(29) NCERT Solutions for

ElndCareer
 Schools

5 indCareer
 y indCareer
 (\#) indCareer

NCERT Solutions for 12th Class

Maths: Chapter 2-Inverse

Trigonometric Functions

Class 12: Maths Chapter 2 solutions. Complete Class 12 Maths Chapter 2 Notes.
NCERT Solutions for 12th Class Maths: Chapter 2-Inverse Trigonometric Functions

Class 12: Maths Chapter 2 solutions. Complete Class 12 Maths Chapter 2 Notes.
Page No: 41

Exercise 2.1

ElndCareer

Find the principal values of the following:

1. $\sin ^{-1}(-1 / 2)$

Answer

1. Let $\sin ^{-1}(-1 / 2)=y$, then
$\sin y=-1 / 2=-\sin (\pi / 6)=\sin (-\pi / 6)$
Range of the principal value of sn^{-1} is $[-\pi / 2, \pi / 2]$ and $\left.\sin -\pi / 6\right)=-1 / 2$
Therefore, the principal value of $\sin ^{-1}(-1 / 2)$ is $-\pi / 6$.
2. $\cos ^{-1}(\sqrt{ } 3 / 2)$

Answer

Let $\cos ^{-1}(\sqrt{ } 3 / 2)=y$,
$\cos y=\sqrt{ } 3 / 2=\cos (\pi / 6)$
We know that the range of the principal value branch of $\cos ^{-1}$ is $[0, \pi]$ and $\cos (\pi / 6)=$ $\sqrt{ } 3 / 2$

Therefore, the principal value of $\cos ^{-1}(\sqrt{ } 3 / 2)$ is $\pi / 6$.
3. $\operatorname{cosec}^{-1}(2)$

Answer

Let $\operatorname{cosec}^{-1}(2)=y$.
Then, $\operatorname{cosec} y=2=\operatorname{cosec}(\pi / 6)$
We know that the range of the principal value branch of $\operatorname{cosec}^{-1}$ is $[-\pi / 2, \pi / 2]-\{0\}$ and $\operatorname{cosec}(\pi / 6)=2$.

Therefore, the principal value of $\operatorname{cosec}^{-1}(2)$ is $\pi / 6$.
4. $\tan ^{-1}(\sqrt{ } 3)$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-2-inverse-trigon ometric-functions/

ClndCareer

Answer

Let $\tan ^{-1}(-\sqrt{3})=y$,
then $\tan y=-\sqrt{ } 3=-\tan \pi / 3=\tan (-\pi / 3)$
We know that the range of the principal value branch of $\tan ^{-1}$ is $(-\pi / 2, \pi / 2)$ and $\tan (-\pi / 3)$
$=-\sqrt{ } 3$

Therefore, the principal value of $\tan ^{-1}(-\sqrt{ } 3)$ is $-\pi / 3$
5. $\cos ^{-1}(-1 / 2)$

Answer

Let $\cos ^{-1}(-1 / 2)=y$,
then $\cos y=-1 / 2=-\cos \pi / 3=\cos (\pi-\pi / 3)=\cos (2 \pi / 3)$
We know that the range of the principal value branch of $\cos ^{-1}$ is $[0, \pi]$ and $\cos (2 \pi / 3)=$ -1/2

Therefore, the principal value of $\cos ^{-1}(-1 / 2)$ is 2π
6. $\tan ^{-1}(-1)$

Answer

Let $\tan ^{-1}(-1)=y$. Then, $\tan y=-1=-\tan (\pi / 4)=\tan (-\pi / 4)$
We know that the range of the principal value branch of $\tan ^{-1}$ is $(-\pi / 2, \pi / 2)$ and $\tan (-\pi / 4)$ $=-1$.

Therefore, the principal value of $\tan ^{-1}(-1)$ is $-\pi / 4$.
7. $\sec ^{-1}(2 / \sqrt{ } 3)$

Answer

Let $\sec ^{-1}(2 / \sqrt{ } 3)=y$, then $\sec y=2 / \sqrt{ } 3=\sec (\pi / 6)$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-2-inverse-trigon ometric-functions/

ClndCareer

We know that the range of the principal value branch of $\sec ^{-1}$ is $[0, \pi]-\{\pi / 2\}$ and sec $(\pi / 6)=2 / \sqrt{3}$.

