NCERT Solutions for Maths: Chapter 13 - Surface Areas and Volumes NCERTM

f indCareer

v indCareer
(\#) indCareer

NCERT Solutions for Maths:

Chapter 13 - Surface Areas and

Volumes

Class 10: Maths Chapter 13 solutions. Complete Class 10 Maths Chapter 13 Notes.

NCERT Solutions for Maths: Chapter 13 - Surface Areas and Volumes

NCERT 10th Maths Chapter 13, class 10 Maths Chapter 13 solutions
Page No: 244

Exercise 13.1

Unless stated otherwise, take $\boldsymbol{\pi}=22 / 7$.

1. 2 cubes each of volume $64 \mathrm{~cm}^{3}$ are joined end to end. Find the surface area of the resulting cuboid.

Answer

Volume of each cube $\left(a^{3}\right)=64 \mathrm{~cm}^{3}$
$\Rightarrow \mathrm{a}^{3}=64 \mathrm{~cm}^{3}$
$\Rightarrow \mathrm{a}=4 \mathrm{~cm}$
Side of the cube $=4 \mathrm{~cm}$
Length of the resulting cuboid $=4 \mathrm{~cm}$
Breadth of the resulting cuboid $=4 \mathrm{~cm}$
Height of the resulting cuboid $=8 \mathrm{~cm}$
\therefore Surface area of the cuboid $=2(\mathrm{lb}+\mathrm{bh}+\mathrm{lh})$
$=2(8 \times 4+4 \times 4+4 \times 8) \mathrm{cm}^{2}$
$=2(32+16+32) \mathrm{cm}^{2}$

ClindCareer

$=(2 \times 80) \mathrm{cm}^{2}=160 \mathrm{~cm}^{2}$
2. A vessel is in the form of a hollow hemisphere mounted by a hollow cylinder. The diameter of the hemisphere is 14 cm and the total height of the vessel is 13 cm . Find the inner surface area of the vessel.

Answer

Diameter of the hemisphere $=14 \mathrm{~cm}$
Radius of the hemisphere(r) $=7 \mathrm{~cm}$
Height of the cylinder(h) $=13-7=6 \mathrm{~cm}$
Also, radius of the hollow hemisphere $=7 \mathrm{~cm}$
Inner surface area of the vessel = CSA of the cylindrical part + CSA of hemispherical part
$=\left(2 \pi r h+2 \pi r^{2}\right) \mathrm{cm}^{2}=2 \pi r(h+r) \mathrm{cm}^{2}$
$=2 \times 22 / 7 \times 7(6+7) \mathrm{cm}^{2}=572 \mathrm{~cm}^{2}$
3. A toy is in the form of a cone of radius 3.5 cm mounted on a hemisphere of same radius. The total height of the toy is 15.5 cm . Find the total surface area of the toy.

Answer

https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/

Radius of the cone and the hemisphere(r) = $3.5=7 / 2 \mathrm{~cm}$
Total height of the toy $=15.5 \mathrm{~cm}$
Height of the cone $(\mathrm{h})=15.5-3.5=12 \mathrm{~cm}$

$$
\begin{aligned}
& \text { Slant height of the cone }(I)=\sqrt{h^{2}+r^{2}} \\
& \Rightarrow I=\sqrt{12^{2}+(3.5)^{2}} \\
& \Rightarrow I=\sqrt{12^{2}+(7 / 2)^{2}} \\
& \Rightarrow I=\sqrt{144+49 / 4}=\sqrt{(576+49) / 4}=\sqrt{625 / 4} \\
& \Rightarrow I=25 / 2
\end{aligned}
$$

Curved Surface Area of cone $=\pi r l=22 / 7 \times 7 / 2 \times 25 / 2$
$=275 / 2 \mathrm{~cm}^{2}$
Curved Surface Area of hemisphere $=2 \pi r^{2}$
$=2 \times 22 / 7 \times(7 / 2)^{2}$
$=77 \mathrm{~cm}^{2}$
Total surface area of the toy $=$ CSA of cone + CSA of hemisphere
$=(275 / 2+77) \mathrm{cm}^{2}$
$=(275+154) / 2 \mathrm{~cm}^{2}$
https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/

