.2 Class 12 Maths Question 13.

$\frac{x^{2}}{\left(2+3 x^{3}\right)^{3}}$

Solution:

Let $\mathbf{2 + 3} \mathbf{x}^{\mathbf{3}}=\mathbf{t}$
$\Rightarrow 9 x^{2} d x=d t$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/
$\therefore \int \frac{x^{2}}{\left(2+3 x^{3}\right)^{3}} d x=\frac{1}{9} \int \frac{d t}{t^{3}}=\frac{1}{9} \int t^{-3} d t$
$=-\frac{1}{18 t^{2}}+c=-\frac{1}{18\left(2+3 x^{3}\right)^{2}}+c$

Ex 7.2 Class 12 Maths Question 14.

$\frac{1}{x(\log x)^{m}}, x>0$

Solution:

Put $\log x=t$, so that
$\frac{1}{x} d x=d t$
$\therefore \int \frac{1}{x(\log x)^{m}} d x=\int \frac{d t}{t^{m}}=\frac{t^{-m+1}}{-m+1}+c$
$=\frac{(\log x)^{1-m}}{1-m}+c$

Ex 7.2 Class 12 Maths Question 15.

$\frac{x}{9-4 x^{2}}$

Solution:

put $9-4 x^{2}=t$, so that $-8 x d x=d t$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

$\therefore \int \frac{x}{9-4 x^{2}} d x=-\frac{1}{8} \int \frac{d t}{t}=-\frac{1}{8} \log |t|+c$
$=\frac{1}{8} \log \frac{1}{\left|9-4 x^{2}\right|}+c$
Ex 7.2 Class 12 Maths Question 16.
$e^{2 x+3}$

Solution:

put $2 \mathrm{x}+3=\mathrm{t}$
so that $2 \mathrm{dx}=\mathrm{dt}$
$\int e^{2 x+3} d x=\frac{1}{2} \int e^{t} d t=\frac{1}{2} e^{t}+c=\frac{1}{2} e^{2 x+3}+c$
Ex 7.2 Class 12 Maths Question 17.
$\frac{x}{e^{x^{2}}}$

Solution:
Let $\mathbf{x}^{\mathbf{2}}=\mathbf{t}$
$\Rightarrow 2 \mathrm{xdx}=\mathrm{dt} \Rightarrow$
$x d x=\frac{d t}{2} \therefore \int \frac{x}{e^{x^{2}}} d x=\frac{1}{2} \int \frac{d t}{e^{t}}=\frac{1}{2} \int e^{-t} d t$
$=-\frac{1}{2} e^{-x^{2}}+c$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

Ex 7.2 Class 12 Maths Question 18.
$\frac{e^{\tan ^{-1} x}}{1+x^{2}}$

Solution:
let $\tan ^{-1} x=t \Rightarrow \frac{1}{1+x^{2}} d x=d t$
$\therefore \int \frac{e^{\tan ^{-1} x}}{1+x^{2}} d x=\int e^{t} d t=e^{\tan ^{-1} x}+c$
Ex 7.2 Class 12 Maths Question 19.
$\frac{e^{2 x}-1}{e^{2 x}+1}$

Solution:
$\int \frac{e^{2 x}-1}{e^{2 x}+1} d x=\int \frac{e^{x}\left(e^{x}-e^{-x}\right)}{e^{x}\left(e^{x}+e^{-x}\right)} d x=I$
put $e^{x}+e^{-x}=t$
so that $\left(e^{x}-e^{-x}\right) d x=d t$
$\therefore I=\int \frac{d t}{t}=\log |t|+c=\log \left|e^{x}+e^{-x}\right|+c$

Ex 7.2 Class 12 Maths Question 20.

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/
$\frac{e^{2 x}-e^{2 x}}{e^{2 x}+e^{-2 x}}$

Solution:

put $e^{2 x}-e^{-2 x}=t$
so that $\left(2 e^{2 x}-2 e^{-2 x}\right) d x=d t$
$\therefore \int \frac{e^{2 x}-e^{2 x}}{e^{2 x}+e^{-2 x}} d x=\frac{1}{2} \int \frac{1}{t} d t=\frac{1}{2} \log |t|+c$
$=\frac{1}{2} \log +\left|e^{2 x}+e^{-2 x}\right|+c$
Ex 7.2 Class 12 Maths Question 21.
$\tan ^{2}(2 x-3)$

Solution:

$\int \tan ^{2}(2 x-3) d x=\int\left[\sec ^{2}(2 x-3)-1\right] d x=I$
put $2 x-3=t$
so that $\mathbf{2 d x}=\mathbf{d t}$
I =
$\frac{1}{2}$
$\int \sec ^{2} t d t-x+c$
$=$
$\frac{1}{2} t-x+c$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

=
$\frac{1}{2} \tan (2 x-3)-x+c$
Ex 7.2 Class 12 Maths Question 22.
$\sec ^{2}(7-4 \mathrm{x})$
Solution:
$\int \sec ^{2}(7-4 \mathrm{x}) \mathrm{dx}$
=
$\frac{\tan (7-4 x)}{-4}+c$
Ex 7.2 Class 12 Maths Question 23.
$\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}$

Solution:
let $\sin ^{-1} x=t \quad \Rightarrow \frac{1 d x}{\sqrt{1-x^{2}}}=d t$
$\int \frac{\sin ^{-1} x}{\sqrt{1-x^{2}}} d x=\int t \quad d t=\frac{1}{2} t^{2}+c=\frac{1}{2}\left(\sin ^{-1} x\right)^{2}+c$
Ex 7.2 Class 12 Maths Question 24.
$\frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x}$

Solution:

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

Clnd Career

put $2 \sin x+4 \cos x=t$
$\Rightarrow(2 \cos x-3 \sin x) d x=d t$
$\frac{1}{2} \int \frac{2 \cos x-3 \sin x}{2 \sin x+3 \cos x} d x=\frac{1}{2} \int \frac{d t}{t}=\frac{1}{2} \log |t|+c$
$\frac{1}{2} \log |2 \sin x+3 \cos x|+c$
Ex 7.2 Class 12 Maths Question 25.
$\frac{1}{\cos ^{2} x(1-\tan x)^{2}}$

Solution:

put 1-tan $x=t$
so that $-\sec ^{2} x d x=d t$
$\therefore \int \frac{1}{\cos ^{2} x(1-\tan x)^{2}} d x=\int \frac{\sec ^{2} x}{(1-\tan x)^{2}} d x$

$$
=-\int \frac{d t}{t^{2}}=\frac{1}{t}+c=\frac{1}{(1-\tan x)}+c
$$

Ex 7.2 Class 12 Maths Question 26.
$\frac{\cos \sqrt{x}}{\sqrt{x}}$

Solution:

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/
put $\sqrt{x}=t$, so that $\frac{1}{2 \sqrt{x}} d x=d t$
$\therefore \int \frac{\cos \sqrt{x}}{\sqrt{x}} d x=2=\int \cos t \quad d t=2 \sin t+c$
$=2 \sin \sqrt{x}+c$
Ex 7.2 Class 12 Maths Question 27.
$\sqrt{\sin 2 x} \cos 2 x$

Solution:

put $\boldsymbol{\operatorname { s i n }} 2 \mathrm{x}=\mathrm{t}^{\mathbf{2}}$
$\Rightarrow \boldsymbol{\operatorname { c o s }} 2 \mathrm{xdx}=\mathbf{t d t}$
$\therefore \int \sqrt{\sin 2 x} \cdot \cos 2 x \quad d x \quad=\int t \cdot t d t=\frac{t^{3}}{3}+c$
$=\frac{(\sin 2 x)^{\frac{3}{2}}}{3}+c$
Ex 7.2 Class 12 Maths Question 28.
$\frac{\cos x}{\sqrt{1+\sin x}}$

Solution:

put $1+\sin x=t^{2}$
$\Rightarrow \cos \mathrm{dx}=2 \mathrm{tdt}$
$\therefore \int \frac{\cos x}{\sqrt{1+\sin x}} d x=2 \int d t=2 t+c$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

$=2 \sqrt{1+\sin x}+c$
Ex 7.2 Class 12 Maths Question 29.
$\cot x \log \sin x$

Solution:

put $\log \sin x=t$,
$\Rightarrow \cot \mathrm{xdx}=\mathrm{dt}$
$\therefore \int \cot \log \sin x \quad d x=\int t d t \quad=\frac{t^{2}}{2}+c$
$=\frac{1}{2}(\log \sin x)^{2}+c$
Ex 7.2 Class 12 Maths Question 30.
$\frac{\sin x}{1+\cos x}$

Solution:
put $1+\cos x=t$
$\Rightarrow-\sin x d x=d t$
$\therefore \int \frac{\sin x}{1+\cos x} d x=\int-\frac{d t}{t}=-\log t+c$
$=-\log (1+\cos x)+c$

Ex 7.2 Class 12 Maths Question 31.

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/
$\frac{\sin x}{(1+\cos x)^{2}}$

Solution:

put $1+\cos x=t$
so that $-\sin x d x=d t$
$\therefore \int \frac{\sin x}{(1+\cos x)^{2}} d x=-\int \frac{d t}{t^{2}}$
$=\frac{1}{t}+c=\frac{1}{1+\cos x}+c$
Ex 7.2 Class 12 Maths Question 32.
$\frac{1}{1+\cot x}$

Solution:

$\int \frac{1}{1+\frac{\cos x}{\sin x}} d x=\frac{1}{2} \int \frac{2 \sin x}{\sin x+\cos x}$

ClindCareer

$$
\begin{aligned}
& =\frac{1}{2} \int \frac{(\sin x+\cos x)-(\cos x-\sin x)}{(\sin x+\cos x)} d x \\
& =\frac{1}{2} \int 1 d x-\frac{1}{2} \int \frac{\cos x-\sin x}{\sin x+\cos x} d x=I(\text { say })
\end{aligned}
$$

Put $\sin x+\cos x=t$, so that $(\cos x-\sin x) d x=d t$
$I=\frac{x}{2}-\frac{1}{2} \int \frac{1}{t} d t+c=\frac{x}{2}-\frac{1}{2} \log |t|+c$
$=\frac{x}{2}-\frac{1}{2} \log |\sin x+\cos x|+c$.

Ex 7.2 Class 12 Maths Question 33.

$\frac{1}{1-\tan x}$

Solution:

$\int \frac{1}{1-\tan x} d x=\frac{1}{2} \int \frac{2 \cos x}{\cos x-\sin x}$

$$
\begin{aligned}
& =\frac{1}{2} \int \frac{\cos x+\sin x+\cos x-\sin x}{\cos x-\sin x} d x \\
& =\frac{1}{2} \int d x+\frac{1}{2} \int \frac{\cos x+\sin x}{\cos x-\sin x} d x
\end{aligned}
$$

Put $\cos x-\sin x=t \Rightarrow(\sin x+\cos x) d x=-d t$

$$
\begin{aligned}
& \Rightarrow \mathrm{I}=\frac{1}{2} \int d x+\frac{1}{2} \int \frac{-d t}{t} \\
& =\frac{x}{2}-\frac{1}{2} \log (\cos x-\sin x)+\mathrm{C}
\end{aligned}
$$

Ex 7.2 Class 12 Maths Question 34.

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClindCareer

$\frac{\sqrt{\tan x}}{\sin x \cos x}$

Solution:

$$
\int \frac{\sqrt{\tan x}}{\sin x \cos x} d x=\int \frac{\sqrt{\tan x}}{\tan x} \cdot \sec ^{2} x d x
$$

$$
=\int(\tan x)^{-1 / 2} \sec ^{2} x d x=\mathrm{I}(\text { say })
$$

Put $\tan x=t$, so that $\sec ^{2} x d x=d t$
$\therefore \mathrm{I}=\int t^{-\frac{1}{2}} d t=\frac{t^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+\mathrm{C}=2 \sqrt{\tan x}+\mathrm{C}$

Ex 7.2 Class 12 Maths Question 35.

$\frac{(1+\log x)^{2}}{x}$

Solution:

let $1+\log x=\mathbf{t}$
\Rightarrow
$\frac{1}{x} d x=d t \int \frac{(1+\log x)^{2}}{x} d x=\int t^{2} d t=\frac{t^{3}}{3}+c$

ClindCareer

$=\frac{1}{3}(1+\log x)^{3}+c$

Ex 7.2 Class 12 Maths Question 36.

$\frac{(x+1)(x+\log x)^{2}}{x}$

Solution:

put $\mathbf{x}+\log \mathbf{x}=\mathbf{t}$
$\left(\frac{x+1}{x}\right) d x=d t \therefore \int \frac{(x+1)(x+\log x)^{2}}{x} d x=\int t^{2} d t$
$=\frac{(x+\log x)^{3}}{3}+c$

Ex 7.2 Class 12 Maths Question 37.

$\frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}} d x$

Solution:

put $\quad \tan ^{-1} x^{4}=t \quad$ so \quad that $\frac{1}{1+x^{8}} \cdot 4 x^{3} d x=d t$
$\therefore \int \frac{x^{3} \sin \left(t a n^{-1} x^{4}\right)}{1+x^{8}} d x=\frac{1}{4} \int \sin t \quad d t$
$=\frac{1}{4}(-\cos t)+c=-\frac{1}{4} \cos \left(\tan ^{-1} x^{4}\right)+c$
Choose the correct answer in exercises 38 and 39
Ex 7.2 Class 12 Maths Question 38.
$\int \frac{10 x^{9}+10^{x} \log e^{10}}{x^{10}+10^{x}} d x$
(a) $10^{x}-x^{10}+C$
(b) $10^{\mathrm{x}}+\mathrm{x}^{10}+\mathrm{C}$
(c) $\left(10^{x}-x^{10}\right)+C$
(d) $\log \left(10^{x}+x^{10}\right)+C$

Solution:
(d)
$\int \frac{10 x^{9}+10^{x} \log e^{10}}{x^{10}+10^{x}} d x$
$=\log \left(10^{x}+x^{10}\right)+C$

Ex 7.2 Class 12 Maths Question 39.

$\int \frac{d x}{\sin ^{2} x \quad \cos ^{2} x}=$
(a) $\tan x+\cot x+c$
(b) $\tan x-\cot x+c$
(c) $\tan x \cot x+c$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/
(d) $\tan x-\cot 2 x+c$

Solution:

(c)
$\int \frac{d x}{\sin ^{2} x \cos ^{2} x}=\int\left(\sec ^{2} x+\operatorname{cosec}^{2} x\right) d x$
$=\tan x-\cot x+c$
Ex 7.3 Class 12 Maths Question 1.
$\sin ^{2}(2 x+5)$
Solution:
$\int \sin ^{2}(2 x+5) d x$
$=\frac{1}{2} \int[1-\cos 2(2 x+5)] d x$
$=\frac{1}{2} \int[1-\cos (4 x+10)] d x$
=
$\frac{1}{2}\left[x-\frac{\sin (4 x+10)}{4}\right]+c$
Ex 7.3 Class 12 Maths Question 2.
$\sin 3 x \cos 4 x$
Solution:
$\int \sin 3 x \cos 4 x$
$=\frac{1}{2} \int[\sin (3 x+4 x)+\cos (3 x-4 x)] d x$
$=\frac{1}{2} \int[\sin 7 x+\sin (-x)] d x$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

=

$$
-\frac{1}{14} \cos 7 x+\frac{1}{2} \cos x+c
$$

Ex 7.3 Class 12 Maths Question 3.

$\int \cos 2 x \cos 4 x \cos 6 x d x$

Solution:

$\frac{1}{2} \int \cos 2 x \cos 4 x \cos 6 x d x$
$=\frac{1}{2} \int(\cos 6 x+\cos 2 x) \cos 6 x d x$

$$
\begin{aligned}
& =\frac{1}{4} \int(1+\cos 12 x) d x+\frac{1}{4} \int(\cos 8 x+\cos 4 x) d x \\
& =\frac{1}{4}\left[x+\frac{1}{12} \sin 12 x+\frac{1}{8} \sin 8 x+\frac{1}{4} \sin 4 x\right]+c
\end{aligned}
$$

Ex 7.3 Class 12 Maths Question 4.

$\int \sin ^{3}(2 x+1) d x$

Solution:

$$
\begin{aligned}
& =\frac{1}{4} \int[3 \sin (2 \mathbf{x}+\mathbf{1}) \mathbf{-} \sin 3(2 \mathbf{x}+\mathbf{1})] \mathbf{d} \mathbf{x} \\
& = \\
& -\frac{3}{8} \cos (2 x+1)+\frac{1}{24}\left[4 \cos ^{3}(2 x+1)-3 \cos (2 x+1)\right]+c \\
& = \\
& -\frac{1}{2} \cos (2 x+1)+\frac{1}{6} \cos ^{3}(2 x+1)+c
\end{aligned}
$$

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

Ex 7.3 Class 12 Maths Question 5.