Therefore, the principal value of $\sec ^{-1}(2 / \sqrt{ } 3)$ is $\pi / 6$.
8. $\cot ^{-1}(\sqrt{3})$

Answer

Let $\cot ^{-1} \sqrt{ } 3=y$, then $\cot y=\sqrt{3}=\cot (\pi / 6)$.
We know that the range of the principal value branch of $\cot ^{-1}$ is $(0, \pi)$ and $\cot (\pi / 6)=\sqrt{ } 3$.
Therefore, the principal value of $\cot ^{-1} \sqrt{3}$ is π.
9. $\cos ^{-1}(-1 / \sqrt{ } 2)$

Answer

Let $\cos ^{-1}(-1 / \sqrt{ } 2)=y$,
then $\cos y=-1 / \sqrt{ } 2=-\cos (\pi / 4)=\cos (\pi-\pi / 4)=\cos (3 \pi / 4)$.
We know that the range of the principal value branch of $\cos ^{-1}$ is $[0, \pi]$ and $\cos (3 \pi 4)=$ $-1 / \sqrt{ } 2$.

Therefore, the principal value of $\cos ^{-1}(-1 / \sqrt{ } 2)$ is $3 \pi / 4$.
10. $\operatorname{cosec}^{-1}(-\sqrt{2})$

Answer

Let $\operatorname{cosec}^{-1}(-\sqrt{ } 2)=y$, then $\operatorname{cosec} y=-\sqrt{ } 2=-\operatorname{cosec}(\pi / 4)=\operatorname{cosec}(-\pi / 4)$
We know that the range of the principal value branch of $\operatorname{cosec}^{-1}$ is $[-\pi / 2, \pi / 2]-\{0\}$ and $\operatorname{cosec}(-\pi / 4)=-\sqrt{ } 2$.

Therefore, the principal value of $\operatorname{cosecc}^{-1}(-\sqrt{ } 2)$ is $-\pi / 4$.
Page No. 42
Find the values of the following:
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-2-inverse-trigon ometric-functions/

ClindCareer

11. $\tan ^{-1}(1)+\cos ^{-1}(-1 / 2)+\sin ^{-1}(-1 / 2)$

Answer

Let $\tan ^{-1}(1)=x$,
then $\tan x=1=\tan (\pi / 4)$
We know that the range of the principal value branch of $\tan ^{-1}$ is $(-\pi / 2, \pi / 2)$.
$\therefore \tan ^{-1}(1)=\pi / 4$
Let $\cos ^{-1}(-1 / 2)=y$,
then $\cos y=-1 / 2=-\cos \pi / 3=\cos (\pi-\pi / 3)$
$=\cos (2 \pi / 3)$
We know that the range of the principal value branch of $\cos ^{-1}$ is $[0, \pi]$.
$\therefore \cos ^{-1}(-1 / 2)=2 \pi / 3$
Let $\sin ^{-1}(-1 / 2)=z$,
then $\sin z=-1 / 2=-\sin \pi / 6=\sin (-\pi / 6)$
We know that the range of the principal value branch of $\sin ^{-1}$ is $[-/ \pi 2, \pi / 2]$.
$\therefore \sin ^{-1}(-1 / 2)=-\pi / 6$
Now,
$\tan ^{-1}(1)+\cos ^{-1}(-1 / 2)+\sin ^{-1}(-1 / 2)$
$=\pi / 4+2 \pi / 3-\pi / 6$
$=(3 \pi+8 \pi-2 \pi) / 12$
$=9 \pi / 12=3 \pi / 4$
12. $\cos ^{-1}(1 / 2)+2 \sin ^{-1}(1 / 2)$

Answer

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-2-inverse-trigon ometric-functions/

ClndCareer

Let $\cos ^{-1}(1 / 2)=x$, then
$\cos x=1 / 2=\cos \pi / 3$
We know that the range of the principal value branch of $\cos -1$ is $[0, \pi]$.
$\therefore \cos ^{-1}(1 / 2)$
$=\pi / 3$
Let $\sin ^{-1}(-1 / 2)=y$, then
$\sin y=1 / 2$
$=\sin \pi / 6$
We know that the range of the principal value branch of $\sin ^{-1}$ is $[-\pi / 2, \pi / 2]$.
$\therefore \sin ^{-1}(1 / 2)=\pi / 6$
Now,

$$
\begin{aligned}
& \cos ^{-1}(1 / 2)+2 \sin ^{-1}(1 / 2) \\
& =\pi / 3+2 \times \pi / 6 \\
& =\pi / 3+\pi / 3 \\
& =2 \pi / 3
\end{aligned}
$$