ClndCareer

$=429 / 2 \mathrm{~cm}^{2}=214.5 \mathrm{~cm}^{2}$
The total surface area of the toy is $214.5 \mathrm{~cm}^{2}$
NCERT 10th Maths Chapter 13, class 10 Maths Chapter 13 solutions
4. A cubical block of side 7 cm is surmounted by a hemisphere. What is the greatest diameter the hemisphere can have? Find the surface area of the solid.

Answer

Each side of cube $=7 \mathrm{~cm}$
\therefore Radius of the hemisphere $=7 / 2 \mathrm{~cm}$
Total surface area of solid = Surface area of cubical block + CSA of hemisphere - Area of base of hemisphere

TSA of solid $=6 \times(\text { side })^{2}+2 \pi r^{2}-\pi r^{2}$
$=6 \times(\text { side })^{2}+\pi r^{2}$
$=6 \times(7)^{2}+(22 / 7 \times 7 / 2 \times 7 / 2)$
$=(6 \times 49)+(77 / 2)$
$=294+38.5=332.5 \mathrm{~cm}^{2}$
https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/

The surface area of the solid is $332.5 \mathrm{~cm}^{2}$
5. A hemispherical depression is cut out from one face of a cubical wooden block such that the diameter I of the hemisphere is equal to the edge of the cube. Determine the surface area of the remaining solid.

Answer

Diameter of hemisphere $=$ Edge of cube $=1$
Radius of hemisphere $=1 / 2$
Total surface area of solid = Surface area of cube + CSA of hemisphere Area of base of hemisphere

TSA of remaining solid $=6(\text { edge })^{2}+2 \pi r^{2}-\pi r^{2}$
$=61^{2}+\pi r^{2}$
$=61^{2}+\pi(1 / 2)^{2}$
$=61^{2}+\left.\pi\right|^{2} / 4$
$=I^{2} / 4(24+\pi)$ sq units
NCERT Solutions for Maths Chapter 13
https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/
6. A medicine capsule is in the shape of a cylinder with two hemispheres stuck to each of its ends. The length of the entire capsule is 14 mm and the diameter of the capsule is 5 mm . Find its surface area.

Answer

Two hemisphere and one cylinder are given in the figure.
Diameter of the capsule $=5 \mathrm{~mm}$
\therefore Radius $=5 / 2=2.5 \mathrm{~mm}$
Length of the capsule $=14 \mathrm{~mm}$
\therefore Length of the cylinder $=14-(2.5+2.5)=9 \mathrm{~mm}$
Surface area of a hemisphere $=2 \pi r^{2}=2 \times 22 / 7 \times 2.5 \times 2.5$
$=275 / 7 \mathrm{~mm}^{2}$
Surface area of the cylinder $=2 \pi r h$
$=2 \times 22 / 7 \times 2.5 \times 9$
$=22 / 7 \times 45$
$990 / 7 \mathrm{~mm}^{2}$
\therefore Required surface area of medicine capsule
$=2 \times$ Surface area of hemisphere + Surface area of cylinder
$=(2 \times 275 / 7) \times 990 / 7$
$=550 / 7+990 / 7$
$=1540 / 7=220 \mathrm{~mm}^{2}$
NCERT Solutions for Maths Chapter 13
7. A tent is in the shape of a cylinder surmounted by a conical top. If the height and diameter of the cylindrical part are 2.1 m and 4 m respectively, and the slant height of the top is 2.8 m , find the area of the canvas used for making the tent. Also, find the cost of the canvas of the tent at the rate of Rs 500 per m^{2}. (Note that the base of the tent will not be covered with canvas.)