$\sin ^{3} x \cos ^{3} x$
Solution:
put $\sin x=t$
$\Rightarrow \cos x d x=d t$
$\therefore \int \sin ^{3} x \cos ^{3} x d x=\int t^{3}\left(1-t^{2}\right) d t$
$\frac{t^{4}}{4}-\frac{t^{6}}{6}+c=\frac{(\sin x)^{4}}{4}-\frac{(\sin x)^{6}}{6}+c$
Ex 7.3 Class 12 Maths Question 6.
$\sin x \sin 2 x \sin 3 x$

Solution:

$\int \sin x \sin 2 x \sin 3 x d x$
$=\frac{1}{2} \int 2 \sin x \sin 2 x \sin 3 x d x$
$=\frac{1}{2} \int(\cos x-\cos 3 x) \sin 3 x d x$
$=\frac{1}{2} \int(\sin 4 x+\sin 2 x-\sin 6 x) d x$
=
$\frac{1}{4}\left\{\frac{-\cos 4 x}{4}-\frac{\cos 2 x}{2}+\frac{\cos 6 x}{6}\right\}+c$

Ex 7.3 Class 12 Maths Question 7.

$\sin 4 x \sin 8 x$

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

Solution:

$\frac{1}{2}$
$\int \sin 4 x \sin 8 x d x$
=
$\frac{1}{2}$
$\int(\cos 4 x-\cos 12 x) d x$
=
$\frac{1}{2}\left[\frac{\sin 4 x}{4}-\frac{\sin 12 x}{12}\right]+c$

Ex 7.3 Class 12 Maths Question 8.

$\frac{1-\cos x}{1+\cos x}$

Solution:
$\int \frac{1-\cos x}{1+\cos x} d x \int \frac{2 \sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}} d x=\int \tan ^{2} \frac{x}{2} d x$
$=\int\left[\sec ^{2} \frac{x}{2}-1\right] d x=2 \tan \frac{x}{2}-x+c$

Ex 7.3 Class 12 Maths Question 9.
$\frac{\cos x}{1+\cos x}$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

Solution:
$\int \frac{\cos x}{1+\cos x} d x=\int 1 d x-\int \frac{1}{1+\cos x} d x$
$=x-\frac{1}{2} \int \sec ^{2} \frac{x}{2} d x+c=x-\tan \frac{x}{2}+c$
Ex 7.3 Class 12 Maths Question 10.
$\int \boldsymbol{\operatorname { s i n }} \mathrm{x}^{4} \mathrm{dx}$
Solution:

$$
\begin{aligned}
\int & \left(\frac{1-\cos 2 x}{2}\right)^{2} d x=\frac{1}{4} \int\left(1+\cos ^{2} 2 x-2 \cos 2 x\right) d x \\
& =\frac{1}{4} \int\left[1+\frac{1+\cos 4 x}{2}-2 \cos 2 x\right] d x \\
& =\frac{3}{8} x+\frac{1}{32} \sin 4 x-\frac{1}{4} \sin 2 x+c
\end{aligned}
$$

Ex 7.3 Class 12 Maths Question 11.
$\cos ^{4} 2 x$

Solution:

$\int \cos ^{4} 2 x d x$
$\int\left(\frac{1+\cos 4 x}{2}\right)^{2} d x$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClindCareer

$$
\begin{aligned}
& =\frac{1}{4} \int\left(1+\cos ^{2} 4 x+2 \cos 4 x\right) d x \\
& =\frac{1}{4} \int\left[1+\frac{1+\cos 8 x}{2}+2 \cos 4 x\right] d x \\
& =\frac{3}{8} x+\frac{1}{64} \sin 8 x+\frac{1}{8} \sin 4 x+C
\end{aligned}
$$

Ex 7.3 Class 12 Maths Question 12.

$$
\frac{\sin ^{2} x}{1+\cos x}
$$

Solution:

$$
\begin{aligned}
& \int \frac{\sin ^{2} x}{1+\cos x} d x=\int \frac{1-\cos ^{2} x}{1+\cos x} d x \\
& \int(1-\cos x) d x=x-\sin x+c
\end{aligned}
$$

Ex 7.3 Class 12 Maths Question 13.

$\frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha}$

Solution:

let $\mathrm{I}=$
$\int \frac{\left(2 \cos ^{2} x-1\right)-\left(2 \cos ^{2} \alpha-1\right)}{\cos x-\cos \alpha} d x \int \frac{2(\cos x-\cos \alpha)-(\cos x+\cos \alpha)}{\cos x-\cos \alpha} d x$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClindCareer

$=2 \int \cos x d x+2 \cos \alpha \int d x$
$=2(\sin x+x \cos \alpha)+c$
Ex 7.3 Class 12 Maths Question 14.
$\frac{\cos x-\sin x}{1+\sin 2 x}$

Solution:
let $\mathrm{I}=$
$\int \frac{\cos x-\sin x}{1+\sin 2 x} d x=\int \frac{\cos x-\sin x}{(\cos x+\sin x)^{2}} d x$
put $\cos x+\sin x=t$
$\Rightarrow(-\sin x+\cos x) d x=d t$
$I=\int \frac{d t}{t^{2}}=-\frac{1}{t}+c=\frac{-1}{\cos x+\sin x}+c$

Ex 7.3 Class 12 Maths Question 15.
$\int \tan ^{3} 2 x \quad \sec 2 x \quad d x=I$

Solution:

$I=\int\left(\sec ^{2} 2 x-1\right) \sec 2 x \tan 2 x d x$
put $\sec 2 x=t, 2 \sec 2 x \tan 2 x d x=d t$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

$$
\begin{aligned}
& I=\frac{1}{2} \int\left(t^{2}-1\right) d t=\frac{1}{2}\left(\frac{t^{3}}{3}-t\right)+c \\
& =\frac{1}{2}\left(\frac{1}{3} \sec ^{2} 2 x-1\right) \sec 2 x+c
\end{aligned}
$$

Ex 7.3 Class 12 Maths Question 16.

$\tan ^{4} \mathrm{x}$

Solution:

let $I=\int \tan ^{4} d x$
$=\int\left(\sec ^{2} x-1\right)^{2} d x$

$$
\begin{align*}
& =\int\left(\sec ^{4} x \cdot d x-2 \int \sec ^{2} x d x+\int d x\right. \\
& \Rightarrow \mathrm{I}=\mathrm{I}_{1}-2 \tan x+x+\mathrm{C}_{1} \tag{i}
\end{align*}
$$

Now, $\mathrm{I}_{1}=\int \sec ^{4} x d x=\int\left(1+\tan ^{2} x\right) \sec ^{2} x d x$
Put $\tan x=t_{3}$ so that $\sec ^{2} x d x=d t$

$$
\begin{equation*}
\therefore I_{1}=t+\frac{t^{3}}{3}+\mathrm{C}_{2} \Rightarrow \mathrm{I}_{1}=\tan x+\frac{1}{3} \tan ^{3} x+\mathrm{C}_{2} \tag{ii}
\end{equation*}
$$

From (i) and (ii), we have.

$$
\mathrm{I}=\frac{1}{3} \tan ^{3} x-\tan x+x+\mathrm{C}
$$

Ex 7.3 Class 12 Maths Question 17.

$\frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x}$

Solution:

$\int\left(\frac{\sin ^{3} x}{\sin ^{2} x \cos ^{2} x}+\frac{\cos ^{2} x}{\sin x \cos ^{2} x}\right) d x$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/
ClindCareer

ClndCareer

$=\sec x-\operatorname{cosec} x+c$
Ex 7.3 Class 12 Maths Question 18.
$\frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x}$

Solution:

$$
\begin{aligned}
& I=\int \frac{\left(\cos ^{2} x-\sin ^{2} x\right)+2 \sin ^{2} x}{\cos ^{2} x} d x \\
& =\int \frac{\left(\cos ^{2} x-\sin ^{2} x\right)}{\cos ^{2} x} d x=\int \sec ^{2} x d x=\tan x+c
\end{aligned}
$$

Ex 7.3 Class 12 Maths Question 19.

$\frac{1}{\sin x \cos ^{3} x}$

Solution:
$I=\int\left(\tan x+\frac{1}{\tan x}\right) \sec ^{2} x d x$
put $\tan x=t$
so that $\sec ^{2} x d x=d t$
$I=\int\left(t+\frac{1}{t}\right) d t=\frac{t^{2}}{2}+\log |t|+c$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/
$=\log |\tan x|+\frac{1}{2} \tan ^{2} x+c$
Ex 7.3 Class 12 Maths Question 20.
$\frac{\cos 2 x}{(\cos x+\sin x)^{2}}$

Solution:

$$
I=\int \frac{\cos ^{2} x-\sin ^{2} x}{(\cos x+\sin x)^{2}} d x=\int \frac{\cos x-\sin x}{\cos x+\sin x} d x
$$

put $\cos x+\sin x=t$
$\Rightarrow(-\sin x+\cos) d x=d t$
$I=\int \frac{d t}{t}=\log |t|+c=\log |\cos x+\sin x|+c$

Ex 7.3 Class 12 Maths Question 21.

$\sin ^{-1}(\cos x)$
Solution:
$\int \sin ^{-1}(\cos x) d x=\sin ^{-1}\left[\sin \left(\frac{\pi}{2}-x\right)\right] d x$
$\int\left(\frac{\pi}{2}-x\right) d x=\frac{\pi x}{2}-\frac{x^{2}}{2}+c$
Ex 7.3 Class 12 Maths Question 22.
$\int \frac{1}{\cos (x-a) \cos (x-b)} d x$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

Solution:

$$
\begin{aligned}
& \frac{1}{\sin (a-b)} \int \frac{\sin [(x-b)-(x-a)]}{\cos (x-a) \cos (x-b)} d x \\
& =\frac{1}{\sin (a-b)}\left[\int \tan (x-b) d x-\int \tan (x-a) d x\right]
\end{aligned}
$$

$$
=\frac{1}{\sin (a-b)} \log \left|\frac{\cos (x-a)}{\cos (x-b)}\right|+c
$$

Ex 7.3 Class 12 Maths Question 23.
$\int \frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x$ is equal to
(a) $\tan x+\cot x+c$
(b) $\tan x+\operatorname{cosec} x+c$
(c) $-\tan x+\cot x+c$
(d) $\tan x+\sec x+c$

Solution:

(a)

$$
\int \frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x
$$

$=\int\left(\sec ^{2} x-\operatorname{cosec}^{2} x\right) d x$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/
$=\tan x+\cot x+c$
Ex 7.3 Class 12 Maths Question 24.
$\int \frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} \cdot x\right)} d x$ is equal to
(a) $-\cot \left(\mathrm{e} . \mathrm{x}^{\mathrm{x}}\right)+\mathrm{c}$
(b) $\tan \left(x e^{x}\right)+c$
(c) $\tan \left(e^{x}\right)+c$
(d) $\cot e^{x}+c$

Solution:
(b)
$\int \frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} \cdot x\right)} d x$
$=\int \sec ^{2} t \mathrm{dt}$
$=\tan \mathrm{t}+\mathrm{c}=\tan \left(\mathrm{Xe}^{\mathrm{x}}\right)+\mathrm{c}$
Ex 7.4 Class 12 Maths Question 1.
$\frac{3 x^{2}}{x^{6}+1}$

Solution:

Let $\mathrm{x}^{3}=\mathrm{t} \Rightarrow 3 \mathrm{x}^{2} \mathrm{dx}=\mathrm{dt}$
$\int \frac{3 x^{2}}{x^{6}+1} d x=\int \frac{d t}{t^{2}+1}=\tan ^{-1} t+c$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

$=\tan ^{-1}\left(\mathrm{x}^{3}\right)+\mathrm{c}$
Ex 7.4 Class 12 Maths Question 2.
$\frac{1}{\sqrt{1+4 x^{2}}}$

Solution:
$\frac{1}{2} \int \frac{d x}{\sqrt{\frac{1}{4}+x^{2}}}=\frac{1}{2} \int \frac{d x}{\sqrt{\left(\frac{1}{2}\right)^{2}+x^{2}}}=\frac{1}{2} \log \left|2 x+\sqrt{1+4 x^{2}}\right|+c$
Ex 7.4 Class 12 Maths Question 3.
$\frac{1}{\sqrt{(2-x)^{2}+1}}$

Solution:
put (2-x)=t
so that $-\mathrm{dx}=\mathrm{dt}$
$\Rightarrow \mathrm{dx}=-\mathrm{dt}$
$\int \frac{d x}{\sqrt{(2-x)^{2}+1}}=-\int \frac{d t}{\sqrt{t^{2}+1}}=-\log \left|t+\sqrt{t^{2}+1}\right|+c$
$=\log \left|\frac{1}{(2-x)+\sqrt{x^{2}-4 x+5}}\right|+c$

Ex 7.4 Class 12 Maths Question 4.

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

$\frac{1}{\sqrt{9-25 x^{2}}}$

Solution:

$$
\begin{aligned}
& \int \frac{d x}{\sqrt{9-25 x^{2}}}=\frac{1}{5} \int \frac{d x}{\sqrt{\left(\frac{3}{5}\right)^{2}-x^{2}}} \\
& =\frac{1}{5} \sin ^{-1}\left(\frac{x}{\frac{3}{5}}\right)+c=\frac{1}{5} \sin ^{-1}\left(\frac{5 x}{3}\right)+c
\end{aligned}
$$

Ex 7.4 Class 12 Maths Question 5.

$\frac{3 x}{1+2 x^{4}}$

Solution:

Put $x^{2}=t$,so that $2 x d x=d t$

$\Rightarrow \mathrm{xdx}=$
$\frac{d t}{2} \quad \therefore \int \frac{3 x}{1+2 x^{4}} d x=\frac{1}{2} \int \frac{d t}{1+2 t^{2}}=\frac{3}{4} \int \frac{d t}{\left(\frac{1}{\sqrt{2}}\right)^{2}+t^{2}}$
$=\frac{3}{2 \sqrt{2}} \tan ^{-1}(\sqrt{2 t})+c=\frac{3}{2 \sqrt{2}} \tan ^{-1}\left(\sqrt{2 x^{2}}\right)+c$

Ex 7.4 Class 12 Maths Question 6.

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClindCareer

$\frac{x^{2}}{1-x^{6}}$

Solution:

put $x^{3}=t$,so that $3 x^{2} d x=d t$
$\int \frac{x^{2}}{1-x^{6}} d x=\frac{1}{3} \int \frac{d t}{1-t^{2}}=\frac{1}{6} \log \left|\frac{1+t}{1-t}\right|+c$
$=\frac{1}{6} \log \left|\frac{1+x^{3}}{1-x^{3}}\right|+c$

Ex 7.4 Class 12 Maths Question 7.

$\frac{x-1}{\sqrt{x^{2}-1}}$

Solution:

$$
I=\int \frac{x-1}{\sqrt{x^{2}-1}} d x-\int \frac{1}{\sqrt{x^{2}-1}} d x, I=I_{1}-I_{2}
$$

put $x^{2}-1=t$, so that $2 x d x=d t$

$$
\begin{aligned}
& I_{1}=\frac{1}{2} \int \frac{d t}{\sqrt{t}}=\frac{1}{2} \frac{t^{1 / 2}}{1 / 2}+c=\sqrt{x^{2}-1}+c_{1} \\
& I_{2}=\int \frac{1}{\sqrt{x^{2}-1}} d x=\log \left|x+\sqrt{x^{2}-1}\right| \\
& \therefore \quad I=\sqrt{x^{2}-1}-\log \left|x+\sqrt{x^{2}-1}\right|+c
\end{aligned}
$$

ClndCareer

Ex 7.4 Class 12 Maths Question 8.
$\frac{x^{2}}{\sqrt{x^{6}+a^{6}}}$

Solution:

put $\mathbf{x}^{3}=\mathbf{t}$
so that $3 x^{2} d x=d t$
$I=\frac{1}{3} \int \frac{d t}{t^{2}+\left(a^{3}\right)^{2}}=\frac{1}{3} \log \left|t+\sqrt{t^{2}+a^{6}}\right|+c$
$=\frac{1}{3} \log \left|x^{3}+\sqrt{a^{6}+x^{6}}\right|+c$

Ex 7.4 Class 12 Maths Question 9.

$\frac{\sec ^{2} x}{\sqrt{\tan ^{2} x+4}}$

Solution:
let $\tan x=\mathbf{t}$
$\sec x^{2} d x=d t$
$I=\int \frac{d t}{\sqrt{t^{2}+(2)^{2}}}=\log \left|t+\sqrt{t^{2}+4}\right|+c$
$=\log \left|\tan x+\sqrt{\tan ^{2} x+4}\right|+c$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

Ex 7.4 Class 12 Maths Question 10.

$\frac{1}{\sqrt{x^{2}+2 x+2}}$

Solution:
$\int \frac{1}{\sqrt{x^{2}+2 x+2}} d x=\int \frac{d x}{\sqrt{(x+1)^{2}+1}}$
$=\log \left|(x+1)+\sqrt{x^{2}+2 x+2}\right|+c$

Ex 7.4 Class 12 Maths Question 11.

$\frac{1}{9 x^{2}+6 x+5}$

Solution:

$$
\begin{aligned}
& \int \frac{1}{9 x^{2}+6 x+5}=\frac{1}{9} \int \frac{d x}{\left(x+\frac{1}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}} \\
& =\frac{1}{6} \tan ^{-1}\left(\frac{3 x+1}{2}\right)+c
\end{aligned}
$$

Ex 7.4 Class 12 Maths Question 12.
$\frac{1}{\sqrt{7-6 x-x^{2}}}$

Solution:

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

$I=\int \frac{d x}{\sqrt{4^{2}-(x+3)^{2}}}=\sin ^{-1}\left(\frac{x+3}{4}\right)+c$

Ex 7.4 Class 12 Maths Question 13.