13. If $\sin ^{-1} x=y$, then
(A) $0 \leq y \leq \pi$
(B) $-\pi / 2 \leq y \leq \pi / 2$
(C) $0<\mathrm{y}<\pi$
(D) $-\pi / 2<y<\pi / 2$

Answer

It is given that $\sin ^{-1} x=y$.
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-2-inverse-trigon ometric-functions/

ClindCareer

We know that the range of the principal value branch of $\sin ^{-1}$ is $[-\pi / 2, \pi / 2]$.
Therefore, $-\mathrm{m} / 2 \leq \mathrm{y} \leq \mathrm{\pi} / 2$.
Hence, the option (B) is correct.
14. $\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)$ is equal to
(A) π
(B) $-\pi / 3$
(C) $\pi / 3$
(D) $2 \pi / 3$

Answer

Let $\tan ^{-1} \sqrt{3}=\mathrm{x}$, then
$\tan x=\sqrt{3}=\tan \pi / 3$
We know that the range of the principal value branch of $\tan ^{-1}$ is $(-\pi / 2, \pi / 2)$.
$\therefore \tan ^{-1} \sqrt{3}=\pi / 3$
Let $\sec ^{-1}(-2)=y$, then
$\sec y=-2=-\sec \pi / 3$
$=\sec (\pi-\pi / 3)$
$=\sec (2 \pi / 3)$
We know that the range of the principal value branch of $\sec ^{-1}$ is $[0, \pi]-\{\pi / 2\}$
$\therefore \sec ^{-1}(-2)=2 \pi / 3$
Now,
$\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)$
$=\pi / 3-2 \pi / 3$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-2-inverse-trigon ometric-functions/
$=-\pi / 3$
Hence, the option (B) is correct.
Page No: 41

Exercise 2.1

Prove the following:

1. $3 \sin ^{-1} x=\sin ^{-1}(3 x-4 x 3), x \in[-/ 2,1 / 2]$

Answer

To prove:
$3 \sin ^{-1} x=\sin ^{-1}(3 x-4 x 3), x \in[-1 / 2,1 / 2]$
Let $\sin ^{-1} x=\theta$, then $x=\sin \theta$.
We have,
RHS $=\sin -1\left(3 x-4 x^{3}\right)$
$=\sin ^{-1}(3 \sin \theta-4 \sin 3 \theta)$
$=\sin ^{-1}(\sin 3 \theta)=3 \theta$
$=3 \sin ^{-1} x=$ LHS
2. $3 \cos ^{-1} x=\cos ^{-1}\left(4 x^{3}-3 x\right) x \in[1,1 / 2]$

Answer

To prove:
$3 \cos ^{-1} x=\cos ^{-1}\left(4 x^{3}-3 x\right) x \in[1,1 / 2]$.
Let $\cos ^{-1} x=\theta$, then $x=\cos \theta$.
We have,
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-2-inverse-trigon ometric-functions/

ClindCareer

$$
\begin{aligned}
& \text { RHS }=\cos ^{-1}\left(4 x^{3}-3 x\right) \\
& =\cos ^{-1}\left(4 \cos ^{3} \theta-3 \cos \theta\right) \\
& =\cos ^{-1}(\cos 3 \theta)=3 \theta \\
& =3 \cos ^{-1} x \\
& =\text { LHS }
\end{aligned}
$$

3. $\tan ^{-1} \mathbf{2} / 11+\tan ^{-1} 7 / 24=\tan ^{-1} 1 / 2$

Answer

To prove: $\tan ^{-1} 2 / 11+\tan ^{-1} 7 / 24=\tan ^{-1} 1 / 2$
LHS $=\tan ^{-1} 2 / 11+\tan ^{-1} 7 / 24$
$=\tan ^{-1}\left(\frac{\frac{2}{11}+\frac{7}{24}}{1-\frac{2}{11} \times \frac{7}{24}}\right)=\tan ^{-1}\left(\frac{\frac{48+77}{11 \times 24}}{\frac{11 \times 24-14}{11 \times 24}}\right)$
$=\tan ^{-1}(48+77) /(264-14)$
$=\tan ^{-1} 125 / 250=\tan ^{-1} 1 / 2=$ RHS
4. $2 \tan ^{-1} 1 / 2+\tan ^{-1} 1 / 7=\tan ^{-1} 31 / 17$