Answer

Tent is combination of cylinder and cone.

https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/

ClndCareer

Diameter $=4 \mathrm{~m}$
Slant height of the cone $(\mathrm{I})=2.8 \mathrm{~m}$
Radius of the cone (r) = Radius of cylinder $=4 / 2=2 \mathrm{~m}$
Height of the cylinder $(\mathrm{h})=2.1 \mathrm{~m}$
\therefore Required surface area of tent $=$ Surface area of cone+Surface area of cylinder

$$
\begin{aligned}
& =\pi r l+2 \pi r h \\
& =\pi r(l+2 \mathrm{~h}) \\
& =22 / 7 \times 2(2.8+2 \times 2.1) \\
& =44 / 7(2.8+4.2) \\
& =44 / 7 \times 7=44 \mathrm{~m}^{2}
\end{aligned}
$$

Cost of the canvas of the tent at the rate of $₹ 500$ per m^{2}
$=$ Surface area \times cost per m^{2}
$=44 \times 500=₹ 22000$
8. From a solid cylinder whose height is 2.4 cm and diameter 1.4 cm , a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of the remaining solid to the nearest $\mathbf{c m}^{\mathbf{2}}$.

Answer

Diameter of cylinder $=$ diameter of conical cavity $=1.4 \mathrm{~cm}$
\therefore Radius of cylinder $=$ Radius of conical cavity $=1.4 / 2=0.7$
Height of cylinder $=$ Height of conical cavity $=2.4 \mathrm{~cm}$
\therefore Slant height of the conical cavity $(l)=\sqrt{h^{2}+r^{2}}$

$$
\begin{aligned}
& =\sqrt{(2.4)^{2}+(0.7)^{2}} \\
& =\sqrt{5.76+0.49}=\sqrt{6.25} \\
& =2.5 \mathrm{~cm}
\end{aligned}
$$

TSA of remaining solid = Surface area of conical cavity+TSA of cylinder
$=\pi r l+\left(2 \pi r h+\pi r^{2}\right)$
$=\pi r(1+2 h+r)$
$=22 / 7 \times 0.7(2.5+4.8+0.7)$
$=2.2 \times 8=17.6 \mathrm{~cm}^{2}$
NCERT Solutions for Maths Chapter 13
9. A wooden article was made by scooping out a hemisphere from each end of a solid cylinder, as shown in figure. If the height of the cylinder is 10 cm and its base is of radius 3.5 cm , find the total surface area of the article.

Answer

Given,
Height of the cylinder, $\mathrm{h}=10 \mathrm{~cm}$ and radius of base of cylinder = Radius of hemisphere $(r)=3.5 \mathrm{~cm}$

Now, required total surface area of the article $=2 \times$ Surface area of hemisphere + Lateral surface area of cylinder

$$
\begin{aligned}
& =2 \times\left(2 \pi r^{2}\right)+2 \pi r h \\
& =2 \pi r(2 r+h)=2 \times \frac{22}{7} \times 3.5 \times(2 \times 3.5+10) \\
& =\frac{22}{7} \times 7 \times(7+10)=22 \times 17=374 \mathrm{~cm}^{2}
\end{aligned}
$$

Exercise 13.2

1. A solid is in the shape of a cone standing on a hemisphere with both their radii being equal to 1 cm and the height of the cone is equal to its radius. Find the volume of the solid in terms of π.

Answer

Given, solid is a combination of a cone and a hemisphere.

Also, we have radius of the cone $(r)=$ Radius of the hemisphere $=1 \mathrm{~cm}$ and height of the cone $(\mathrm{h})=1 \mathrm{~cm}$
\therefore Required volume of the solid $=$ Volume of the cone + Volume of the hemisphere

$$
\begin{aligned}
& =\frac{1}{3} \pi r^{2} h+\frac{2}{3} \pi r^{3} \\
& =\frac{1}{3} \pi(1)^{2}(1)+\frac{2}{3} \pi(1)^{3} \\
& =\frac{\pi}{3}+\frac{2}{3} \pi \\
& =\frac{(\pi+2 \pi)}{3} \\
& =\frac{3 \pi}{3}=\pi \mathrm{cm}^{3}
\end{aligned}
$$

2. Rachel, an engineering, student was asked to make a model shaped like a cylinder with two cones attached at its two ends by using a thin aluminium sheet. The diameter of the model is $3 \mathbf{c m}$ and its length is 12 cm . If each cone has a height of $\mathbf{2 c m}$, find the volume of air contained in the model that Rachel mode. (Assume the outer and inner dimensions of the model to be nearly the same.)