$\frac{1}{\sqrt{(x-1)(x-2)}}$

Solution:

$$
\begin{aligned}
& \int \frac{1}{\sqrt{(x-1)(x-2)}} d x=\int \frac{d x}{\sqrt{\left(x-\frac{3}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}} \\
& =\log \left|x-\frac{3}{2}+\sqrt{x^{2}-3 x+2}\right|+c
\end{aligned}
$$

Ex 7.4 Class 12 Maths Question 14.

$$
\frac{1}{\sqrt{8+3 x-x^{2}}}
$$

Solution:

$$
\int \frac{d x}{\sqrt{8+3 x-x^{2}}}=\int \frac{d x}{\sqrt{8-\left(x^{2}-3 x\right)}}
$$

$$
=\int \frac{d x}{\sqrt{\left(\frac{\sqrt{41}}{2}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}}}=\sin ^{-1}\left(\frac{2 x-3}{\sqrt{41}}\right)+c
$$

Ex 7.4 Class 12 Maths Question 15.

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

$\frac{1}{\sqrt{(x-a)(x-b)}}$

Solution:

$$
\int \frac{d x}{\sqrt{(x-a)(x-b)}}=\int \frac{d x}{\left(x-\frac{a+b}{2}\right)^{2}-\left(\frac{a-b}{2}\right)^{2}}
$$

$$
=\log \left|\left(x-\frac{a+b}{2}\right)+\sqrt{(x-a)(x-b)}\right|+c
$$

Ex 7.4 Class 12 Maths Question 16.
$\frac{4 x+1}{\sqrt{2 x^{2}+x-3}}$

Solution:
let $I=\int \frac{4 x+1}{\sqrt{2 x^{2}+x-3}} d x$
put $2 x^{2}+x-3=t$
so that $(4 x+1) d x=d t$
let $I=\int \frac{4 x+1}{\sqrt{2 x^{2}+x-3}} d x$
$\therefore I=\int \frac{d t}{\sqrt{t}}=2 t^{\frac{1}{2}}+c=2 \sqrt{2 x^{2}+x-3}+c$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

Ex 7.4 Class 12 Maths Question 17.

$\frac{x+2}{\sqrt{x^{2}-1}}$

Solution:
$\int \frac{x+2}{\sqrt{x^{2}-1}} d x=\int \frac{x}{\sqrt{x^{2}-1}} d x+\int \frac{2}{\sqrt{x^{2}-1}} d x$

$$
\begin{aligned}
& =\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{C}(\mathrm{say}) \\
& \text { Put } x^{2}-1=t, \Rightarrow 2 x d x=d t \\
& \mathrm{I}_{1}=\int \frac{x}{x^{2}-1} d x=\frac{1}{2} \int \frac{d t}{\sqrt{t}}=\sqrt{t}=\sqrt{x^{2}-1} \\
& \text { and } \mathrm{I}_{2}=\int \frac{2}{\sqrt{x^{2}-1}} d x=2 \log \left|x+\sqrt{x^{2}-1}\right| \\
& \text { Hence } \mathrm{I}=\sqrt{x^{2}-1}+2 \log \left|x+\sqrt{x^{2}-1}\right|+C
\end{aligned}
$$

Ex 7.4 Class 12 Maths Question 18.
$\frac{5 x-2}{1+2 x+3 x^{2}}$

Solution:

put $5 x-2=A$
$\frac{d}{d x}$
$\left(1+2 x+3 x^{2}\right)+B$
$\Rightarrow 6 A=5, A=$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/
$\frac{5}{6}-2=2 A+B$

$$
\begin{aligned}
& \mathrm{B}= \\
& -\frac{11}{3}
\end{aligned}
$$

$$
\begin{aligned}
& I=\int \frac{\frac{5}{6}(6 x+2)}{3 x^{2}+2 x+1} d x-\frac{11}{3} \int \frac{d x}{3 x^{2}+2 x+1} \\
& =I_{1}-\frac{11}{3} I_{2} ; \text { put } 3 x^{2}+2 x+1=t:(6 x+2) d x=d t \\
& I_{1}=\frac{5}{6} \int \frac{d t}{t}=\frac{5}{6} \log t=\frac{5}{6} \log \left(3 x^{2}+2 x+1\right)+c_{1} \\
& \text { and } I_{2}=\int \frac{d x}{3 x^{2}+2 x+1}=\frac{1}{3} \int \frac{d x}{\left(x+\frac{1}{3}\right)^{2}+\left(\frac{\sqrt{2}}{3}\right)^{2}} \\
& \Rightarrow I_{2}=\frac{1}{\sqrt{2}} \tan ^{-1} \frac{3 x+1}{\sqrt{2}}+c \\
& \therefore \mathrm{I}=\frac{5}{6} \log \left(3 \mathrm{x}^{2}+2 \mathrm{x}+1\right)-\frac{11}{3} \cdot \frac{1}{\sqrt{2}} \tan ^{-1} \frac{3 \mathrm{x}+1}{\sqrt{2}}+\mathrm{c}
\end{aligned}
$$

Ex 7.4 Class 12 Maths Question 19.
$\frac{6 x+7}{\sqrt{(x-5)(x-4)}}$

Solution:

ClindCareer

$$
\int \frac{6 x+7}{\sqrt{(x-5)(x-4)}} d x=\int \frac{(6 x+7) d x}{\sqrt{x^{2}-9 x+20}}
$$

$$
\begin{aligned}
& \text { Let } 6 x+7=\mathrm{A} \times \frac{d}{d x}\left(x^{2}-9 x+20\right)+\mathrm{B} \\
& \Rightarrow 6 x+7=\mathrm{A}(2 x-9)+\mathrm{B} \\
& \Rightarrow 2 \mathrm{~A}=6 \Rightarrow \mathrm{~A}=3 \& 7=-9 \mathrm{~A}+\mathrm{B} \Rightarrow \mathrm{~B}=34 \\
& \therefore \mathrm{I}=3 \int \frac{2 x-9}{\sqrt{x^{2}-9 x+20}} d x+34 \int \frac{d x}{\sqrt{x^{2}-9 x+20}} \\
& \quad \text { Let } \mathrm{I}=3 \mathrm{I}_{1}+34 \mathrm{I}_{2}+\mathrm{C} \\
& \therefore \mathrm{I}_{1}=\int \frac{d t}{\sqrt{t}}=2 t^{1 / 2}=2 \sqrt{x^{2}-9 x+20} \\
& \quad \mathrm{I}_{2}=\int \frac{d x}{\sqrt{\left(x-\frac{9}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}} \\
& \quad=\log \left\lvert\, x-\frac{9}{2}+\sqrt{\left.\left(x-\frac{9}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2} \right\rvert\,}\right. \\
& \therefore \mathrm{I}=6 \sqrt{x^{2}-9 x+20}+34 \log \left|\left(x-\frac{9}{2}\right)+\sqrt{x^{2}-9 x+20}\right|+\mathrm{C}
\end{aligned}
$$

Ex 7.4 Class 12 Maths Question 20.

$$
\frac{x+2}{\sqrt{4 x-x^{2}}}
$$

Solution:

ClndCareer

$$
I=\int \frac{x-2}{\sqrt{4-(x-2)^{2}}} d x+4 \int \frac{d x}{\sqrt{4-(x-2)^{2}}}
$$

$$
=I_{1}+4 \sin ^{-1} \frac{x-2}{2}+C
$$

For I_{1} put $(x-2)^{2}=t \Rightarrow 2(x-2) d x=d t$
$\therefore \quad \mathrm{I}_{1}=\frac{1}{2} \int \frac{d t}{\sqrt{4-t}}=\sqrt{4-t}$
$\therefore \quad \mathrm{I}=\sqrt{4-(x-2)^{2}}+4 \sin ^{-1} \frac{x-2}{2}+C$

Ex 7.4 Class 12 Maths Question 21.
$\frac{x+2}{\sqrt{x^{2}+2 x+3}}$

Solution:
$I=\frac{1}{2} \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x$

ClindCareer

$$
\begin{aligned}
& =\frac{1}{2} \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x+\int \frac{d x}{\sqrt{x^{2}+2 x+3}} \\
& =\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{C}
\end{aligned} \quad \begin{aligned}
& \mathrm{I}_{1}=\frac{1}{2} \int \frac{d t}{\sqrt{t}}=\frac{1}{2} \times 2 t^{\frac{1}{2}}=\sqrt{x^{2}+2 x+3} \\
& \mathrm{I}_{2}=\int \frac{d x}{\sqrt{(x+1)^{2}+(\sqrt{2})^{2}}}=\log \left|(x+1)+\sqrt{x^{2}+2 x+3}\right| \\
& . \mathrm{I}=\sqrt{x^{2}+2 x+3}+\log \left|(x+1)+\sqrt{x^{2}+2 x+3}\right|+\mathrm{C}
\end{aligned}
$$

Ex 7.4 Class 12 Maths Question 22.
$\frac{x+3}{x^{2}-2 x-5}$

Solution:

$$
I=\frac{1}{2} \int \frac{2 x-2}{x^{2}-2 x-5} d x+\int \frac{d x}{x^{2}-2 x-5}
$$

$$
\begin{aligned}
& =\frac{1}{2} \mathrm{I}_{1}+4 \mathrm{I}_{2}+\mathrm{C} \text { (say) } \\
& \text { Put } x^{2}-2 \mathrm{x}-5=t, \text { so that }(2 x-2) d x=d t \\
& \therefore \quad \mathrm{I}_{1}=\int \frac{d t}{t}=\log |t|=\log \left|x^{2}-2 x-5\right| \\
\mathrm{I}_{2} & =\int \frac{d x}{(x-1)^{2}-\left(\sqrt{6}^{2}\right.}=\frac{1}{2 \sqrt{6}} \log \left|\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right| \\
\therefore \mathrm{I}= & \frac{1}{2} \log \left|x^{2}-2 x-5\right|+\frac{2}{\sqrt{6}} \log \left|\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right|+\mathrm{C}
\end{aligned}
$$

ClindCareer

Ex 7.4 Class 12 Maths Question 23.

$\frac{5 x+3}{\sqrt{x^{2}+4 x+10}}$

Solution:

$$
I=\int \frac{\frac{5}{2}(2 x+4)+(3-10)}{\sqrt{x^{2}+4 x+10}} d x
$$

$$
\begin{aligned}
&=\frac{5}{2} \int \frac{2 x+4}{\sqrt{x^{2}+4 x+10}} d x-7 \int \frac{d x}{\sqrt{x^{2}+4 x+10}} \\
&=\frac{5}{2} \mathrm{I}_{1}-7 \mathrm{I}_{2}+\mathrm{C}(\text { say }) \\
& \text { Put } x^{2}+4 x+10=\mathrm{t}, \Rightarrow(2 x+4) \mathrm{d} x=\mathrm{dt} \\
& \therefore \mathrm{I}_{1}=\int \frac{d t}{\sqrt{t}}=2 \sqrt{t}=2 \sqrt{x^{2}+4 x+10} \\
& \mathrm{I}_{2}=\int \frac{d x}{\sqrt{(x+2)^{2}+(\sqrt{6})^{2}}} \\
&=\log \left|x+2+\sqrt{x^{2}+4 x+10}\right| \\
& \mathrm{I}=5 \sqrt{x^{2}+4 x+10}-7 \log \left|x+2+\sqrt{x^{2}+4 x+10}\right|+\mathrm{C}
\end{aligned}
$$

Ex 7.4 Class 12 Maths Question 24.

$\int \frac{d x}{x^{2}+2 x+2}$ equals
(a) $\tan ^{-1}(x+1)+c$
(b) $(x+1) \tan ^{-1} x+c$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/
(c) $\tan ^{-1}(x+1)+c$
(d) $\tan ^{-1} x+c$

Solution:

(b)
let $\quad I=\int \frac{d x}{x^{2}+2 x+2}=\int \frac{d x}{(x+1)^{2}+1}$
$=(x+1) \tan ^{-1} x+c$

Ex 7.4 Class 12 Maths Question 25.

$\int \frac{d x}{\sqrt{9 x-4 x^{2}}}$ equals
(a)
$\frac{1}{9} \sin ^{-1}\left(\frac{9 x-8}{8}\right)+c$
(b)
$\frac{1}{2} \sin ^{-1}\left(\frac{8 x-9}{9}\right)+c$
(c)
$\frac{1}{3} \sin ^{-1}\left(\frac{9 x-8}{8}\right)+c$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/
(d)
$\sin ^{-1}\left(\frac{9 x-8}{9}\right)+c$

Solution:

(b)
$\int \frac{d x}{\sqrt{9 x-4 x^{2}}}=\frac{1}{2}\left[\frac{d x}{\sqrt{\left(\frac{9}{8}\right)^{2}-\left[x^{2}-\frac{9}{4} x+\left(\frac{9}{8}\right)^{2}\right]}}\right]$
$\frac{1}{2} \sin ^{-1}\left(\frac{8 x-9}{9}\right)+c$
Ex 7.5 Class 12 Maths Question 1.
$\frac{x}{(x+1)(x+2)}$

Solution:

let
$\frac{x}{(x+1)(x+2)}$
三
$\frac{A}{x+1}+\frac{B}{x+2}$
$\Rightarrow x \equiv A(x+2)+B(x+1) \ldots$ (i)
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

putting $x=-1 \& x=-2$ in (i)
we get $A=1, B=2$
$\therefore \int \frac{1}{(x+1)(x+2)} d x=\int \frac{-1}{x+1} d x+\int \frac{2}{x+2} d x$
$=-\log |x+1|+2 \log |x+2|+c$
Ex 7.5 Class 12 Maths Question 2.
$\frac{1}{x^{2}-9}$

Solution:

let
$\frac{1}{x^{2}-9}=\frac{1}{(x-3)(x+3)} \equiv \frac{A}{x-3}+\frac{B}{x+3}$
$\Rightarrow x \equiv \mathrm{~A}(\mathrm{x}+3)+\mathrm{B}(\mathrm{x}-3) \ldots$ (i)
put $x=3,-3$ in (i)
we get
$A=\frac{1}{6}$
\&
$B=-\frac{1}{6} \therefore \int \frac{1}{x^{2}-9} d x=\frac{1}{6} \int\left[\frac{1}{x-3}-\frac{1}{x+3}\right] d x$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

$=\frac{1}{6} \log \left|\frac{x-3}{x+3}\right|+c$
Ex 7.5 Class 12 Maths Question 3.
$\frac{3 x-1}{(x-1)(x-2)(x-3)}$

Solution:
Let
$\frac{3 x-1}{(x-1)(x-2)(x-3)}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x-3}$
$\Rightarrow 3 x-1=A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(-2) \ldots . .(i)$
put $x=1,2,3$ in (i)
we get $A=1, B=-5 \& C=4$
$\therefore I=\int \frac{1}{x-1} d x-5 \int \frac{1}{x-2} d x+4 \int \frac{1}{x-3} d x$
$=\log |x-1|-5 \log |x-2|+4 \log |x+3|+C$
Ex 7.5 Class 12 Maths Question 4.
$\frac{x}{(x-1)(x-2)(x-3)}$

Solution:

let
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClindCareer

$\frac{x}{(x-1)(x-2)(x-3)}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x-3}$
$\Rightarrow x \equiv A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2) \ldots(i)$
put $x=1,2,3$ in (i)
$A=\frac{1}{2}, B=-2, C=\frac{3}{2} \therefore I=\frac{1}{2} \int \frac{d x}{x-1}-2 \int \frac{d x}{x-2}+\frac{3}{2} \int \frac{d x}{x-3}$
$=\frac{1}{2} \log |x-1|-2 \log |x-2|+\frac{3}{2} \log |x-3|+c$
Ex 7.5 Class 12 Maths Question 5.
$\frac{2 x}{x^{2}+3 x+2}$

Solution:
let
$\frac{2 x}{x^{2}+3 x+2}=\frac{2 x}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}$
$\Rightarrow 2 x=A(x+2)+B(x+1) \ldots(i)$
put $x=-1,-2$ in (i)
we get $A=-2, B=4$
$\therefore \int \frac{2 x}{x^{2}+3 x+2} d x=-2 \int \frac{d x}{x+1}+4 \int \frac{d x}{x+2}$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/
$=-2 \log |x+1|+4 \log |x+2|+c$
Ex 7.5 Class 12 Maths Question 6.
$\frac{1-x^{2}}{x(1-2 x)}$

Solution:

$$
\frac{1-x^{2}}{\left(x-2 x^{2}\right)}
$$

is an improper fraction therefore we convert it into a proper fraction. Divide $1-x^{2}$ by $x-2 x^{2}$ by long division.

$$
\begin{align*}
& \frac{1-x^{2}}{x-2 x^{2}}=\frac{1}{2}\left[\frac{\left(2 x^{2}-x\right)+(x-2)}{2 x^{2}-x}\right]=\frac{1}{2}\left[1+\frac{x-2}{2 x^{2}-x}\right] \\
& \text { Now, } \frac{x-2}{2 x^{2}-x}=\frac{x-2}{x(2 x-1)}=\frac{A}{x}+\frac{B}{2 x-1} \\
& \Rightarrow x-2 \equiv A(2 x-1)+B x \tag{i}
\end{align*}
$$

Put $x=0, \frac{1}{2}$ in (i), we get : $A=2 B=-3$
$\therefore \int \frac{1-x^{2}}{x(1-2 x)} d x=\frac{1}{2} x+\int \frac{1}{x} d x+\frac{3}{2} \int \frac{1}{1-2 x} d x$

$$
=\frac{1}{2} x+\log |x|-\frac{3}{4} \log |1-2 x|+c
$$

Ex 7.5 Class 12 Maths Question 7.