Answer

To prove: $2 \tan ^{-1} 1 / 2+\tan ^{-1} 1 / 7=\tan ^{-1} 31 / 17$
LHS $=2 \tan -11 / 2+\tan -11 / 7$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-2-inverse-trigon ometric-functions/

ClndCareer

$$
\begin{aligned}
& =\tan ^{-1}\left[\frac{2 \times \frac{1}{2}}{1-\left(\frac{1}{2}\right)^{2}}\right]+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{1}{\left(\frac{3}{4}\right)}+\tan ^{-1} \frac{1}{7} \\
& =\tan ^{-1} \frac{4}{3}+\tan ^{-1} \frac{1}{7}=\tan ^{-1}\left(\frac{\frac{4}{3}+\frac{1}{7}}{1-\frac{4}{3} \times \frac{1}{7}}\right) \\
& =\tan ^{-1}\left(\frac{\frac{28+3}{3 \times 7}}{\frac{3 \times 7-4}{3 \times 7}}\right)=\tan ^{-1} \frac{28+3}{21-4}=\tan ^{-1} \frac{31}{17}=\text { RHS }
\end{aligned}
$$

Write the following functions in the simplest form:
Question: 5
5. $\tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}, x \neq 0$

Answer

Given function $\tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{\mathrm{x}}$
Let $\mathrm{x}=\tan \theta$

$$
\begin{aligned}
& \therefore \tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}=\tan ^{-1} \frac{\sqrt{1+\tan ^{2} \theta}-1}{\tan \theta} \\
& =\tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta}\right)=\tan ^{-1}\left(\frac{1-\cos \theta}{\sin \theta}\right) \\
& =\tan ^{-1}\left(\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right)=\tan ^{-1}\left(\tan \frac{\theta}{2}\right) \\
& =\frac{\theta}{2}=\frac{1}{2} \tan ^{-1} x
\end{aligned}
$$

Question: 6

6. $\tan ^{-1} \frac{1}{\sqrt{x^{2}-1}},|x|>1$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-2-inverse-trigon ometric-functions/

ClndCareer

Answer

A

Question: 7

7. $\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right), 0<x<\pi$

Answer

The given function is $\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)$
Now,

$$
\begin{aligned}
& \tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)=\tan ^{-1}\left(\sqrt{\frac{2 \sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}}\right) \\
& =\tan ^{-1}\left(\sqrt{\tan ^{2} \frac{x}{2}}\right)==\tan ^{-1}\left(\tan \frac{x}{2}\right)=\frac{x}{2}
\end{aligned}
$$

Question: 8

8. $\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right), 0<x<\pi$

Answer

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-2-inverse-trigon ometric-functions/

ClndCareer

The given function is $\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right)$
Now,

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right)=\tan ^{-1}\left(\frac{1-\frac{\sin x}{\cos x}}{1+\frac{\sin x}{\cos x}}\right)=\tan ^{-1}\left(\frac{1-\tan x}{1+\tan x}\right) \\
& =\tan ^{-1}\left(\frac{1-\tan x}{1+1 \cdot \tan x}\right)=\tan ^{-1}\left(\frac{\tan \frac{\pi}{4}-\tan x}{1+\tan \frac{\pi}{4} \cdot \tan x}\right) \\
& =\tan ^{-1}\left[\tan \left(\frac{\pi}{4}-x\right)\right]=\frac{\pi}{4}-x
\end{aligned}
$$

Page No. 48

Question: 9

9. $\tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}},|x|<a$

Answer

The given function is $\tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}}$
Let $x=a \sin \theta$

$$
\begin{aligned}
& \therefore \tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}}=\tan ^{-1}\left(\frac{a \sin \theta}{\sqrt{a^{2}-a^{2} \sin ^{2} \theta}}\right) \\
& =\tan ^{-1}\left(\frac{a \sin \theta}{a \sqrt{1-\sin ^{2} \theta}}\right) \\
& =\tan ^{-1}\left(\frac{\mathrm{a} \sin \theta}{\mathrm{a} \sin \theta}\right)=\tan ^{-1}(\tan \theta) \\
& =\theta=\sin ^{-1} \frac{x}{a}
\end{aligned}
$$