Answer

CllndCareer

Given, model is a combination of a cylinder and two cones. Also, we have, diameter of the model, $B C=E D=3 \mathrm{~cm}$.

$$
\therefore \quad r=\frac{3}{2}=1.5 \mathrm{~cm}
$$

Height of cone, $h_{1}=2 \mathrm{~cm}$ and length of the model, $A F=12 \mathrm{~cm}$

Now, volume of the air inside the model

$$
\begin{align*}
& =\text { Volume of air inside (cone }+ \text { cylinder }+ \text { cone }) \\
& =\left(\frac{1}{3} \pi r^{2} h_{1}+\pi r^{2} h_{2}+\frac{1}{3} \pi r^{2} h_{1}\right) \\
& =\frac{1}{3} \pi r^{2}\left(h_{1}+3 h_{2}+h_{4}\right) \tag{i}\\
& =\frac{1}{3} \times \frac{22}{7} \times 1.5 \times 1.5(2+3 \times 8+2) \\
& =\frac{22}{7} \times \frac{2.25}{3} \times(2+24+2) \\
& =\frac{22}{7} \times 0.75 \times 28 \\
& =22 \times 3 \\
& =66 \mathrm{~cm}^{3}
\end{align*}
$$

3. A gulab jamun, contains sugar syrup upto about 30% of its volume.

 Find approximately how much syrup would be found in $\mathbf{4 5}$ gulabjamuns, each shaped like a cylinder with two hemispherical ends with length 5 cm and diameter 2.8 cm (see figure).

Answer

Let r be the radius of the hemisphere and cylinder both. h 1 be the height of the hemisphere which is equal to its radius and h 2 be the height of the cylinder.

Given, length $=5 \mathrm{~cm}$, diameter $=2.8 \mathrm{~cm}$

$\therefore \quad$ Volume of one gluab jamun $=2 \times$ (Volume of hemisphere)

+ Volume of cylinder

$$
=2 \times\left\{\frac{2}{3} \pi r^{3}\right\}+\pi r^{2} h_{2}
$$

$$
=\frac{4}{3} \pi r^{3}+\pi r^{2} h_{2}
$$

$$
=\pi r^{2}\left\{\frac{4 \pi}{3}+h_{2}\right\}
$$

$$
=\frac{22}{7} \times 1.4 \times 1.4\left\{\frac{4}{3} \times 1.4+2.2\right\}
$$

$$
=\frac{22}{7} \times \frac{14}{10} \times \frac{14}{10}\left\{\frac{4}{3} \times \frac{14}{10}+\frac{22}{10}\right\}
$$

$$
=22 \times \frac{1}{5} \times \frac{7}{5}\left\{\frac{28}{15}+\frac{11}{5}\right\}
$$

$$
=\frac{154}{25} \times \frac{61}{15}=\frac{9394}{375} \mathrm{~cm}^{3}
$$

$\therefore \quad$ Volume of 45 gulab jamuns $=45 \times \frac{9394}{375}=\frac{1}{75} \times 84546$

$$
=1127.28 \mathrm{~cm}^{3}
$$

\because One gulab jamun, contains sugar syrup upto about 30% of its volume
ie., $\left(\frac{9394}{375}\right) \times 30 \%$
Hence, quantity of syrup found in 45 gulab jamuns

$$
\begin{aligned}
& =1127.28 \times \frac{30}{100} \\
& =1127.28 \times \frac{3}{10}=338.184 \\
& =338 \mathrm{~cm}^{3}
\end{aligned}
$$

NCERT Solutions for Maths Chapter 13

4. A pen stand made of wood is in the shape of a cuboid with four conical depressions to hold pens. The dimensions of the cuboid are 15 cm by 10 cm by 3.5 cm . The radius of each of the depressions is

0.5 cm and the depth is 1.4 cm . Find the volume of wood in the entire stand (see figure).