$\frac{x}{\left(x^{2}+1\right)(x-1)}$

Clnd Career

Solution:

let

$$
\frac{x}{\left(x^{2}+1\right)(x-1)}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+1}
$$

$$
\Rightarrow x=A\left(x^{2}+1\right)+(B x+C)(x-1)
$$

Put $x=1,0$
\Rightarrow
$A=\frac{1}{2} C=\frac{1}{2} \Rightarrow B=-\frac{1}{2} \therefore I=\frac{1}{2} \int \frac{d x}{x-1}-\frac{1}{2} \int \frac{x}{x^{2}+1} d x+\frac{1}{2} \int \frac{d x}{x^{2}+1}$
$=\frac{1}{2} \log (x-1)-\frac{1}{4} \log \left(x^{2}+1\right)+\frac{1}{2} \tan ^{-1} x+c$
Ex 7.5 Class 12 Maths Question 8.

$$
\frac{x}{(x-1)^{2}(x+2)}
$$

Solution:

$\frac{x}{(x-1)^{2}(x+2)}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x+2}$
$\Rightarrow x \equiv A(x-1)(x+2)+B(x+2)+C(x-1)^{2} \ldots(i)$
put $x=1,-2$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClindCareer

we get

$$
B=\frac{1}{3}, C=\frac{-2}{9} \therefore I=\frac{2}{9} \int \frac{1}{x-1} d x+\frac{1}{3} \int \frac{1}{(x-1)^{2}} d x-\frac{2}{9} \int \frac{1}{x+2} d x
$$

$=\frac{2}{9} \log \left|\frac{x-1}{x+2}\right|-\frac{1}{3(x-1)}+c$

Ex 7.5 Class 12 Maths Question 9.

$\frac{3 x+5}{x^{3}-x^{2}-x+1}$

Solution:
let
$\frac{3 x+5}{x^{2}(x-1)-1(x-1)} \frac{3 x+5}{(x-1)^{2}(x+1)}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x+1}$
$\Rightarrow 3 x+5=A(x-1)(x+1)+B(x+1)+C(x-1)$
put $x=1,-1,0$
we get
$B=4, C=\frac{1}{2}, A=-\frac{1}{2} \therefore I=-\frac{1}{2} \int \frac{d x}{(x-1)}+4 \frac{d x}{(x-1)^{2}}+\frac{1}{2} \int \frac{d x}{x+1}$
$=\frac{1}{2} \log \left|\frac{x+1}{x-1}\right|-\frac{4}{x-1}+c$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

Ex 7.5 Class 12 Maths Question 10.
$\frac{2 x-3}{\left(x^{2}-1\right)(2 x+3)}$

Solution:

$$
\frac{2 x-3}{\left(x^{2}-1\right)(2 x+3)}=\frac{2 x-3}{(x-1)(x+1)(2 x+3)}
$$

$$
\begin{gathered}
\quad \equiv \frac{A}{x-1}+\frac{B}{x+1}+\frac{C}{2 x+3} \\
\Rightarrow 2 x-3=\mathrm{A}(x+1)(2 x+3)+\mathrm{B}(x-1)(2 x+3) \\
\quad+\mathrm{C}(x-1)(x+1) \\
\\
\text { Put } \mathrm{x}=1,-1 \text { in (i), we get; } \mathrm{A}=-\frac{1}{10} \& \mathrm{~B}=\frac{5}{2} \\
\text { Putting } x=-\frac{3}{2} \text { in (i), we get }: \mathrm{C}=\frac{-24}{5} \\
\therefore \mathrm{I}=-\frac{1}{10} \int \frac{d x}{x-1}+\frac{5}{2} \int \frac{d x}{x+1}-\frac{24}{5} \int \frac{d x}{2 x+3} \\
=\frac{5}{2} \log |x+1|-\frac{1}{10} \log |x-1|-\frac{12}{5} \log |2 x+3|+\mathrm{C}
\end{gathered}
$$

Ex 7.5 Class 12 Maths Question 11.
$\frac{5 x}{(x-1)\left(x^{2}-4\right)}$

Solution:

let
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClindCareer

$$
\frac{5 x}{(x-1)\left(x^{2}-4\right)}=\frac{5 x}{(x+1)(x+2)(x-2)}
$$

$$
\begin{aligned}
& \equiv \frac{\mathrm{A}}{x+1}+\frac{\mathrm{B}}{x+2}+\frac{\mathrm{C}}{x-2} \Rightarrow 5 x \equiv \mathrm{~A}(x+2)(x-2) \\
& +\mathrm{B}(x+1)(x-2)+\mathrm{C}(x+1)(x+2)
\end{aligned}
$$

$$
\text { Put } x=-1,-2,2 \text { in }(\mathrm{i}) \Rightarrow \mathrm{A}=\frac{5}{3}, \mathrm{~B}=-\frac{5}{2} \& \mathrm{C}=\frac{5}{6}
$$

$$
\therefore \mathrm{I}=\frac{5}{3} \int \frac{d x}{x+1}-\frac{5}{2} \int \frac{d x}{x+2}+\frac{5}{6} \int \frac{d x}{x-2}
$$

$$
=\frac{5}{3} \log |x+1|-\frac{5}{2} \log |x+2|+\frac{5}{6} \log |x-2|+\mathrm{C} .
$$

Ex 7.5 Class 12 Maths Question 12.
$\frac{x^{3}+x+1}{x^{2}-1}$

Solution:
$\frac{x^{3}+x+1}{x^{2}-1}=x+\frac{2 x+1}{(x+1)(x-1)}$

$$
\begin{align*}
& \equiv \frac{A}{(x+1)}+\frac{B}{(x-1)} \\
& \Rightarrow 2 x+1=A(x-1)+B(x+1) \tag{ii}
\end{align*}
$$

Put $x=-1,1$ in (ii), we get: $A=\frac{1}{2} \& B=\frac{3}{2}$

$$
\begin{aligned}
& \int \frac{x^{3}+x+1}{x^{2}-1} d x=\int x d x+\frac{1}{2} \int \frac{d x}{x+1}+\frac{3}{2} \int \frac{d x}{x-1} \\
& =\frac{x^{2}}{2}+\frac{1}{2} \log |x+1|+\frac{3}{2} \log |x-1|+c
\end{aligned}
$$

Ex 7.5 Class 12 Maths Question 13.

$$
\frac{2}{(1-x)\left(1+x^{2}\right)}
$$

Solution:
$\frac{2}{(1-x)\left(1+x^{2}\right)}=\frac{A}{1-x}+\frac{B x+C}{1+x^{2}}$
$\Rightarrow \mathbf{2}=\mathrm{A}\left(1+\mathrm{x}^{2}\right)+(\mathrm{Bx}+\mathrm{C})(1-\mathrm{x}) \ldots(\mathrm{i})$
Putting $x=1$ in (i), we get; $A=1$
Also $0=A-B$ and $2=A+C \Rightarrow B=A=1 \& C=1$

$$
\begin{aligned}
& \therefore \mathrm{I}=\int \frac{1}{1-x} d x+\int \frac{x}{1+x^{2}} d x+\int \frac{1}{1+x^{2}} d x \\
& =-\log |1-x|+\frac{1}{2} \log \left|1+x^{2}\right|+\tan ^{-1} x+\mathrm{C}
\end{aligned}
$$

ClindCareer

Ex 7.5 Class 12 Maths Question 14.
$\frac{3 x-1}{(x+2)^{2}}$

Solution:

$$
\frac{3 x-1}{(x+2)^{2}} \equiv \frac{A}{x+1}+\frac{B}{(x+2)^{2}}
$$

$$
=>3 x-1=A(x+2)+B \ldots(i)
$$

Comparing coefficients $A=-1$ and $B=-7$
$\therefore \int \frac{3 x-1}{(x+2)^{2}} d x=3 \int \frac{d x}{x+2}-7 \int \frac{d x}{(x+2)^{2}}$
$=3 \log |x+2|+\frac{7}{x+2}+c$
Ex 7.5 Class 12 Maths Question 15.
$\frac{1}{x^{4}-1}$

Solution:
$\frac{1}{x^{4}-1}=\frac{A}{x+1}+\frac{B}{x-1}+\frac{C x+D}{x^{2}+1}$
$\Rightarrow 1 \equiv A(x-1)\left(x^{2}+1\right)+B(x+1)\left(x^{2}+1\right)+(C x+D)(x+1)(x-1) \ldots(i)$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

Put $x=-1,1$ in (i), we get: $A=\frac{-1}{4} \& B=\frac{1}{4}$
Comparing coefficients $\mathrm{C}=0$ and $\mathrm{D}=-\frac{1}{2}$
$\mathrm{I}=-\frac{1}{4} \int \frac{d x}{x+1}+\frac{1}{4} \int \frac{1}{x-1} d x-\frac{1}{2} \int \frac{1}{\left(x^{2}+1\right)} d x$
$=\frac{1}{4} \log \left\lvert\, \frac{x-1}{x+1}-\frac{1}{2} \tan ^{-1} x+C\right.$.

Ex 7.5 Class 12 Maths Question 16.
$\frac{1}{x\left(x^{n}+1\right)}$
[Hint : multiply numerator and denominator by x^{n-1} and put $\left.x^{n}=t\right]$
Solution:
$\frac{x^{n-1}}{x \cdot x^{n-1}\left(x^{n}+1\right)}=\frac{x^{n-1}}{x^{n}\left(x^{n}+1\right)}$

ClindCareer

Put $\mathrm{x}^{\mathrm{n}}=\mathrm{t}$ so that $\mathrm{nx}^{\mathrm{n}-1} \mathrm{dx}=\mathrm{dt}$

$$
\begin{equation*}
\therefore \int \frac{\mathrm{dx}}{\mathrm{x}\left(\mathrm{x}^{\mathrm{n}}+1\right)}=\frac{1}{\mathrm{n}} \int \frac{\mathrm{dt}}{\mathrm{t}(\mathrm{t}+1)} \tag{i}
\end{equation*}
$$

$$
\begin{align*}
& \text { let } \frac{1}{t(t+1)} \equiv \frac{A}{t}+\frac{B}{t+1} \\
& \Rightarrow 1 \equiv A(t+1)+B t \tag{ii}
\end{align*}
$$

Put $t=0,-1$ in (i), we get $: \Rightarrow A=1 \& B=-1$
$\therefore \int \frac{d x}{x\left(x^{n}+1\right)}=\frac{1}{n} \cdot\left(\frac{1}{t}-\frac{1}{t+1}\right) d t$

$$
=\frac{1}{n}[\log |t|-\log |t+1|]+c=\frac{1}{n} \log \left|\frac{x^{n}}{x^{n}+1}\right|+c
$$

Ex 7.5 Class 12 Maths Question 17.
$\frac{\cos x}{(1-\sin x)(2-\sin x)}$

Solution:
put $\sin x=t$
so that $\cos \mathrm{dx}=\mathrm{dt}$
$\therefore I=\int \frac{1}{(1-t)(2-t)} d t$

ClndCareer

$$
\begin{align*}
& \text { Let } \frac{1}{(1-t)(2-t)} \equiv \frac{\mathrm{A}}{1-t}+\frac{\mathrm{B}}{2-t} \\
& \Rightarrow 1 \equiv \mathrm{~A}(2-t)+\mathrm{B}(1-t) \tag{ii}
\end{align*}
$$

Put, $t=1,2$ in (ii), we get : $\mathrm{A}=1 \& \mathrm{~B}=-1$

$$
\begin{aligned}
& \therefore \mathrm{I}=\int \frac{1}{1-t} d t-\int \frac{d t}{2-t} \\
& =\log \left|\frac{2-t}{1-t}\right|+\mathrm{C}=\log \left|\frac{2-\sin x}{1-\sin x}\right|+C .
\end{aligned}
$$

Ex 7.5 Class 12 Maths Question 18.

$$
\frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}
$$

Solution:

put $x^{2}=y$

$$
I=1-\frac{2(2 y+5)}{(y+3)(y+4)}
$$

$$
\begin{aligned}
& \text { Let } ; \frac{2 y+5}{(y+3)(y+4)}=\frac{A}{y+3}+\frac{B}{y+4}, \\
& 2 y+5 \equiv A(y+4)+B(y+3) \\
& \text { Put } y=-3, \therefore A=-1, \text { Put } y=-4, \therefore B=3 \\
& \therefore I=\int d x+2 \int \frac{d x}{x^{2}+3}+6 \int \frac{d x}{x^{2}+4} \\
& =x+\frac{2}{\sqrt{3}} \tan ^{-1} \frac{x}{\sqrt{3}}-3 \tan ^{-1} \frac{x}{2}+c
\end{aligned}
$$

ClindCareer

Ex 7.5 Class 12 Maths Question 19.
$\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}$

Solution:
put $x^{2}=y$
so that $2 \mathrm{xdx}=\mathrm{dy}$
$\therefore \int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x=\int \frac{d y}{(y+1)(y+3)}$

$$
\begin{align*}
& \text { Let } \frac{1}{(y+1)(y+3)} \equiv \frac{\mathrm{A}}{y+1}+\frac{\mathrm{B}}{y+3}, \text { we have } \\
& 1=\mathrm{A}(y+3)+\mathrm{B}(y+1) \tag{i}
\end{align*}
$$

Put $\mathrm{y}=-1,-3$ in (i), we get; $\mathrm{A}=\frac{1}{2} \& B=-\frac{1}{2}$
$\therefore \int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x=\frac{1}{2} \int \frac{d y}{y+1}-\frac{1}{2} \int \frac{d y}{y+3}$
$=\frac{1}{2} \log \left|\frac{x^{2}+1}{x^{2}+3}\right|+C$

Ex 7.5 Class 12 Maths Question 20.
$\frac{1}{x\left(x^{4}-1\right)}$

Solution:

put $\mathbf{x}^{4}=\mathbf{t}$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

so that $4 x^{3} d x=d t$

$$
\begin{align*}
& \therefore \quad \mathrm{I}=\frac{1}{4} \int \frac{d t}{t(t-1)} ; \text { Let } \frac{1}{t(t-1)}=\frac{A}{t}+\frac{B}{t-1} \\
& \Rightarrow \quad 1=\mathrm{A}(t-1)+\mathrm{B} t \tag{i}
\end{align*}
$$

Put $t=0,1$ in (i), we get; $\mathrm{A}=-1 \& \mathrm{~B}=1$
$\therefore \mathrm{I}=\frac{1}{4} \int\left(\frac{-1}{t}+\frac{1}{t-1}\right) d t$

$$
=\frac{1}{4} \log \left|\frac{t-1}{t}\right|+C=\frac{1}{4} \log \left|\frac{x^{4}-1}{x^{4}}\right|+C .
$$

Ex 7.5 Class 12 Maths Question 21.

$\therefore \quad \mathrm{I}=\int \frac{1}{e^{x}-1} d x=\int \frac{d t}{t(t-1)}$
Let $\frac{1}{t(t-1)}=\frac{\mathrm{A}}{t}+\frac{\mathrm{B}}{t-1} \Rightarrow 1=\mathrm{A}(t-1)+\mathrm{B} t$
Let $t=0 \Rightarrow \mathrm{~A}=-1$ \& Let $\mathrm{t}=1 \Rightarrow \mathrm{~B}=1$
$\therefore \quad \mathrm{I}=\int\left(\frac{-1}{t}+\frac{1}{t-1}\right) d t$
$=-\log t+\log (t-1)+\mathrm{C}=\log \left(\frac{e^{x}-1}{e^{x}}\right)+\mathrm{C}$.

Solution:
Let $\mathrm{e}^{\mathrm{x}}=\mathrm{t} \Rightarrow \mathrm{e}^{\mathrm{x}} \mathrm{dx}=\mathrm{dt}$
\Rightarrow
$d x=\frac{d t}{t}$

Ex 7.5 Class 12 Maths Question 22.

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

choose the correct answer in each of the following :
$\int \frac{x d x}{(x-1)(x-2)}$ equals
(a)
$\log \left|\frac{(x-1)^{2}}{x-2}\right|+c$
(b)
$\log \left|\frac{(x-2)^{2}}{x-1}\right|+c$
(c)
$\log \left|\left(\frac{x-1^{2}}{x-2}\right)\right|+c$
(d) $\log |(x-1)(x-2)|+c$

Solution:

(b)

$$
\int \frac{x}{(x-1)(x-2)} d x=\int\left[\frac{-1}{x-1}+\frac{2}{x-2}\right] d x
$$

$$
\log \left|\frac{(x-2)^{2}}{x-1}\right|+c
$$

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClindCareer

Ex 7.5 Class 12 Maths Question 23.

$\int \frac{d x}{x\left(x^{2}+1\right)}$ equals
(a)
$\log |x|-\frac{1}{2} \log \left(x^{2}+1\right)+c$
(b)

$$
\log |x|+\frac{1}{2} \log \left(x^{2}+1\right)+c
$$

(c)
$-\log |x|+\frac{1}{2} \log \left(x^{2}+1\right)+c$
(d) $\frac{1}{2} \log |x|+\log \left(x^{2}+1\right)+c$

Solution:
(a) let
$\frac{1}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}$
$\Rightarrow 1=A\left(x^{2}+1\right)+(B x+C)(x)$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

Let $x=0,1=A \Rightarrow A=1$
Comparing coefficients of $x^{2} \& x ; \mathrm{B}=-1 \& \mathrm{C}=0$

$$
\begin{array}{ll}
\therefore & \int \frac{1}{x\left(x^{2}+1\right)} d x=\int\left[\frac{1}{x}+\frac{-x}{x^{2}+1}\right] d x \\
& =\log x-\frac{1}{2} \log \left(x^{2}+1\right)+C
\end{array}
$$

Ex 7.6 Class 12 Maths Question 1.