Question: 10
10. $\tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}\right), a>0 ; \frac{-a}{\sqrt{3}}<x<\frac{a}{\sqrt{3}}$

Answer

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-2-inverse-trigon ometric-functions/

ClndCareer

The given function is $\tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}\right)$
Let $\mathrm{x}=\mathrm{a} \tan \theta$

$$
\begin{aligned}
& \therefore \tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}\right) \\
& =\tan ^{-1}\left(\frac{3 a^{2} \cdot a \tan \theta-a^{3} \tan ^{3} \theta}{a^{3}-3 a \cdot a^{2} \tan ^{2} \theta}\right) \\
& =\tan ^{-1}\left(\frac{3 a^{3} \tan \theta-a^{3} \tan ^{3} \theta}{a^{3}-3 a^{3} \tan ^{2} \theta}\right) \\
& =\tan ^{-1}\left(\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}\right) \\
& =\tan ^{-1}(\tan 3 \theta)=3 \theta=3 \tan ^{-1} \frac{x}{a}
\end{aligned}
$$

Find the values of each of the following:

Question: 11

11. $\tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right]$

Answer

The given function is $\tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right]$
$\therefore \tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right]$
$=\tan ^{-1}\left[2 \cos \left(2 \sin ^{-1}\left(\sin \frac{\pi}{6}\right)\right)\right]$
$=\tan ^{-1}\left[2 \cos \left(2 \times \frac{\pi}{6}\right)\right]$
$=\tan ^{-1}\left[2 \cos \left(\frac{\pi}{3}\right)\right]=\tan ^{-1}\left[2 \times \frac{1}{2}\right]$
$=\tan ^{-1}[1]=\frac{\pi}{4}$
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-2-inverse-trigon ometric-functions/

ClndCareer

Question: 12. $\cot \left(\tan ^{-1} a+\cot ^{-1} a\right)$

Answer

The given function is $\cot \left(\tan ^{-1} a+\cot ^{-1} a\right)$.
$\therefore \cot \left(\tan ^{-1} a+\cot ^{-1} a\right)$
$=\cot (\pi / 2)\left[\tan ^{-1} x+\cot ^{-1} x=\pi / 2\right]$
$=0$
Question: 13
13. $\tan \frac{1}{2}\left[\sin ^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}\right],|x|<1, y>0$ and $x y<1$

Answer

The given function is $\tan \frac{1}{2}\left[\sin ^{-1} \frac{2 x}{1+\mathrm{x}^{2}}+\cos ^{-1} \frac{1 \cdot \mathrm{y}^{2}}{1+\mathrm{y}^{2}}\right]$

$$
\begin{aligned}
& \therefore \tan \frac{1}{2}\left[\sin ^{-1} \frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}+\cos ^{-1} \frac{1 \cdot \mathrm{y}^{2}}{1+\mathrm{y}^{2}}\right] \\
& =\tan \frac{1}{2}\left[2 \tan ^{-1} \mathrm{x}+2 \tan ^{-1} \mathrm{y}\right] \\
& =\tan \frac{1}{2}\left[2\left(\tan ^{-1} x+\tan ^{-1} y\right)\right] \\
& =\tan \left[\tan ^{-1} x+\tan ^{-1} y\right] \\
& =\tan \left[\tan ^{-1} \frac{x+y}{1-x y}\right]=\frac{x+y}{1-x y}
\end{aligned}
$$

Formula used:

$$
2 \tan ^{-1} x=\sin ^{-1} \frac{2 x}{1+x^{2}}=\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}
$$

Question: 14
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-2-inverse-trigon ometric-functions/

ClndCareer

14. If $\sin \left(\sin ^{-1} \frac{1}{5}+\cos ^{-1} x\right)=1$, then find the value of x

Answer

$$
\begin{aligned}
& \text { Since, } \sin \left(\sin ^{-1} \frac{1}{5}+\cos ^{-1} x\right)=1 \\
& \therefore\left(\sin ^{-1} \frac{1}{5}+\cos ^{-1} x\right)=\sin ^{-1} 1 \\
& \Rightarrow\left(\sin ^{-1} \frac{1}{5}+\cos ^{-1} x\right)=\frac{\pi}{2}\left[\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}\right] \\
& \Rightarrow \sin ^{-1} \frac{1}{5}=\sin ^{-1} x \\
& \Rightarrow x=\frac{1}{5}
\end{aligned}
$$