Answer

Given, length of cuboid $(\mathrm{I})=15 \mathrm{~cm}$
Breadth of cuboid $(b)=10 \mathrm{~cm}$
and height of cuboid $(\mathrm{h})=3.5 \mathrm{~cm}$
\therefore Volume of cuboid $=1 \times b \times h=15 \times 10 \times 3.5=525^{3}$

ClndCareer

Also, given that
Radius of conical depression $r=0.5 \mathrm{~cm}$
and height of conical depression, $h=1.4$
\therefore Volume of a conical depression $=\frac{1}{3} \pi \times r^{2} \times h$

$$
\begin{aligned}
& =\frac{1}{3} \times \frac{22}{7} \times 0.5 \times 0.5 \times 1.4 \\
& =\frac{22}{3} \times \frac{1}{2} \times \frac{1}{2} \times \frac{2}{10} \\
& =\frac{11}{30} \mathrm{~cm}^{3}
\end{aligned}
$$

\therefore Volume of 4 conical depressions $=4 \times$ Volume of a conical depression

$$
\begin{aligned}
& =4 \times \frac{11}{30} \\
& =\frac{22}{15} \mathrm{~cm}^{3}
\end{aligned}
$$

Hence, the volume of wood in the entire wood
= Volume of cuboid - Volume of 4 conical depressions

$$
\begin{aligned}
& =525-\frac{22}{15} \\
& =525-1.46 \\
& =523.54 \mathrm{~cm}^{3}
\end{aligned}
$$

5. A vessel is in the form of an inverted cone. Its height is $\mathbf{8 ~ c m}$ and the radius of its top, which is open, is 5 cm . It is filled with water upto the brim. When lead shots, each of which is a sphere of radius 0.5 cm are dropped into the vessel,one-fourth of the water flows out. Find the number of lead shots dropped in the vessel.
https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/

ClindCareer

Answer

Height of the vessel $(h)=8 \mathrm{~cm}$
and radius of the vessel $(r)=5 \mathrm{~cm}$
\therefore Volume of water filled in a vessel

$$
\begin{aligned}
& =\frac{1}{3} \times \pi \times r \times r \times h \\
& =\frac{1}{3} \times \frac{22}{7} \times 5 \times 5 \times 8=\frac{4400}{21} \mathrm{~cm}^{3}
\end{aligned}
$$

Also, given that,
the radius of a lead shots (sphere) $=0.5 \mathrm{~cm}$
$\therefore \quad$ Volume of a lead shots (sphere) $=\frac{4}{3} \times \pi \times r \times r \times r$

$$
=\frac{4}{3} \times \frac{22}{7} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{11}{21} \mathrm{~cm}^{3}
$$

Let ' n ' be the number of lead shots dropped in the vessel, then according to question.
$n \times$ Volume of a lead shot (sphere)

$$
=\frac{1}{4} \times \text { Volume of water filled in a vessel }
$$

(\because Each lead shot flow out the water from the vessel equal to its volume)

$$
\begin{array}{lc}
\Rightarrow & n \times \frac{11}{21}=\frac{4400}{21} \times \frac{1}{4} \\
\Rightarrow & n \times 11=1100 \\
\Rightarrow & n=100
\end{array}
$$

\therefore Required number of lead shots $(n)=100$.