$x \sin x$
Solution:

By part integration
$\int x \sin x d x=x(-\cos x)-\int 1(-\cos x) d x$
$=-x \cos x+\int \cos x d x$
$=-x \cos x+\sin x+c$
Ex 7.6 Class 12 Maths Question 2.
$x \sin 3 x$
Solution:
$\int x \sin 3 x d x=$
$x\left(-\frac{\cos 3 x}{3}\right)-\int 1 \cdot\left(\frac{-\cos 3 x}{3}\right) d x$
$=-\frac{1}{3} x \quad \cos 3 x+\frac{1}{9} \sin 3 x+c$
Ex 7.6 Class 12 Maths Question 3.
$x^{2} e^{x}$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClindCareer

Solution:
$\int x^{2} e^{x} d x=x^{2} e^{x}-2 x e^{x}+2 e^{x}+c$
$=e^{x}\left(x^{2}-2 x+2\right)+c$

Ex 7.6 Class 12 Maths Question 4.

$x \log x$
Solution:
$\int x \log x \quad d x=\log x \int x d x-\int\left[\frac{d}{d x}(\log x) \int x d x\right] d x$
$=\frac{x^{2}}{2} \log x-\frac{1}{2} \int x \quad d x=\frac{x^{2}}{2} \log x-\frac{1}{4} x^{2}+c$

Ex 7.6 Class 12 Maths Question 5.

$x \log 2 x$
Solution:

$$
\begin{aligned}
& \int x \log 2 x d x=(\log 2 x) \frac{x^{2}}{2}-\int \frac{1}{2 x} \cdot 2\left(\frac{x^{2}}{2}\right) d x \\
& =\frac{x^{2}}{2} \log |2 x|-\frac{1}{2} \int x d x=\frac{x^{2}}{2} \log |2 x|-\frac{x^{2}}{4}+c
\end{aligned}
$$

Ex 7.6 Class 12 Maths Question 6.
$x^{2} \log x$
Solution:
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

$$
\begin{aligned}
& \int x^{2} \log x d x=\log |x|\left(\frac{x^{3}}{3}\right)-\int \frac{1}{x}\left(\frac{x^{3}}{3}\right) d x \\
& =\frac{x^{3}}{3} \log |x|-\frac{1}{3} \int x^{2} d x=\frac{x^{3}}{3} \log |x|-\frac{x^{3}}{9}+c
\end{aligned}
$$

Ex 7.6 Class 12 Maths Question 7.

$x \sin ^{-1} x$

Solution:

$$
I=x \sin ^{-1} x .\left(\frac{x^{2}}{2}\right)-\int \frac{1}{\sqrt{1-x^{2}}} \cdot \frac{x^{2}}{2} d x
$$

$$
\begin{aligned}
& =\frac{x^{2}}{2} \sin ^{-1} x-\frac{1}{2} \int \frac{x^{2}}{\sqrt{1-x^{2}}} d x \\
& =\frac{x^{2}}{2} \sin ^{-1} x-\frac{1}{2} I_{1}
\end{aligned}
$$

Put $x=\sin \theta$ so that $d x=\cos \theta d \theta$

$$
\therefore \quad I_{1}=\int \frac{\sin ^{2} \theta}{\cos \theta} \cos \theta d \theta
$$

$$
=\frac{1}{2} \int(1-\cos 2 \theta) d \theta=\frac{1}{2} \theta-\frac{1}{2} \sin \theta \cos \theta+c
$$

$$
=\frac{1}{2} \sin ^{-1} x-\frac{1}{2} x \sqrt{1-\mathrm{x}^{2}}+\mathrm{c}
$$

$$
\therefore I=\frac{1}{4}\left(\sin ^{-1} x\right) \cdot\left(2 x^{2}-1\right)+\frac{x \sqrt{1-x^{2}}}{4}+c
$$

Ex 7.6 Class 12 Maths Question 8.

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

$x \tan ^{-1} x$

Solution:

$$
\begin{aligned}
& I=x \quad \tan ^{-1} x \cdot\left(\frac{x^{2}}{2}\right)-\int \frac{1}{\sqrt{1+x^{2}}} \frac{x^{2}}{2} d x \\
& =\frac{x^{2}}{2} \tan ^{-1} x-\frac{1}{2} \int\left(1-\frac{1}{1+x^{2}}\right) d x
\end{aligned}
$$

$=\frac{x^{2}}{2} \tan ^{-1} x-\frac{1}{2} x+\frac{1}{2} \tan ^{-1} x+c$
Ex 7.6 Class 12 Maths Question 9.
$x \cos ^{-1} x$

Solution:

let $\mathrm{I}=$
$\int x \cos ^{-1} x d x=\int \cos ^{-1} x \cdot x d x$

ClndCareer

$$
\begin{aligned}
& =\cos ^{-1} x\left(\frac{x^{2}}{2}\right)-\int \frac{-1}{\sqrt{1-x^{2}}}\left(\frac{x^{2}}{2}\right) d x \\
& =\frac{x^{2}}{2} \cos ^{-1} x+\frac{1}{2} I_{1} \\
& \text { Put } x=\cos \theta, \text { so that } \mathrm{dx}=-\sin \theta \mathrm{d} \theta \\
\therefore I_{1} & =\int \frac{\cos ^{2} \theta(-\sin \theta)}{\sqrt{1-\cos ^{2} \theta}} d \theta=-\frac{1}{2} \int(1+\cos 2 \theta) d \theta \\
& =-\frac{1}{2}\left(\theta+\frac{\sin 2 \theta}{2}\right)+C_{1} \\
& =-\frac{1}{2}\left(\theta+\cos \theta \sqrt{\left.1-\cos ^{2} \theta\right)}+C_{1}\right. \\
& =-\frac{1}{2}\left(\cos ^{-1} x+x \sqrt{\left.1-x^{2}\right)}+C_{1}\right. \\
I & =\frac{\cos ^{-1} x}{4}\left(2 x^{2}-1\right)-\frac{x}{4} \sqrt{1-x^{2}}+C
\end{aligned}
$$

Ex 7.6 Class 12 Maths Question 10.
$\left(\sin ^{-1} x\right)^{2}$

Solution:
put $\sin ^{-1} x=\theta \Rightarrow x=\sin \theta \Rightarrow d x=\cos \theta d \theta$

ClndCareer

$$
\begin{aligned}
& \therefore \int\left(\sin ^{-1} x\right)^{2} d x=\int \theta^{2} \cos \theta d \theta \\
& =\theta^{2} \sin \theta+2 \theta \cos \theta-2 \int \cos \theta d \theta+C \\
& =\theta^{2} \sin \theta+2 \theta \sqrt{1-\sin ^{2}} \theta-2 \sin \theta+C \\
& =x\left(\sin ^{-1} x\right)^{2}+2 \sin ^{-1} x \cdot \sqrt{1-x^{2}}-2 x+C
\end{aligned}
$$

Ex 7.6 Class 12 Maths Question 11.

$$
\frac{x \cos ^{-1} x}{\sqrt{1-x^{2}}}
$$

Solution:

$$
\text { put } \quad \cos ^{-1} x=t \quad \text { so } \quad \text { that } \frac{x}{\cos ^{-1} x} \sqrt{1-x^{2}} d x=d t
$$

$$
\begin{aligned}
& \therefore \mathrm{I}=-\int t \cos t d t=-\left[t(\sin t)-\int 1 \cdot(\sin t) d t\right. \\
& =-t \sin t-\cos t+\mathrm{C}=-t \sqrt{1-\cos ^{2} t}-\cos t+\mathrm{C} \\
& =-\left[\cos ^{-1} x \cdot \sqrt{1-x^{2}}+x\right]+\mathrm{C}
\end{aligned}
$$

Ex 7.6 Class 12 Maths Question 12.

$\mathbf{x} \sec ^{2} \mathbf{x}$

Solution:

$\int x \sec ^{2} x d x=x(\tan x)-\int 1 \cdot \tan x d x$
$=\mathrm{x} \boldsymbol{\operatorname { t a n }} \mathrm{x}+\log \cos \mathrm{x}+\mathrm{c}$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

Ex 7.6 Class 12 Maths Question 13.
$\tan ^{-1} x$

Solution:

$$
\begin{aligned}
& \int \tan ^{-1} x d x=x \tan ^{-1} x-\frac{1}{2} \int \frac{2 x}{1+x^{2}} d x \\
& =\tan ^{-1} x-\frac{1}{2} \log \left|1+x^{2}\right|+c
\end{aligned}
$$

Ex 7.6 Class 12 Maths Question 14.

$x(\log x)^{2}$

Solution:

$\int x(\log x)^{2} d x$
$=\frac{x^{2}}{2}(\log x)^{2}-\left[(\log x) \frac{x^{2}}{2}-\int \frac{1}{x} \frac{x^{2}}{2} d x\right]$
$=\frac{x^{2}}{2}(\log x)^{2}-\frac{x^{2}}{2} \log x+\frac{1}{4} x^{2}+c$
Ex 7.6 Class 12 Maths Question 15.
$\left(x^{2}+1\right) \log x$
Solution:
$\int\left(x^{2}+1\right) \log x d x$
$=\log x\left(\frac{x^{3}}{3}+x\right)-\int \frac{1}{x}\left(\frac{x^{3}}{3}+x\right) d x$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

$=\left(\frac{x^{3}}{3}+x\right) \log x-\frac{x^{3}}{9}-x+c$

Ex 7.6 Class 12 Maths Question 16.
$e^{x}(\sin x+\cos x)$

Solution:

put $\quad e^{x} \sin x=t \Rightarrow e^{x}(\sin x+\cos x) d x=d t$
$\therefore \int e^{x}(\sin x+\cos x) d x=\int d t=t+c=e^{x} \sin x+c$

Ex 7.6 Class 12 Maths Question 17.

$\frac{x e^{x}}{(1+x)^{2}}$

Solution:

$\int \frac{x e^{x}}{(1+x)^{2}}$

$$
\begin{aligned}
& \int \frac{(x+1-1) e^{x}}{(1+x)^{2}} d x=\int e^{x}\left(\frac{1}{x+1}-\frac{1}{(x+1)^{2}}\right) d x \\
& =I_{1}-\int \frac{e^{x}}{(x+1)^{2}} d x \\
& I_{1}=\frac{1}{1+x} \int e^{x} d x-\int\left(\frac{d}{d x}\left(\frac{1}{1+x}\right) \int e^{x} d x\right) d x \\
& =\frac{e^{x}}{1+x}+\int \frac{e^{x}}{(1+x)^{2}} d x, \therefore I=I_{1}-\int \frac{e^{x}}{(1+x)^{2}} d x \\
& \frac{e^{x}}{1+x}+\int \frac{e^{x}}{(1+x)^{2}} d x-\int \frac{e^{x}}{(1+x)^{2}} d x=\frac{e^{x}}{1+x}+c
\end{aligned}
$$

Ex 7.6 Class 12 Maths Question 18.

$\frac{e^{x}(1+\sin x)}{1+\cos x}$

Solution:

$$
\begin{aligned}
& I=\int e^{x}\left[\frac{1+2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}\right] d x \\
& =\int e^{x}\left[\frac{1}{2} \sec ^{2} \frac{x}{2}+\tan \frac{x}{2}\right] d x=\int e^{x}\left[\tan \frac{x}{2}+\frac{1}{2} \sec ^{2} \frac{x}{2}\right] d x \\
& \text { Let } e^{x} \tan \frac{x}{2}=t \Rightarrow e^{x}\left(\tan \frac{x}{2}+\frac{1}{2} \sec ^{2} \frac{x}{2}\right) d x=d t \\
& \therefore I=\int d t=t+C=e^{x} \tan \frac{x}{2}+C
\end{aligned}
$$

Ex 7.6 Class 12 Maths Question 19.

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

$e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right)$

Solution:

put

$$
\frac{e^{x}}{x}=t \Rightarrow e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right) d x=d t
$$

$\therefore I=\int d t=t+c=\frac{e^{x}}{x}+c$
Ex 7.6 Class 12 Maths Question 20.
$\frac{(x-2) e^{x}}{(x-1)^{3}}$

Solution:

$$
I=\int e^{x}\left[\frac{1}{(x-1)^{2}}-\frac{2}{(x-1)^{3}}\right] d x
$$

$$
\begin{aligned}
& \text { Put } \frac{e^{x}}{(x-1)^{2}}=t \\
& \Rightarrow e^{x}\left[\frac{1}{(x-1)^{2}}-\frac{2}{(x-1)^{3}}\right] d x=d t \\
& \therefore I=\int d t=t+C=\frac{e^{x}}{(x-1)^{2}}+C
\end{aligned}
$$

ClindCareer

Ex 7.6 Class 12 Maths Question 21.
$e^{2 x} \sin x$

Solution:

let

$$
I=\int e^{2 x} \sin x=e^{2 x}(-\cos x)-\int 2 e^{2 x}(-\cos x) d x
$$

$$
\begin{aligned}
& =-e^{2 x} \cos x+2\left[e^{2 x}(\sin x)-\int 2 e^{2 x}(\sin x) d x\right] \\
& =e^{2 x}(2 \sin x-\cos x)-4 I \\
& \Rightarrow I=\frac{e^{2 x}}{5}(2 \sin x-\cos x)+C
\end{aligned}
$$

Ex 7.6 Class 12 Maths Question 22.

$$
\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)
$$

Solution:

Put $x=\tan t$
so that $d x=\sec ^{2} t d t$

$$
\begin{aligned}
& \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x=\int \sin ^{-1}\left(\frac{2 \tan t}{1+\tan ^{2} t}\right) \sec ^{2} t d t \\
& =\int \sin ^{-1}(\sin 2 t) \sec ^{2} t d t=\int 2 t \sec ^{2} t d t \\
& =2\left[t \tan t-\int 1 \cdot \tan t d t\right] \\
& =2 t \tan t+2 \log |\cos t|+c \\
& =2 x \tan ^{-1} x-\log \left(1+x^{2}\right)+c .
\end{aligned}
$$

Choose the correct answer in exercise 23 and 24

Ex 7.6 Class 12 Maths Question 23.

$\int x^{2} e^{x^{3}} d x \quad$ equals
(a)
$\frac{1}{3} e^{x^{3}}+c$
(b)
$\frac{1}{3}+e^{x^{2}}+c$
(c)
$\frac{1}{2} e^{x^{3}}+c$
(d)
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

$\frac{1}{2} e^{x^{2}}+c$

Solution:

(a) let $\mathbf{x}^{3}=\mathbf{t}$
$\Rightarrow 3 \mathrm{x}^{2} \mathrm{dx}=\mathrm{dt}$
$\therefore \int x^{2} e^{x^{3}} d x=\frac{1}{3} \int e^{t} d t=\frac{1}{3} e^{t}+c=\frac{1}{3} e^{x^{3}}+c$
Ex 7.6 Class 12 Maths Question 24.
$\int e^{x} \sec x(1+\tan x) d x$ equals
(a)
$e^{x} \cos x+c$
(b)
$e^{x} \sec x+c$
(c)
$e^{x} \sin x+c$
(d)
$e^{x} \tan x+c$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClindCareer

Solution:

(b)
$\int e^{x}(\sec x+\sec x \quad \tan x) d x=e^{x} \sec x+c$
Ex 7.7 Class 12 Maths Question 1.
$\sqrt{4-x^{2}}$

Solution:

let $\quad I=\int \sqrt{4-x^{2}} d x=\int \sqrt{(2)^{2}-x^{2}} d x$
$=\frac{x \sqrt{4-x^{2}}}{2}+2 \sin ^{-1}\left(\frac{x}{2}\right)+c$

Ex 7.7 Class 12 Maths Question 2.
$\sqrt{1-4 x^{2}}$

Solution:

$$
\begin{aligned}
& \int \sqrt{1-4 x^{2}} d x=2 \int \sqrt{\left(\frac{1}{2}\right)^{2}-x^{2}} d x \\
& =\frac{x \sqrt{1-4 x^{2}}}{2}+\frac{1}{4} \sin ^{-1}(2 x)+c
\end{aligned}
$$

Ex 7.7 Class 12 Maths Question 3.

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

$\sqrt{x^{2}+4 x+6}$

Solution:

$$
\begin{aligned}
& \int \sqrt{x^{2}+4 x+6} d x=\int \sqrt{(x+2)^{2}+(\sqrt{2})^{2}} d x \\
& =\frac{x+2}{2} \sqrt{x^{2}+4 x+6}+\log \left|(x+2)+\sqrt{x^{2}+4 x+6}\right|+c
\end{aligned}
$$

Ex 7.7 Class 12 Maths Question 4.

$\sqrt{x^{2}+4 x+1}$

Solution:

$$
\begin{aligned}
& \int \sqrt{x^{2}+4 x+1} d x=\int \sqrt{(x+2)^{2}-(\sqrt{3})^{2}} d x \\
& =\frac{x+2}{2} \sqrt{x^{2}+4 x+1}-\frac{3}{2} \log \left|(x+2)+\sqrt{x^{2}+4 x+1}\right|+c
\end{aligned}
$$

Ex 7.7 Class 12 Maths Question 5.