Question: 15

15. If $\tan ^{-1} \frac{x-1}{x-2}+\tan ^{-1} \frac{x+1}{x+2}=\frac{\pi}{4}$, then find the value of x

Answer

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-2-inverse-trigon ometric-functions/

ClndCareer

Given that $\tan ^{-1} \frac{x-1}{x-2}+\tan ^{-1} \frac{x+1}{x+2}=\frac{\pi}{4}$

$$
\begin{aligned}
& \Rightarrow \tan ^{-1}\left(\frac{\frac{x-1}{x-2}+\frac{x+1}{x+2}}{1-\frac{x-1}{x-2} \times \frac{x+1}{x+2}}\right)=\frac{\pi}{4} \\
& {\left[\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\right]} \\
& \Rightarrow \frac{\frac{x-1}{x-2}+\frac{x+1}{x+2}}{1-\frac{x-1}{x-2} \times \frac{x+1}{x+2}}=\tan \frac{\pi}{4} \\
& \Rightarrow \frac{\left[\frac{(x-1)(x+2)+(x-2)(x+1)}{(x-2)(x+2)}\right]}{\left[\frac{(x-2)(x+2)-(x-1)(x+1)}{(x-2)(x+2)}=1\right.} \\
& \Rightarrow \frac{x^{2}+2 x-x-2+x^{2}+x-2 x-2}{x^{2}-4-\left(x^{2}-1\right)}=1 \\
& \Rightarrow \frac{2 x^{2}-4}{-3}=1 \\
& \Rightarrow 2 x^{2}-4=-3 \Rightarrow x^{2}=\frac{1}{2} \Rightarrow x= \pm \frac{1}{\sqrt{2}} .
\end{aligned}
$$

Question: 16

16. $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$

Answer

Given that $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$.
We know that $\sin ^{-1}(\sin x)=x$ if $\mathrm{x} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$,
which is the principal value branch of $\sin ^{-1} x$.

$$
\begin{aligned}
& =\sin ^{-1}\left(\sin \frac{\pi}{3}\right)=\frac{\pi}{3} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\
& \text { Hence, } \sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)=\frac{\pi}{3}
\end{aligned}
$$

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-2-inverse-trigon ometric-functions/

ClndCareer

Question: 17

17. $\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$

Answer

Given that $\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$
We know that $\tan ^{-1}(\tan x)$
$=x$ if $\mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, which is the principal value branch of $\tan ^{-1} x$.
$\therefore \tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)=\tan ^{-1}\left(\tan \left\{\pi-\frac{\pi}{4}\right\}\right)$
$=\tan ^{-1}\left(-\tan \frac{\pi}{4}\right)$
$=\tan ^{-1}\left(\tan \left\{-\frac{\pi}{4}\right\}\right)=-\frac{\pi}{4} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
Hence, $\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)=-\frac{\pi}{4}$

Question: 18

18. $\tan \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)$

Answer

$$
\left.\left.\begin{array}{l}
\text { Given that } \tan \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right) \\
\therefore \tan \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right) \\
=\tan \left(\tan ^{-1} \frac{3}{\sqrt{5^{2}-3^{2}}}+\tan ^{-1} \frac{2}{3}\right) \\
{\left[\sin ^{-1} \frac{a}{b}=\tan ^{-1} \frac{a}{\sqrt{b^{2}-a^{2}}} \text { and } \cot ^{-1} \frac{a}{b}=\tan ^{-1} \frac{b}{a}\right]} \\
=\tan \left(\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{2}{3}\right) \\
=\tan \left[\tan ^{-1}\left(\frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4} \times \frac{2}{3}}\right)\right] \\
=\tan \left[\operatorname { t a n } ^ { - 1 } \left(\frac{\frac{9+8}{4 \times 3}}{4 \times 3-3 \times 2}\right.\right. \\
4 \times 3
\end{array}\right)\right] \quad \begin{aligned}
=\tan \left(\tan ^{-1} \frac{17}{6}\right)=\frac{17}{6} \\
=\tan { }^{-1}\left(-\tan \frac{\pi}{4}\right) \\
=\tan { }^{-1}\left(\tan \left\{-\frac{\pi}{4}\right\}\right)=-\frac{\pi}{4} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\
\text { Hence, } \tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)=-\frac{\pi}{4}
\end{aligned}
$$