6. A solid iron pole consists of a cylinder of height 220 cm and base diameter 24 cm , which is surmounted by another cylinder of height 60 cm and radius 8 cm . Find the mass of the pole, given that $1 \mathrm{~cm}^{3}$ of iron has approximately 8 g mass. (Use $\pi=3.14$)

https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/

Answer

Height of the first cylinder, $h_{1}=220 \mathrm{~cm}$
Radius of the first cylinder, $r_{1}=\frac{24}{2}=12 \mathrm{~cm}$
Height of the second cylinder, $h_{2}=60 \mathrm{~cm}$
and radius of the second cylinder, $r_{2}=8 \mathrm{~cm}$
\therefore Volume of iron pole $=$ Volume of first cylinder

+ Volume of second cylinder

$$
\begin{aligned}
& =\pi r_{1}^{2} h_{1}+\pi r_{2}^{2} h_{2} \\
& =\pi\left(r_{1}^{2} h_{1}+r_{2}^{2} h_{2}\right) \\
& =3.14(144 \times 220+64 \times 60\} \\
& =3.14(31680+3840)=3.14 \times 35520 \mathrm{~cm}^{3}
\end{aligned}
$$

Also, given that,
$1 \mathrm{~cm}^{3}$ of iron has approximately mass $=8 \mathrm{~g}=\frac{8}{1000} \mathrm{~kg}$
$\therefore(3.14 \times 35520) \mathrm{cm}^{3}$ of iron has approximately mass

$$
\begin{aligned}
& =3.14 \times 35520 \times \frac{8}{1000} \\
& =3.14 \times 284.160 \\
& =892.26 \mathrm{~kg}
\end{aligned}
$$

NCERT Solutions for Maths Chapter 13

https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/
7. A solid consisting of a right circular cone of height 120 cm and radius 60 cm standing on a hemisphere of radius 60 cm is placed upright in a right circular cylinder full of water such that it touches the bottom. Find the volume of water left in the cylinder, if the radius of the cylinder is $\mathbf{6 0} \mathbf{~ c m}$ and its height is 180 cm .

Answer

Height of the cylinder $(h)=180 \mathrm{~cm}=1.8 \mathrm{~m}$
$\left(\because 1 \mathrm{~m}=100 \mathrm{~cm} \Rightarrow 1 \mathrm{~cm}=\frac{1}{100} \mathrm{~m}\right)$
and radius of the cylinder $(r)=60 \mathrm{~cm}=0.6 \mathrm{~m}$
\therefore Volume of water filled in a right circular cylinder

$$
\begin{aligned}
& =\pi r^{2} h \\
& =\frac{22}{7} \times 0.6 \times 0.6 \times 1.8 \\
& =\frac{14.256}{7} \mathrm{~m}^{3}
\end{aligned}
$$

Also, given solid is a combination of a cone and a hemisphere.
Height of the cone $\left(h_{1}\right)=120 \mathrm{~cm}=1.2 \mathrm{~m}$
Radius of the cone $\left(r_{r}\right)=60 \mathrm{~cm}=0.6 \mathrm{~m}$ and height/radius of the hemisphere $\left(\delta_{2}\right)=60 \mathrm{~cm}=0.6 \mathrm{~m}$
$\therefore \quad$ Volume of the solid $=$ Volume of the cone + Volume of the hemisphere

$$
\begin{aligned}
& =\frac{1}{3} \times \pi r_{1}^{2} h_{1}+\frac{2}{3} \pi r_{2}^{3} \\
& =\frac{1}{3} \times \frac{22}{7} \times(0.6)^{2} \times(1.2)+\frac{2}{3} \times \frac{22}{7} \times(0.6)^{3} \\
& =\frac{22}{21} \times(0.6)^{2}(1.2+2 \times 0.6\} \\
& =\frac{22}{21} \times 0.36(1.2+1.2) \\
& =\frac{22}{21} \times 0.36 \times 2.4=\frac{19.008}{21} \mathrm{~m}^{3}=\frac{6.336}{7} \mathrm{~m}^{3}
\end{aligned}
$$

Hence, the volume of water left in the cylinder
$=$ Volume of water filled in a right circular cylinder - Volume of the solid
$=\frac{14.256}{7}-\frac{6.336}{7}=\frac{7.92}{7}=1.131428 \mathrm{~m}^{3} \approx 1.131 \mathrm{~m}^{3}$
8. A spherical glass vessel has a cylindrical neck 8 cm long, 2 cm in diameter; the diameter of the spherical part is 8.5 cm . By measuring the amount of water it holds, a child finds its volume to be $345 \mathrm{~cm}^{3}$. Check whether she is correct, taking the above as the inside measurements and $\pi=3.14$.
https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/

ClndCareer

Answer

She is not correct.