$\sqrt{1-4 x-x^{2}}$

Solution:

ClndCareer

$$
\begin{aligned}
& \int \sqrt{1-4 x-x^{2}} d x=\int \sqrt{(5)^{2}-(x+2)^{2}} d x \\
& =\frac{x+2}{2} \sqrt{5-(x+2)^{2}} d x
\end{aligned}
$$

Ex 7.7 Class 12 Maths Question 6.

$\sqrt{x^{2}+4 x-5}$

Solution:

$$
\begin{aligned}
& \int \sqrt{x^{2}+4 x-5} d x=\int \sqrt{(x+2)^{2}-(3)^{2}} d x \\
& =\frac{x+2}{2} \sqrt{x^{2}+4 x-5}-\frac{9}{2} \log \left|x+2+\sqrt{x^{2}+4 x-5}\right|+c
\end{aligned}
$$

Ex 7.7 Class 12 Maths Question 7.

$\sqrt{1+3 x-x^{2}}$

Solution:

$\int \sqrt{1-\left(x^{2}-3 x\right)} d x=\int \sqrt{\left(\frac{\sqrt{13}}{2}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}} d x$
$=\frac{2 x-3}{4} \sqrt{1+3 x-x^{2}}+\frac{13}{8} \sin ^{-1}\left[\frac{2 x-3}{\sqrt{3}}\right]+c$

Ex 7.7 Class 12 Maths Question 8.

$$
\sqrt{x^{2}+3 x}
$$

Solution:

$$
\begin{aligned}
& \int \sqrt{x^{2}+3 x} d x=\int \sqrt{\left(x+\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}} d x \\
& =\frac{2 x+3}{4} \sqrt{x^{2}+3 x}-\frac{9}{8} \log \left|x+\frac{3}{2}+\sqrt{x^{2}+3 x}\right|+c
\end{aligned}
$$

Ex 7.7 Class 12 Maths Question 9.

$\sqrt{1+\frac{x^{2}}{9}}$

Solution:

$$
\begin{aligned}
& \int \sqrt{1+\frac{x^{2}}{9}} d x=\frac{1}{3} \int \sqrt{x^{2}+3^{2}} \\
& =\frac{1}{6}\left[x \sqrt{x^{2}+9}+9 \log \left|x+\sqrt{x^{2}+9}\right|\right]+c
\end{aligned}
$$

Choose the correct answer in the Exercises 10 to 11:

Ex 7.7 Class 12 Maths Question 10.

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/
$\int \sqrt{1+x^{2}} d x$ is equal to
(a)
$\frac{x}{2} \sqrt{1+x^{2}}+\frac{1}{2} \log \left|x+\sqrt{1+x^{2}}\right|+c$
(b)

$$
\frac{2}{3}\left(1+x^{2}\right)^{\frac{3}{2}}+c
$$

(c)
$\frac{2}{3} x\left(1+x^{2}\right)^{\frac{3}{2}}+c$
(d)
$\frac{x^{2}}{2} \sqrt{1+x^{2}}+\frac{1}{2} x^{2} \log \left|x+\sqrt{1+x^{2}}\right|+c$

Solution:

(a)
$\int \sqrt{1+x^{2}} d x$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

$=\frac{x}{2} \sqrt{1+x^{2}}+\frac{1}{2} \log \left(x+\sqrt{1+x^{2}}\right)+c$
Ex 7.7 Class 12 Maths Question 11.
$\int \sqrt{x^{2}-8 x+7} d x$ is equal to
(a) $\frac{1}{2}(x-4) \sqrt{x^{2}-8 x+7}+\log \left|x-4+\sqrt{x^{2}-8 x+7}\right|+C$
(b) $\frac{1}{2}(x+4) \sqrt{x^{2}-8 x+7}+9 \log \left|x+4+\sqrt{x^{2}-8 x+7}\right|+C$
(c) $\frac{1}{2}(x-4) \sqrt{x^{2}-8 x+7}-3 \sqrt{2} \log \left|x-4+\sqrt{x^{2}-8 x+7}\right|+C$
(d) $\frac{1}{2}(x-4) \sqrt{x^{2}-8 x+7}-\frac{9}{2} \log \left|x-4+\sqrt{x^{2}-8 x+7}\right|+C$

Solution:

(d)

$$
\begin{aligned}
& \int \sqrt{x^{2}-8 x+7} d x=\int \sqrt{(x-4)^{2}-(3)^{2}} d x \\
& =\frac{x-4}{2} \sqrt{x^{2}-8 x+7}-\frac{9}{2} \log \left|(x-4)+\sqrt{x^{2}+8 x+7}\right|+c
\end{aligned}
$$

Ex 7.8 Class 12 Maths Question 1.

$\int_{a}^{b} x \quad d x$

Solution:

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/
on comparing
$\int_{a}^{b} x \quad d x \quad$ with $\quad \int_{a}^{b} f(x) d x$
we have

$$
\begin{aligned}
& \quad \mathrm{f}(\mathrm{a})=\mathrm{a}, f(a+h)=a+h, f(a+2 h)=a+2 h \ldots \ldots \\
& f(a+\overline{n-1} h)=a+\overline{n-1} h \\
& \int_{a}^{b} f(x) d x=\underset{h \rightarrow 0}{\operatorname{Lt} h[f(a)+f(a+h)+\ldots . f(a+\overline{n-1} h)]} \\
& \quad \text { where } n h=b-a \\
& \therefore \int_{a}^{b} x d x=\operatorname{Lt}_{h \rightarrow 0} h[a+(a+h)+\cdots+(a+\overline{n-1} h)] \\
& \quad=\operatorname{Lt}_{h \rightarrow 0} h[n a+h(1+2+\ldots \cdot \overline{n-1})] \\
& \quad=\operatorname{Lt}_{h \rightarrow 0} h\left[n a+h \cdot \frac{n-1}{2}(1+\overline{n-1})\right]
\end{aligned}
$$

Applying limit and use $n h=b-a$
$=(b-a) a+\frac{(b-a)(b-a)}{2}$
$=(b-a)\left[a+\frac{b-a}{2}\right]=\frac{b^{2}-a^{2}}{2}$

Ex 7.8 Class 12 Maths Question 2.

$\int_{0}^{5}(x+1) d x$

Solution:

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClindCareer

on comparing

$\int_{0}^{5}(x+1) d x \quad$ with $\quad \int_{0}^{5} f(x) d x$
we have $f(x)=x+1, a=0, b=5$
and $n h=b-a=5-0=5$

$$
\begin{aligned}
& f(a)=f(0)=1 ; f(a+h)=f(h)=1+h \\
& f(a+2 h)=f(2 h)=2 h+1=1+2 h
\end{aligned}
$$

$$
f(a+\overline{n-1} h)=f(\overline{n-1} h)=1+(n-1) h=1+(n-1) h
$$

Bydefinition

$$
\begin{gathered}
\int_{a}^{b} f(x) d x=\operatorname{Lt}_{h \rightarrow 0} h[f(a)+f(a+h)+\ldots+ \\
f(a+\overline{n-1} h)] ; \text { where } n h=b-a=5 \\
\therefore \quad \int_{0}^{5}(x+1) d x=\operatorname{Lt}_{h \rightarrow 0} h[1+(1+h) \\
\quad+\ldots+(1+\overline{n-1} h)] \\
=\operatorname{Lt}_{h \rightarrow 0} h[1+1+1+1 \ldots \text { to } n \text { terms }) \\
+h[1+2+3+\ldots+\overline{n-1})] \\
=\underset{h \rightarrow 0}{\operatorname{Lt}}\left[n h+\frac{(n h-h) n h}{2}\right]=\underset{h \rightarrow 0}{\mathrm{Lt}}\left(5+\frac{(5-h) 5}{2}\right)=\frac{35}{2} .
\end{gathered}
$$

Ex 7.8 Class 12 Maths Question 3.

$\int_{2}^{3} x^{2} d x$

Solution:
compare
$\int_{2}^{3} x^{2} d x \quad$ with $\quad \int_{a}^{b} f(x) d x$
we have

$$
\begin{aligned}
& f(x)=x^{2}, \text { and } a=2, b=3 \text { Also, } f(a)=f(2)=2^{2} \\
& f(a+h)=f(2+h)=(2+h)^{2}=4+h^{2}+4 h \\
& f(a+2 h)=f(2+2 h)=(2+2 h)^{2}=4+4 h^{2}+8 h
\end{aligned}
$$

$$
\begin{aligned}
& f(a+\overline{n-1} h)=f[2+(\overline{n-1}) h)]=[2+(\overline{n-1}) h]^{2} \\
& \quad=4+(n-1)^{2} h^{2}+4(n-1) h
\end{aligned}
$$

By definition,

$$
\begin{aligned}
& \because \int_{a}^{b} f(x) d x=\operatorname{Lt}_{h \rightarrow 0} h[f(a)+f(a+h)+\ldots+ \\
& f(a+\overline{n-1} h)] ; \text { where } n h=b-a=1 \\
& \therefore \int_{2}^{3} x^{2} d x=\underset{h \rightarrow 0}{\operatorname{Lt}} h\left[4 n+h^{2}(1+4+9+\ldots+\right.
\end{aligned}
$$

Ex 7.8 Class 12 Maths Question 4.

$\int_{1}^{4}\left(x^{2}-x\right) d x$

Solution:

compare
$\int_{1}^{4}\left(x^{2}-x\right) d x$ with $\int_{a}^{b} f(x) d x$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

we have $f(x)=x^{2}-x$ and $a=1, b=4$
Also $f(a)=f(1)=1-1=0$;

$$
\begin{aligned}
& f(a+h)=f(1+h)=h^{2}+h \\
& f(a+2 h)=f(1+2 h)=4 h^{2}+2 h \\
& f(a+3 h)=9 h^{2}+3 h
\end{aligned}
$$

$$
f(a+\overline{n-1} h)=f(1+\overline{n-1} h)=(n-1)^{2} h^{2}+(n-1) h
$$

By definition, we have; $n h=b-a=3$

$$
\begin{aligned}
& \therefore \int_{1}^{4}\left(x^{2}-x\right) d x=\operatorname{Lt}_{h \rightarrow 0} h\left[0+\left(h^{2}+h\right)+\left(4 h^{2}+2 h\right)\right. \\
&\left.+\left(9 h^{2}+3 h\right)+\ldots .+\left\{(n-1)^{2} h^{2}+(n-1) h\right\}\right] \\
&= \operatorname{Ltt}_{\mathrm{h} \rightarrow 0} h\left[h^{2}\left\{1+4+9+\ldots+(n-1)^{2}\right\}\right. \\
&+h\{1+2+\ldots+(n-1)\}] \\
&= \operatorname{Lt}_{h \rightarrow 0}\left[\frac{(3-h) 3(6-h)}{6}+\frac{(3-h) 3}{2}\right]=\frac{27}{2} .
\end{aligned}
$$

Ex 7.8 Class 12 Maths Question 5.

$\int_{-1}^{1} e^{x} d x$

Solution:

compare

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

$\int_{-1}^{1} e^{x} d x \quad$ with $\quad \int_{a}^{b} f(x) d x$
we have

$$
\begin{aligned}
& f(x)=e^{x}, \mathrm{a}=-1, \mathrm{~b}=1 \text { and } n h=\mathrm{b}-\mathrm{a}=1+1=2 \\
& \text { Now, f(a) }=\mathrm{f}(-1)=\mathrm{e}^{-1} ; \mathrm{f}(\mathrm{a}+\mathrm{h})=\mathrm{f}(-1+\mathrm{h})=\mathrm{e}^{-1+\mathrm{h}} \\
& \mathrm{f}(\mathrm{a}+2 \mathrm{~h})=\mathrm{f}(-1-2 \mathrm{~h})=\mathrm{e}^{-1+2 \mathrm{~h}}
\end{aligned}
$$

\qquad

$$
f(a+\overline{n-1} h)=f(-1+\overline{n-1} h)=e^{-1+\overline{n-1} h}
$$

By definition, we have

$$
\begin{aligned}
& \int_{-1}^{1} e^{x} d x=\operatorname{Lt}_{\mathrm{h} \rightarrow 0} h\left[e^{-1}\left(1+e^{h}+e^{2 h}+\ldots .+e^{(n-1) h}\right]\right. \\
& =\operatorname{Lt}_{\mathrm{h} \rightarrow 0} h \cdot \frac{1}{e} \cdot \frac{1\left(e^{n h}-1\right)}{e^{h}-1}=e-\frac{1}{e}
\end{aligned}
$$

Ex 7.8 Class 12 Maths Question 6.
$\int_{0}^{4}\left(x+e^{2 x}\right) d x$

Solution:

let $f(x)=x+e^{2 x}$,
$\mathrm{a}=0, \mathrm{~b}=4$
and $\mathrm{nh}=\mathrm{b}-\mathrm{a}=4-\mathrm{O}=\mathbf{4}$
Ex 7.9 Class 12 Maths Question 1.
$\int_{-1}^{1}(x+1) d x$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

Solution:
$=\left[\frac{x^{2}}{2}+x\right]_{-1}^{1}=\frac{1}{2}(1-1)+(1+1) \quad=2$

Ex 7.9 Class 12 Maths Question 2.
$\int_{2}^{3} \frac{1}{x} d x$

Solution:
$=\left[\begin{array}{ll}\log & x\end{array}\right]_{2}^{3}=\log 3-\log 2=\log \frac{3}{2}$
Ex 7.9 Class 12 Maths Question 3.
$\int_{1}^{2}\left(4 x^{3}-5 x^{2}+6 x+9\right) d x$

Solution:
$=\left[\frac{4 x^{4}}{4}-\frac{5 x^{3}}{3}+\frac{6 x^{2}}{2}+9 x\right]_{1}^{2}$
$=\left[x^{4}-\frac{5}{3} x^{3}+3 x^{2}+9 x\right]_{1}^{2}=\frac{64}{3}$
Ex 7.9 Class 12 Maths Question 4.
$\int_{0}^{\frac{\pi}{4}} \sin 2 x \quad d x$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClindCareer

Solution:
$=\left[-\frac{1}{2} \cos 2 x\right]_{0}^{\frac{\pi}{4}}=\frac{1}{2}$
Ex 7.9 Class 12 Maths Question 5.
$\int_{0}^{\frac{\pi}{2}} \cos 2 x d x$

Solution:
$=\left[\frac{1}{2} \sin 2 x\right]_{0}^{\frac{\pi}{2}}=0$
Ex 7.9 Class 12 Maths Question 6.
$\int_{4}^{5} e^{x} d x$

Solution:
$=\left[e^{x}\right]_{4}^{5}=e^{5}-e^{4}$
Ex 7.9 Class 12 Maths Question 7.
$\int_{0}^{\frac{\pi}{4}} \tan x \quad d x$

Solution:
$=\left[\begin{array}{ll}\log & \sec x\end{array}\right]_{0}^{\frac{\pi}{4}}=\frac{1}{2} \log 2$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

Ex 7.9 Class 12 Maths Question 8.
$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \operatorname{cosec} x d x$

Solution:
$=\log (\operatorname{cosec} x-\cot x)_{\frac{\pi}{6}}^{\frac{\pi}{4}}$
$=\log (\sqrt{2}-1)-\log (2-\sqrt{3})=\log \left(\frac{\sqrt{2}-1}{2-\sqrt{3}}\right)$
Ex 7.9 Class 12 Maths Question 9.
$\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}$

Solution:

$=\sin ^{-1}(1)-\sin ^{-1}(0)=\frac{\pi}{2}$

Ex 7.9 Class 12 Maths Question 10.

$\int_{0}^{1} \frac{d x}{1+x^{2}}$

Solution:
$=\left[\tan ^{-1} x\right]_{0}^{1}=\tan ^{-1}(1)-\tan ^{-1}(0)=\frac{\pi}{4}$

Ex 7.9 Class 12 Maths Question 11.

$\int_{2}^{3} \frac{d x}{x^{2}-1}$

Solution:

$=\left[\frac{1}{2} \log \left(\frac{x-1}{x+1}\right)\right]_{2}^{3}=\frac{1}{2} \log \frac{3}{2}$
Ex 7.9 Class 12 Maths Question 12.
$\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x$

Solution:

$=\int_{0}^{\frac{\pi}{2}} \frac{1+\cos 2 x}{2} d x=\frac{1}{2}\left[x+\frac{\sin 2 x}{2}\right]_{0}^{\frac{\pi}{2}}=\frac{\pi}{4}$
Ex 7.9 Class 12 Maths Question 13.
$\int_{2}^{3} \frac{x}{x^{2}+1} d x$

Solution:

$=\frac{1}{2} \int_{2}^{3} \frac{2 x}{x^{2}+1} d x=\frac{1}{2}\left[\log \left(x^{2}+1\right)\right]_{2}^{3}=\frac{1}{2} \log 2$
Ex 7.9 Class 12 Maths Question 14.
$\int_{0}^{1} \frac{2 x+3}{5 x^{2}+1} d x$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

Solution:

$=\frac{1}{5} \int_{0}^{1} \frac{10 x}{5 x^{2}+1} d x+\frac{3}{5} \int_{0}^{1} \frac{d x}{x^{2}+\left[\frac{1}{\sqrt{5}}\right]^{2}}$

$$
\begin{aligned}
& =\frac{1}{5}\left[\log \left(5 x^{2}+1\right)\right]_{0}^{1}+\frac{3}{5} \times \frac{1}{1 / \sqrt{5}}\left[\tan ^{-1} \frac{x}{1 / \sqrt{5}}\right]_{0}^{1} \\
& =\frac{1}{5} \log 6+\frac{3}{\sqrt{5}} \tan ^{-1} \sqrt{5}
\end{aligned}
$$

Ex 7.9 Class 12 Maths Question 15.