Question: 19

19. $\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)$ is equal to
(A) $\frac{7 \pi}{6}$
(B) $\frac{5 \pi}{6}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{6}$

Answer

A

The correct option is B.
Question: 20
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-2-inverse-trigon ometric-functions/
20. $\sin \left(\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right)$ is equal to
(A) $\frac{1}{2}$
(B) $\frac{1}{3}$
(C) $\frac{1}{4}$
(D) 1

Answer

Given that $\sin \left(\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right)$
range of the principal value branch of $\sin ^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\therefore \sin \left(\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right)$
$=\sin \left[\frac{\pi}{3}-\sin ^{-1}\left(-\sin \frac{\pi}{6}\right)\right]$
$=\sin \left[\frac{\pi}{3}-\sin ^{-1}\left\{\sin \left(-\frac{\pi}{6}\right)\right\}\right]$
$=\sin \left(\frac{\pi}{3}+\frac{\pi}{6}\right)=\sin \left(\frac{3 \pi}{6}\right)=\sin \frac{\pi}{2}=1$
Hence, $\sin \left(\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right)=1$
The correct option is D.

Question: 21

21. $\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})$ is equal to
(A) π
(B) $-\frac{\pi}{2}$
(C) 0
(D) $2 \sqrt{3}$

Answer

https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-2-inverse-trigon ometric-functions/

ClndCareer

Given that $\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})$
range of the principal value branch of $\tan ^{-1}$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\cot ^{-1}$ is $(0, \pi)$.

$$
\begin{aligned}
& =\tan ^{-1}\left(\tan \frac{\pi}{3}\right)-\cot ^{-1}\left(-\cot \frac{\pi}{6}\right) \\
& =\frac{\pi}{3}-\cot ^{-1}\left[\cot \left(\pi-\frac{\pi}{6}\right)\right] \\
& =\frac{\pi}{3}-\cot ^{-1}\left(\cot \frac{5 \pi}{6}\right) \\
& =\frac{\pi}{3}-\frac{5 \pi}{6}=\frac{2 \pi-5 \pi}{6} \\
& =-\frac{3 \pi}{6}=-\frac{\pi}{2}
\end{aligned}
$$

Hence, $\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})=-\frac{\pi}{2}$

The correct option is B.
Class 12: Maths Chapter 2 solutions. Complete Class 12 Maths Chapter 2 Notes.

ClindCareer

Chapterwise NCERT Solutions for Class 12 Maths :

- Chapter 1 - Relations and Functions
- Chapter 2 - Inverse Trigonometric Functions.
- Chapter 3 - Matrices
- Chapter 4 - Determinants.
- Chapter 5 - Continuity and Differentiability.0.0
- Chapter 6 - Application of Derivatives.
- Chapter 7 - Integrals.
- Chapter 8 - Application of Integrals.
- Chapter 9: Differential Equations
- Chapter 10: Vector Algebra
- Chapter 11: Three Dimensional Geometry
- Chapter 12: Linear Programming
- Chapter 13: Probability

ClndCareer

About NCERT

The National Council of Educational Research and Training is an autonomous organization of the Government of India which was established in 1961 as a literary, scientific, and charitable Society under the Societies Registration Act. The major objectives of NCERT and its constituent units are to: undertake, promote and coordinate research in areas related to school education; prepare and publish model textbooks, supplementary material, newsletters, journals and develop educational kits, multimedia digital materials, etc.Organise pre-service and in-service training of teachers; develop and disseminate innovative educational techniques and practices;collaborate and network with state educational departments, universities, NGOs and other educational institutions; act as a clearing house for ideas and information in matters related to school education; and act as a nodal agency for achieving the goals of Universalisation of Elementary Education.In addition to research, development, training, extension, publication and dissemination activities, NCERT is an implementation agency for bilateral cultural exchange programmes with other countries in the field of school education.Its headquarters are located at Sri Aurobindo Marg in New Delhi. Visit the Official NCERT website to learn more.
https://www.indcareer.com/schools/ncert-solutions-for-12th-class-maths-chapter-2-inverse-trigon ometric-functions/