Given, spherical glass vessel is a combination of sphere as its base and a cylinder as its neck.
Also, we have height of the cylinder $\left(h_{1}\right)=8 \mathrm{~cm}$
Radius of the cylinder $\left(r_{1}\right)=\frac{2}{2}=1 \mathrm{~cm}$
and radius of the sphere $\left(r_{2}\right)=\frac{8.5}{2} \mathrm{~cm}$
\therefore The volume of water filled in a spherical glass vessel

$$
\begin{aligned}
& =\text { Volume of cylinder }+ \text { Volume of sphere } \\
& =\pi r_{1}^{2} h_{1}+\frac{4}{3} \pi r_{2}^{3} \\
& =3.14 \times 1 \times 1 \times 8+\frac{4}{3} \times 3.14 \times \frac{8.5}{2} \times \frac{8.5}{2} \times \frac{8.5}{2} \\
& =25.12+\frac{1928.3525}{6} \\
& =25.12+321.39 \\
& =346.51
\end{aligned}
$$

So, the correct answer is $346.51 \mathrm{~cm}^{3}$.

Exercise 13.3

https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/

ClindCareer

1. A metallic sphere of radius 4.2 cm is melted and recast into the shape of a cylinder of radius $\mathbf{6 \mathrm { cm }}$. Find the height of the cylinder.

Answer

Given, the radius of the sphere $(r)=4.2 \mathrm{~cm}$
Radius of the cylinder (r1) $=6 \mathrm{~cm}$

Then, the volume of the sphere $=\frac{4}{3} \times \pi r^{3}=\frac{4}{3} \times \frac{22}{7} \times 4.2 \times 4.2 \times 4.2$

$$
\begin{aligned}
& =4 \times 22 \times 1.4 \times 0.6 \times 4.2 \\
& =310.464 \mathrm{~cm}^{3}
\end{aligned}
$$

Let h be the height of the cylinder, then
its volume $=\pi r_{1}^{2} h=\frac{22}{7} \times 6 \times 6 \times h$
Now, according to the question,

> Volume of the sphere = Volume of the cylinder

$$
\begin{array}{ll}
\Rightarrow & 310.464=\frac{22}{7} \times 6 \times 6 \times h \\
\Rightarrow & h=\frac{310.464 \times 7}{22 \times 6 \times 6}=\frac{2173.248}{792} \\
\Rightarrow & h=2.744 \mathrm{~cm}
\end{array}
$$

2. Metallic spheres of radii $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm , respectively, are melted to form a single solid sphere. Find the radius of the resulting sphere.

Answer

Let $\mathrm{r} 1, \mathrm{r} 2$ and r 3 be the radius of given three spheres and R be the radius of a single solid sphere.

Given, $\mathrm{r} 1=6 \mathrm{~cm}, \mathrm{r} 2=8 \mathrm{~cm}$ and $\mathrm{r} 3=10 \mathrm{~cm}$