$\int_{0}^{1} x e^{x^{2}} d x$

Solution:

let $x^{2}=t \Rightarrow 2 x d x=d t$
when $x=0, t=0 \&$ when $x=1, t=1$
$\therefore I=\frac{1}{2} \int_{0}^{1} e^{t} d t=\frac{1}{2}\left(e^{t}\right)_{0}^{1}=\frac{1}{2}[e-1]$
Ex 7.9 Class 12 Maths Question 16.
$\int_{1}^{2} \frac{5 x^{2}}{x^{2}+4 x+3} d x$

Solution:

ClndCareer

$$
\begin{align*}
& \frac{20 x+15}{x^{2}+4 x+3}=\frac{20 x+15}{(x+1)(x+3)}=\frac{A}{x+1}+\frac{B}{x+3} \\
& \Rightarrow \quad 20 x+15=A(x+3)+B(x+1) \tag{i}
\end{align*}
$$

Put $x=-1,-3$ in (i), we get : $A=\frac{-5}{2} \& B=\frac{45}{2}$
$I=\int_{1}^{2}\left(5+\frac{5}{2(x+1)}-\frac{45}{2(x-3)}\right) d x$
$=\left[5 x+\frac{5}{2} \log |x+1|-\frac{45}{2} \log |x+3|\right]_{1}^{2}$
$=5-\frac{5}{2}\left(9 \log \frac{5}{4}-\log \frac{3}{2}\right)$.

Ex 7.9 Class 12 Maths Question 17.

$\int_{0}^{\frac{\pi}{4}}\left(2 \sec ^{2} x+x^{3}+2\right) d x$

Solution:

$$
\begin{aligned}
= & {\left[2 \tan x+\frac{x^{4}}{4}+2 x\right]_{0}^{\frac{\pi}{4}} } \\
& =2\left(\tan \frac{\pi}{4}-\tan 0\right)+\frac{1}{4}\left(\frac{\pi^{4}}{256}-0\right)+2\left(\frac{\pi}{4}-0\right) \\
& =\frac{\pi^{4}}{1024}+\frac{\pi}{2}+2 .
\end{aligned}
$$

Ex 7.9 Class 12 Maths Question 18.

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClindCareer

$\int_{0}^{\pi}\left(\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}\right) d x$

Solution:
$=-\int_{0}^{\pi} \cos x d x=-[\sin x]_{0}^{\pi}-(0-0)=0$

Ex 7.9 Class 12 Maths Question 19.

$\int_{0}^{2} \frac{6 x+3}{x^{2}+4} d x$

Solution:
$=\int_{0}^{2} \frac{6 x}{x^{2}+4} d x+\int_{0}^{2} \frac{3}{x^{2}+4} d x$

$$
\begin{aligned}
& \left.=3 \int_{0}^{2} \frac{2 x}{x^{2}+4} d x+3 \times \frac{1}{2} \tan ^{-1} \frac{x}{2}\right]_{0}^{2} \\
& \quad \text { Let } x^{2}+4=t \Rightarrow 2 x d x=d t \\
& \left.\left.=3 \int_{4}^{8} \frac{d t}{t}+\frac{3}{2} \tan ^{-1} \frac{x}{2}\right]_{0}^{2}=3 \log \left(x^{2}+4\right)+\frac{3}{2} \tan ^{-1} \frac{x}{2}\right]_{0}^{2} \\
& =9 \log 2+\frac{3}{8} \pi-6 \log 2=3 \log 2+\frac{3}{8} \pi
\end{aligned}
$$

Ex 7.9 Class 12 Maths Question 20.
$\int_{0}^{1}\left(x e^{x}+\sin \frac{\pi x}{4}\right) d x$

Solution:

$=\int_{0}^{1} x e^{x} d x+\int_{0}^{1} \sin \frac{\pi x}{4} d x$

$$
\begin{aligned}
& =\left[\mathrm{xe}^{\mathrm{x}}\right]_{0}^{1}-\int_{0}^{1} 1 \cdot \mathrm{e}^{\mathrm{x}} \mathrm{dx}-\frac{4}{\pi}\left[\cos \frac{\pi \mathrm{x}}{4}\right]_{0}^{1} \\
& =1+\frac{4}{\pi}-\frac{2 \sqrt{2}}{\pi}
\end{aligned}
$$

Ex 7.9 Class 12 Maths Question 21.
$\int_{1}^{\sqrt{3}} \frac{d x}{1+x^{2}} \quad$ equals
(a)
$\frac{\pi}{3}$
(b)
$\frac{2 \pi}{3}$
(c)
$\frac{\pi}{6}$
(d)
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

$\frac{\pi}{12}$

Solution:

(d)
$\int_{1}^{\sqrt{3}} \frac{d x}{1+x^{2}}=\left[\tan ^{-1} x\right]_{1}^{\sqrt{3}}=\frac{\pi}{3}-\frac{\pi}{4}=\frac{\pi}{12}$
Ex 7.9 Class 12 Maths Question 22.
$\int_{0}^{\frac{2}{3}} \frac{d x}{4+9 x^{2}}$ equals
(a)
$\frac{\pi}{6}$
(b)
$\frac{\pi}{12}$
(c)
$\frac{\pi}{24}$
(d)
$\frac{\pi}{4}$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClindCareer

Solution:
(c)
$\int_{0}^{\frac{2}{3}} \frac{d x}{4+9 x^{2}}=\frac{1}{9} \int_{0}^{\frac{2}{3}} \frac{d x}{\left(\frac{2}{3}\right)^{2}+x^{2}}$
$=\frac{1}{6}\left[\tan ^{-1}\left(\frac{3 x}{2}\right)\right]_{0}^{\frac{2}{3}}=\frac{1}{6} \times \frac{\pi}{4}=\frac{\pi}{24}$
Ex 7.10 Class 12 Maths Question 1.
$\int_{0}^{1} \frac{x}{x^{2}+1} d x=I$

Solution:
Let $\mathrm{x}^{2}+1=\mathrm{t}$
$\Rightarrow 2 \mathrm{xdx}=\mathrm{dt}$
when $x=0, t=1$ and when $x=1, t=2$
$\therefore I=\frac{1}{2} \int_{0}^{1} \frac{d t}{t}=\left[\frac{1}{2 \log t}\right]_{1}^{2}=\frac{1}{2} \log 2$
Ex 7.10 Class 12 Maths Question 2.
$\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \phi} \cos ^{5} \phi d \phi=I$

Solution:

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

$$
I=\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \phi}\left(1-\sin ^{2}\right)^{2} \cos \phi d \phi
$$

put $\sin \varphi=\mathbf{t}, \operatorname{so}$ that $\cos \varphi d \varphi=d t$

$$
\begin{aligned}
& \text { When } \phi=0, \mathrm{t}=0 \text {; when } \phi=\frac{\pi}{2}, t=1 \\
& \left.\therefore \quad \mathrm{I}=\int_{0}^{1} \sqrt{\mathrm{t}}\left(1-t^{2}\right)^{2} d t=\int_{0}^{1} \mathrm{t}^{1 / 2}+t^{9 / 2}-2 t^{5 / 2}\right) d t \\
& =\left[\frac{2}{3} \mathrm{t}^{\frac{3}{2}}+\frac{2}{11} \mathrm{t}^{\frac{11}{2}}-\frac{4}{7} \mathrm{t}^{\frac{7}{2}}\right]_{0}^{1}=\frac{64}{231}
\end{aligned}
$$

Ex 7.10 Class 12 Maths Question 3.

$\int_{0}^{1} \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x=I$

Solution:
let $x=\tan \theta=>d x=\sec ^{2} \theta d \theta$
when $x=0=>\theta=0$
and when $x=1 \Rightarrow \theta \frac{\pi}{4}$
$\frac{1}{2}$

$$
\begin{aligned}
\therefore \mathrm{I} & =\int_{0}^{\frac{\pi}{4}} \sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right) \sec ^{2} \theta d \theta=\int_{0}^{\frac{\pi}{4}} 2 \theta \sec ^{2} \theta d \theta \\
& =2 \theta \tan \theta-2 \log \sec \theta]_{0}^{\frac{\pi}{4}}=\frac{\pi}{2}-\log 2
\end{aligned}
$$

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

Ex 7.10 Class 12 Maths Question 4.

$\int_{0}^{2} x \sqrt{x+2} d x=I($ say $)\left(\right.$ put $\left.\quad x+2=t^{2}\right)$

Solution:

let $\mathbf{x + 2}=\mathbf{t}=>\mathrm{dx}=\mathrm{dt}$
when $x=0, t=2$ and when $x=2, t=4$

$$
\begin{aligned}
& \therefore \quad \mathrm{I}=\int_{2}^{4}(t-2) \sqrt{t} d t=\int_{2}^{4}\left(t^{3 / 2}-2 t^{1 / 2}\right) d t \\
& \left.=\frac{2}{5} t^{5 / 2}-2 \times \frac{2}{3} t^{3 / 2}\right]_{2}^{4}=\frac{16}{15}(2+\sqrt{2}) .
\end{aligned}
$$

Ex 7.10 Class 12 Maths Question 5.

$\int_{0}^{\frac{\pi}{2}} \frac{\sin x d x}{1+\cos ^{2} x}=I$

Solution:

put $\cos x=t$
so that $-\sin x d x=d t$
when $\mathrm{x}=0, \mathrm{t}=1$; when
$x=\frac{\pi}{2}$
, $\mathrm{t}=\mathbf{0}$
$\therefore I=\int_{1}^{0} \frac{-d t}{1+t^{2}}=-\left[\tan ^{-1} t\right]_{1}^{0}=\frac{\pi}{4}$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

elndCareer

Ex 7.10 Class 12 Maths Question 6.

$\int_{0}^{2} \frac{d x}{x+4-x^{2}}=I$

Solution:

$\int_{0}^{2} \frac{d x}{x+4-x^{2}}=I$

$$
\mathrm{I}=\int_{0}^{2} \frac{\mathrm{dx}}{\frac{17}{4}-\left(\mathrm{x}-\frac{1}{2}\right)^{2}} ;
$$

$$
\text { Put } \mathrm{a}^{2}=\frac{17}{4} \text { ' and } \mathrm{x} \rightarrow \mathrm{x}-\frac{1}{2}
$$

$$
\begin{aligned}
I & =\frac{1}{2 \frac{\sqrt{17}}{2}} \log \left[\frac{\frac{\sqrt{17}}{2}+\left(x-\frac{1}{2}\right)}{\frac{\sqrt{17}}{2}-\left(x-\frac{1}{2}\right)}\right]_{0}^{2} \\
& =\frac{1}{\sqrt{17}} \log \frac{(5+\sqrt{17})^{2}}{25-17}=\frac{1}{\sqrt{17}} \log \frac{21+5 \sqrt{17}}{4}
\end{aligned}
$$

Ex 7.10 Class 12 Maths Question 7.

$\int_{-1}^{1} \frac{d x}{x^{2}+2 x+5}=I$

Solution:

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/
$I=\int_{-1}^{1} \frac{d x}{(x+1)^{2}+2^{2}}=\frac{1}{2}\left[\tan ^{-1} \frac{x+1}{2}\right]_{-1}^{1}=\frac{\pi}{8}$

Ex 7.10 Class 12 Maths Question 8.

$\int_{1}^{2}\left[\frac{1}{x}-\frac{1}{2 x^{2}}\right] e^{2 x} d x=I$

Solution:

let $2 x=t \Rightarrow 2 d x=d t$
when $x=1, t=2$ and when $x=2, t=4$

$$
I=\int_{2}^{4} e^{t}\left(\frac{1}{t}-\frac{1}{t^{2}}\right) d t=e^{t}\left[\frac{1}{t}\right]_{2}^{4}=\frac{e^{2}}{2}\left[\frac{e^{2}}{2}-1\right]
$$

Choose the correct answer in Exercises 9 and 10
Ex 7.10 Class 12 Maths Question 9.
The value of integral
$\int_{\frac{1}{3}}^{1} \frac{\left(x-x^{3}\right)^{\frac{1}{3}}}{x^{4}} d x$
is
(a) 6
(b) 0
(c) 3
(d) 4

Solution:
(a) let I =
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/
$\int_{\frac{1}{3}}^{1} \frac{\left(x-x^{3}\right)^{\frac{1}{3}}}{x^{4}} d x=\int_{\frac{1}{3}}^{1} \frac{x^{\frac{1}{3}}\left(1-x^{2}\right)^{\frac{1}{3}}}{x^{4}} d x$

$$
\begin{gathered}
\text { Let } 1-\mathrm{x}^{2}=t^{3} \Rightarrow x^{2}=1-t^{3} \Rightarrow-2 x d x=3 t^{2} d t \\
\text { Consider } \mathrm{I}=-\frac{1}{2} \int \frac{x^{1 / 3}\left(1-x^{2}\right)^{1 / 3}(-2 x)}{x^{4} \cdot x} d x \\
\left.\mathrm{I}=-\frac{1}{2} \int \frac{\left(1-t^{3}\right)^{1 / 3} \cdot t}{\left(1-t^{3}\right)^{2}} 3 t^{2} d t=\frac{-3}{4(x)^{2}} \therefore \mathrm{I}=\frac{-3}{4} x^{2}\right]_{\frac{1}{3}}^{1}=6
\end{gathered}
$$

Ex 7.10 Class 12 Maths Question 10.

$$
\text { If } f(x)=\int_{0}^{x} \text { tsint, then } f^{\prime}(x) \text { is }
$$

(a) $\cos x+x \sin x$
(b) $x \sin x$
(c) $x \cos x$
(d) $\sin x+x \cos x$

Solution:
(b)
$f(x)=\int_{0}^{x} t \sin t \quad d t=t(-\cos t)-\int 1[(-\cos t) d t]_{0}^{x}$

$=-x \operatorname{cox}+\sin x$

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

Ex 7.11 Class 12 Maths Question 1.

$\int_{0}^{\frac{\pi}{2}} \cos ^{2} x \quad d x=I$

Solution:

$I=\frac{1}{2} \int_{0}^{\frac{\pi}{2}}(1+\cos 2 x) d x=\frac{1}{2}\left[x+\frac{\sin 2 x}{2}\right]_{0}^{\frac{\pi}{2}}=\frac{\pi}{4}$
Ex 7.11 Class 12 Maths Question 2.
$\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$

Solution:
let $\mathrm{I}=$
$\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$

$$
\begin{align*}
& I=\int_{0}^{\pi / 2} \frac{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}}{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}+\sqrt{\cos \left(\frac{\pi}{2}-x\right)}} d x \\
& I=\int_{0}^{\pi / 2} \frac{\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}} d x \tag{ii}
\end{align*}
$$

Adding equ (i) \& (ii) we get

$$
2 \mathrm{I}=\int_{0}^{\pi / 2} 1 \cdot \mathrm{dx}=[\mathrm{x}]_{0}^{\pi / 2}=\frac{\pi}{2} \quad \therefore \quad \mathrm{I}=\frac{\pi}{4} 1
$$

ClndCareer

Ex 7.11 Class 12 Maths Question 3.

$$
\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x d x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} d x} d x
$$

Solution:

let $\mathrm{I}=$ $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x d x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} d x} d x$

$$
\text { Also } \begin{align*}
\mathrm{I} & =\int_{0}^{\pi / 2} \frac{\sin ^{3 / 2}\left(\frac{\pi}{2}-x\right)}{\sin ^{3 / 2}\left(\frac{\pi}{2}-x\right)+\cos ^{3 / 2}\left(\frac{\pi}{2}-x\right)} d x \\
& =\int_{0}^{\pi / 2} \frac{\cos ^{3 / 2} x}{\sin ^{3 / 2} x+\cos ^{3 / 2} x} d x \tag{}
\end{align*}
$$

Adding (i) and (ii), we have
$2 \mathrm{I}=\int_{0}^{\pi / 2} 1 d x=[x]_{0}^{\pi / 2}=\frac{\pi}{2}-0=\frac{\pi}{2} \therefore \mathrm{I}=\frac{\pi}{4}$

Ex 7.11 Class 12 Maths Question 4.

$\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5} x d x}{\sin ^{5} x+\cos ^{5} x}$

Solution:

let $\mathrm{I}=$

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

$\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5} x d x}{\sin ^{5} x+\cos ^{5} x}$

$$
\begin{align*}
\text { Also } \mathrm{I} & =\int_{0}^{\pi / 2} \frac{\cos ^{5}\left(\frac{\pi}{2}-x\right)}{\sin ^{5}\left(\frac{\pi}{2}-x\right)+\cos ^{5}\left(\frac{\pi}{2}-x\right)} d x \\
& =\int_{0}^{\pi / 2} \frac{\sin ^{5} x}{\cos ^{5} x+\sin ^{5} x} d x \tag{ii}
\end{align*}
$$

Adding (i) and (ii), we have

$$
\left.2 \mathrm{I}=\int_{0}^{\pi / 2} 1 d x=x\right]_{0}^{\pi / 2}=\frac{\pi}{2} \therefore \mathrm{I}=\frac{\pi}{4}
$$

Ex 7.11 Class 12 Maths Question 5.

$$
\int_{-5}^{5}|x+2| d x=I
$$

Solution:

$$
I=\int_{-5}^{5}|x+2| d x+\int_{-2}^{5}|x+2| d x
$$

$$
\text { at } x=-5, x+2<0 ; \text { at } x=-2, x+2=0 ; \text { at } x=5, x+2>0 ; x+2<0, x+2=0, x+2>0
$$

$$
\begin{aligned}
I & =-\int_{-5}^{-2} x+2 d x+\int_{-2}^{5} x+2 d x \\
& =-\left[\frac{x^{2}}{2}+2 x\right]_{-5}^{-2}+\left[\frac{x^{2}}{2}+2 x\right]_{-2}^{5}=29
\end{aligned}
$$

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClindCareer

Ex 7.11 Class 12 Maths Question 6.

$\int_{2}^{8}|x-5| d x=I$

Solution:

$$
\int_{2}^{8}|x-5| d x=I
$$

$$
\begin{aligned}
& \mathrm{I}=\int_{2}^{5}|x-5| d x+\int_{5}^{8}|x-5| d x \\
& =-\int_{2}^{5}(x-5) d x+\int_{5}^{8}(x-5) d x \\
& =-\left[\frac{x^{2}}{2}-5 x\right]_{2}^{5}+\left[\frac{x^{2}}{2}-5 x\right]_{5}^{8}=9
\end{aligned}
$$

Ex 7.11 Class 12 Maths Question 7.
$\int_{0}^{1} x(1-x)^{n} d x=I$

Solution:

$$
\int_{0}^{1} x(1-x)^{n} d x=I
$$

ClndCareer

Let $\mathrm{I}=\int_{0}^{1}(1-x)[1-(1-x)]^{n} d x$

$$
=\int_{0}^{1}\left(x^{n}-x^{n-1}\right) d x
$$

$$
=\left[\frac{x^{n+1}}{n+1}-\frac{x^{n+2}}{n+2}\right]_{0}^{1}=\left(\frac{1}{(n+1)(n+2)}\right)
$$

Ex 7.11 Class 12 Maths Question 8.
$\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x$

Solution:

let $\mathrm{I}=$
$\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x$

$$
\begin{gathered}
\text { Also } I=\int_{0}^{\pi / 4} \log \left[1+\tan \left(\frac{\pi}{4}-x\right)\right] d x \\
=\int_{0}^{\pi / 4} \log \left(1+\frac{1-\tan x}{1+\tan x}\right) d x=\int_{0}^{\pi / 4} \log \left(\frac{2}{1+\tan x}\right) d x \\
=\int_{0}^{\pi / 4} \log 2 d x-\int_{0}^{\pi / 4} \log (1+\tan x) d x \\
\\
I=\log 2 \int_{0}^{\pi / 4} 1 \mathrm{dx}-\mathrm{I} \\
\Rightarrow \\
2 \mathrm{I}=\log 2[\mathrm{x}]_{0}^{\pi / 4}=\frac{\pi}{4} \log 2 \Rightarrow \mathrm{I}=\frac{\pi}{8} \log 2
\end{gathered}
$$

Ex 7.11 Class 12 Maths Question 9.

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/
$\int_{0}^{2} x \sqrt{2-x} d x=I$

Solution:
let $\mathbf{2 - x}=\mathbf{t}$
$\Rightarrow-\mathrm{dx}=\mathrm{dt}$
when $\mathrm{x}=0, \mathrm{t}=2$ and when $\mathrm{x}=2, \mathrm{t}=0$
$\frac{1}{2}$

$$
\begin{aligned}
& \therefore \quad I=-\int_{2}^{0}(2-t) \sqrt{t} d t=\int_{0}^{2}\left(2 t^{1 / 2}-t^{3 / 2}\right) d t \\
& \left.=\frac{4}{3} t^{3 / 2}-\frac{2}{5} t^{5 / 2}\right]_{0}^{2}=\frac{8 \sqrt{2}}{3}-\frac{8 \sqrt{2}}{5}=\frac{16 \sqrt{2}}{15} .
\end{aligned}
$$

Ex 7.11 Class 12 Maths Question 10.

$$
\int_{0}^{\frac{\pi}{2}}(2 \log \sin x-l o g \sin 2 x) d x=I
$$

Solution:

$\int_{0}^{\frac{\pi}{2}}(2 \log \sin x-l o g \sin 2 x) d x=I$

ClndCareer

$$
\begin{aligned}
& I=\int_{0}^{\pi / 2}[2 \log \sin x-\log 2-\log \sin x-\log \cos x] d x \\
& =\int_{0}^{\pi / 2} \log \sin x d x-(\log 2)[x]_{0}^{\pi / 2} \\
& =-\int_{0}^{\pi / 2} \log \sin x d x=\frac{\pi}{2} \log \frac{1}{2}
\end{aligned}
$$

Ex 7.11 Class 12 Maths Question 11.

$\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x d x$

Solution:

Let $f(x)=\sin ^{2} \mathbf{x}$
$f(-x)=\sin ^{2} x=f(x)$
$\therefore \mathrm{f}(\mathrm{x})$ is an even function
$\therefore \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x d x=2 \int_{0}^{\frac{\pi}{2}}\left[\frac{1-\cos 2 x}{2}\right] d x=\left[x-\frac{\sin 2 x}{x}\right]_{0}^{\frac{\pi}{2}} \therefore I=\frac{\pi}{2}$

Ex 7.11 Class 12 Maths Question 12.
$\int_{0}^{\pi} \frac{x d x}{1+\sin x}$

Solution:

let $\mathrm{I}=$
$\int_{0}^{\pi} \frac{x d x}{1+\sin x}$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/
...(i)

$$
\begin{gather*}
\mathrm{I}=\int_{0}^{\pi} \frac{\pi-x}{1+\sin (\pi-x)} d x=\int_{0}^{\pi} \frac{\pi-x}{1+\sin x} d x \tag{ii}\\
\text { Adding }(i) \text { and }(i i), \text { we get }
\end{gather*}
$$

$$
\begin{aligned}
& 2 \mathrm{I}=\pi \int_{0}^{\pi} \frac{1}{1+\sin x} d x==\pi \int_{0}^{\pi} \frac{1-\sin x}{\cos ^{2} x} d x \\
& =\pi \int_{0}^{\pi}\left(\sec ^{2} x-\tan x \sec x\right) d x \\
& =\pi[\tan x-\sec x]_{0}^{\pi}=2 \pi \Rightarrow \mathrm{I}=\pi
\end{aligned}
$$

Ex 7.11 Class 12 Maths Question 13.

$$
\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin ^{7} x d x
$$

Solution:

Let $f(x)=\sin ^{7} x d x$
$\Rightarrow f(-x)=-\sin ^{7} x=-f(x)$
$\Rightarrow f(x)$ is an odd function of x
\Rightarrow
$\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin ^{7} x d x=0$
Ex 7.11 Class 12 Maths Question 14.
$\int_{0}^{2 \pi} \cos ^{5} x d x$

Solution:

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

$$
\begin{aligned}
& \text { let } \mathrm{f}(\mathrm{x})=\cos ^{5} \mathrm{x} \\
& \Rightarrow \mathrm{f}(2 \pi-\mathrm{x})=\cos ^{5} \mathrm{x} \\
& \quad \therefore \quad \int_{0}^{2 \pi} \cos ^{5} x d x=2 \int_{0}^{\pi} \cos ^{5} x d x
\end{aligned}
$$

$$
\text { Now, } f(\pi-x)=-\cos ^{5} x=-f(x)
$$

$$
\therefore \quad \int_{0}^{\pi} \cos ^{5} x d x=0
$$

$$
\Rightarrow \int_{0}^{2 \pi} \cos ^{5} x d x=2 \int_{0}^{\pi} \cos ^{5} x d x=0
$$

Ex 7.11 Class 12 Maths Question 15.

$\int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\sin x \cos x} d x$

Solution:

let $\mathrm{I}=$
$\int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\sin x \cos x} d x$
...(i)
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

Clnd Career

$$
\begin{aligned}
& \text { Then } \mathrm{I}=\int_{0}^{\pi / 2} \frac{\sin \left(\frac{\pi}{2}-x\right)-\cos \left(\frac{\pi}{2}-x\right)}{1+\sin \left(\frac{\pi}{2}-x\right) \cos \left(\frac{\pi}{2}-x\right)} d x \\
& =\int_{0}^{\pi / 2} \frac{\cos x-\sin x}{1+\cos x \sin x} d x
\end{aligned}
$$

Adding (i) and (ii), we get

$$
\begin{aligned}
& 2 \mathrm{I}=\int_{0}^{\pi / 2} \frac{\sin x-\cos x+\cos x-\sin x}{1+\sin x \cos x} d x \\
& =\int_{0}^{\pi / 2} 0 d x=0 \Rightarrow \mathrm{I}=0
\end{aligned}
$$

Ex 7.11 Class 12 Maths Question 16.

$\int_{0}^{\pi} \log (1+\cos x) d x$

Solution:
let I =
$\int_{0}^{\pi} \log (1+\cos x) d x$
then I =
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

$\int_{0}^{\pi} \log [1+\cos (\pi-x)] d x$

$$
\begin{equation*}
\mathrm{I}=\int_{0}^{\pi} \log (1-\cos x) d x \tag{ii}
\end{equation*}
$$

Adding (i) and (ii), we get
$2 \mathrm{I}=\int_{0}^{\pi} \log \left(1-\cos ^{2} x\right) d x=2 \int_{0}^{\pi} \log \sin x d x$
$\Rightarrow \mathrm{I}=\int_{0}^{\pi} \log \sin x d x=2 \int_{0}^{\pi / 2} \log \sin x d x=2 \mathrm{I}_{1}$
Now, $\mathrm{I}_{1}=\int_{0}^{\pi / 2} \log \sin x d x$.

$$
\begin{equation*}
I_{1}=\int_{0}^{\pi / 2} \log \sin \left(\frac{\pi}{2}-x\right) d x=\int_{0}^{\pi / 2} \log \cos x d x \ldots \text { (iv) } \tag{iii}
\end{equation*}
$$

Adding (iii) and (iv), we get

$$
\begin{aligned}
& \mathbf{2 l}_{1}=\int_{0}^{\pi / 2} \log \left(\frac{\sin 2 x}{2}\right) d x \\
& =\int_{0}^{\pi / 2} \log \sin 2 x d x-\int_{0}^{\pi / 2} \log 2 d x \\
& =\int_{0}^{\pi / 2} \log \sin 2 x d x-\frac{\pi}{2} \log 2=\mathrm{I}_{2}-\frac{\pi}{2} \log _{2} \ldots(v)
\end{aligned}
$$

Put $2 x=t$, so that $2 d x=d t$
When $x=0, t=0$; when $x=\frac{\pi}{2}, t=\pi$
$\therefore \mathrm{I}_{2}=\frac{1}{2} \int_{0}^{\pi} \log \sin t d t=\int_{0}^{\pi / 2} \log \sin x d x=\mathrm{I}_{1}$
$\therefore \quad$ From (v), we get; $\mathrm{I}_{1}=-\frac{\pi}{2} \log 2$
$\therefore \quad \mathrm{I}=2 \times\left(-\frac{\pi}{2} \log 2\right)=-\pi \log 2$.

Ex 7.11 Class 12 Maths Question 17.

$\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x$

Solution:

let $\mathrm{I}=$
$\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x$
...(i)

$$
\begin{align*}
& \text { Then, } \mathrm{I}=\int_{0}^{a} \frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{a-(a-x)}} d x \\
& \Rightarrow \mathrm{I}=\int_{0}^{a} \frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}} d x \tag{ii}
\end{align*}
$$

Adding (i) and (ii), we get ;

$$
2 \mathrm{I}=\int_{0}^{a} 1 d x=[x]_{0}^{a}=a-0=a \quad \therefore \mathrm{I}=\frac{a}{2} .
$$

ClndCareer

Ex 7.11 Class 12 Maths Question 18.

$\int_{0}^{4}|x-1| d x=I$

Solution:
$I=-\int_{0}^{1}(x-1) d x+\int_{1}^{4}(x-1) d x$
$=-\left[\frac{x^{2}}{2}-x\right]_{0}^{1}+\left[\frac{x^{2}}{2}-x\right]_{1}^{4}=5$
Ex 7.11 Class 12 Maths Question 19.
show that
$4 \int_{0}^{a} f(x) g(x) d x=2 \int_{0}^{a} f(x) d x$
if f and g are defined as $f(x)=f(a-x)$ and $g(x)+g(a-x)=4$
Solution:
let $\mathrm{I}=$
$\int_{0}^{a} f(x) g(x) d x$

$$
\begin{aligned}
& =\int_{0}^{a} f(a-x)[4-g(a-x)] d x \\
& =4 \int_{0}^{a} f(a-x) d x-\int_{0}^{a} f(a-x) g(a-x) d x
\end{aligned}
$$

Let $a-x=t \Rightarrow-d x=d t$
When $x=0, t=a$ and when $x=a, t=0$

$$
\begin{aligned}
& \mathrm{I}=-4 \int_{0}^{a} f(t) d t+\int_{a}^{0} f(t) g(t) d t \\
& =4 \int_{0}^{a} f(x) d x-\int_{0}^{a} f(x) g(x) d x \\
& \mathrm{I}=4 \int_{0}^{a} f(x) d x-\mathrm{I} \Rightarrow \mathrm{I}=2 \int_{0}^{a} f(x) d x
\end{aligned}
$$

Ex 7.11 Class 12 Maths Question 20.

The value of
$\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}\left(x^{3}+x \cos x+\tan ^{5} x+1\right) d x$
is
(a) 0
(b) 2
(c) π
(d) 1

Solution:
(c) let I =
$\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}\left(x^{3}+x \cos x+\tan ^{5} x+1\right) d x$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/
is

$$
\begin{aligned}
& \mathrm{I}=\int_{-\pi / 2}^{\pi / 2}\left(x^{3}+x \cos x+\tan ^{5} x\right) d x+\int_{-\pi / 2}^{\pi / 2} 1 d x \\
& \left.\mathrm{I}=\mathrm{I}_{1}+x\right]_{-\pi / 2}^{\pi / 2}=\mathrm{I}_{1}+\frac{\pi}{2}+\frac{\pi}{2}=\mathrm{I}_{1}+\pi
\end{aligned}
$$

Let $f(x)=x^{3}+x \cos x+\tan ^{5} x$
$\therefore f(-x)=-x^{3}-x \cos x-\tan ^{5} x=-f(x)$
$\therefore f(x)$ is an odd function. Thus $\mathrm{I}_{1}=0 \therefore \mathrm{I}=\pi$

Ex 7.11 Class 12 Maths Question 21.

The value of
$\int_{0}^{\frac{\pi}{2}} \log \left[\frac{4+3 \sin x}{4+3 \sin x}\right] d x$
is
(a) 2
(b)
$\frac{3}{4}$
(c) 0
(d) -2

Solution:

let $\mathrm{I}=$
$\int_{0}^{\frac{\pi}{2}} \log \left[\frac{4+3 \sin x}{4+3 \sin x}\right] d x$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

ClndCareer

$$
\begin{aligned}
& =\int_{0}^{\pi / 2} \log \left[\frac{4+3 \sin \left(\frac{\pi}{2}-x\right)}{4+3 \cos \left(\frac{\pi}{2}-x\right)}\right] d x \\
& =-\int_{0}^{\pi / 2} \log \left[\frac{4+3 \sin x}{4+3 \cos x}\right] d x \\
& \Rightarrow I=-I \Rightarrow 2 I=0 \Rightarrow I=0
\end{aligned}
$$

Chapterwise NCERT Solutions for Class 12 Maths :

- Chapter 1 - Relations and Functions
- Chapter 2 - Inverse Trigonometric Functions.
- Chapter 3 - Matrices
- Chapter 4 - Determinants.
- Chapter 5 - Continuity and Differentiability.0.0
- Chapter 6 - Application of Derivatives.
- Chapter 7 - Integrals.
- Chapter 8 - Application of Integrals.
- Chapter 9: Differential Equations
- Chapter 10: Vector Algebra
- Chapter 11: Three Dimensional Geometry
- Chapter 12: Linear Programming
- Chapter 13: Probability

ClndCareer

About NCERT

The National Council of Educational Research and Training is an autonomous organization of the Government of India which was established in 1961 as a literary, scientific, and charitable Society under the Societies Registration Act. The major objectives of NCERT and its constituent units are to: undertake, promote and coordinate research in areas related to school education; prepare and publish model textbooks, supplementary material, newsletters, journals and develop educational kits, multimedia digital materials, etc.Organise pre-service and in-service training of teachers; develop and disseminate innovative educational techniques and practices;collaborate and network with state educational departments, universities, NGOs and other educational institutions; act as a clearing house for ideas and information in matters related to school education; and act as a nodal agency for achieving the goals of Universalisation of Elementary Education.In addition to research, development, training, extension, publication and dissemination activities, NCERT is an implementation agency for bilateral cultural exchange programmes with other countries in the field of school education.Its headquarters are located at Sri Aurobindo Marg in New Delhi. Visit the Official NCERT website to learn more.
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-7-integrals/