ClindCareer

> Volume of first metallic sphere $\left(V_{1}\right)=\frac{4}{3} \pi r_{1}^{3}=\frac{4}{3} \pi(\sigma)^{3}=\frac{864}{3} \pi \mathrm{~cm}^{3}$
> Volume of second metallic sphere $\left(V_{2}\right)=\frac{4}{3} \pi r_{2}^{3}=\frac{4}{3} \pi(8)^{3}=\frac{2048}{3} \pi \mathrm{~cm}^{3}$
> Volume of third metallic sphere $\left(V_{3}\right)=\frac{4}{3} \pi r_{3}^{3}=\frac{4}{3} \pi(10)^{3}=\frac{4000}{3} \pi \mathrm{~cm}^{3}$
> and the volume of a single solid sphere $(M)=\frac{4}{3} \pi R^{3}$
> Now, according to question,
> Volume of three metallic sphere $=$ Volume of a single solid sphere
> $\Rightarrow \quad V_{1}+V_{2}+V_{3}=V$
> $\Rightarrow \quad \frac{864}{3} \pi+\frac{2048}{3} \pi+\frac{4000}{3} \pi=\frac{4}{3} \pi R^{3}$
> $\Rightarrow \quad \frac{6912}{3}=\frac{4}{3} R^{3}$
> $\Rightarrow \quad R^{3}=1728=(12)^{3}$
> $\Rightarrow \quad R=12 \mathrm{~cm}$

3. A 20 m deep well with diameter 7 m is dug and the earth from digging is evenly spread out to form a platform 22 m by 14 m . Find the height of the platform.

Answer

Given, the height of deep well which form a cylinder (h1) $=20 \mathrm{~m}$

Radius of deep well $\left(r_{1}\right)=\frac{7}{2} m$
Length of the platiorm, $l=22 \mathrm{~m}$
and breadth of the platform $b=14 \mathrm{~m}$
Let height of the platform $=h_{2}$
Now, according to question,
Volume of deep well (cylinder) = Volume of platform (cuboid)
$\Rightarrow \quad \pi r_{1}^{2} h_{1}=l \times b \times h_{2}$
$\Rightarrow \quad \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 20=22 \times 14 \times h_{2}$
$\Rightarrow \quad \frac{11 \times 7}{2} \times 20=22 \times 14 \times h_{2}$
$\Rightarrow \quad h_{2}=\frac{11 \times 7 \times 20}{2 \times 22 \times 14}=\frac{5}{2}$
\therefore Height of the platform $\left(h_{2}\right)=2.5 \mathrm{~m}$.
4. A well of diameter 3 m is dug 14 m deep. The earth taken out of it has been spread evenly all around it in the shape of a circular ring of width 4 m to form an embankment. Find the height of the embankment.

Answer

Given, the height of deep well which form a cylinder (h1) $=14 \mathrm{~m}$

ClndCareer

and radius of deep well $\left(r_{1}\right)=\frac{3}{2} m$
Let the width and height of the embankment form a circular ring are d and h_{2}.
Here;

$$
d=4 \mathrm{~cm}
$$

(Given)
Now, the volume of deep well (cylinder) $=\pi r_{1}^{2} h_{1}=\frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times 14=99 \mathrm{~m}^{3}$
Here, we observe that the embankment form a hollow cylinder. So, for finding the volume of embankment, we apply the concept of hollow cylinder.
$\therefore \quad$ Volume of hollow cylinder (embankment) $=\pi\left(r_{1}+d\right)^{2} \cdot h_{2}-\pi r_{1}^{2} h_{2}$

$$
\begin{aligned}
& =\pi\left(\frac{3}{2}+4\right)^{2} \times h_{2}-\pi\left(\frac{3}{2}\right)^{2} h_{2} \\
& =\pi\left[\left(\frac{11}{2}\right)^{2} h_{2}-\frac{9}{2} h_{2}\right]
\end{aligned}
$$

Now, according to question,
Volume of deep well (cylinder) = Volume of embankment (hollow cylinder)

$$
\begin{array}{ll}
\Rightarrow & 99=\pi\left[\left(\frac{11}{2}\right)^{2} \times h_{2}-\frac{9}{4} h_{2}\right] \\
\Rightarrow & \frac{7 \times 99}{22}=\frac{121}{4} \times h_{2}-\frac{9}{4} h_{2}=\frac{112 h_{2}}{4} \\
\Rightarrow & h_{2}=\frac{7 \times 99 \times 4}{22 \times 112}=\frac{9}{8}=1.125 \mathrm{~m}
\end{array}
$$

\therefore Height of the embankment is 1.125 cm
NCERT 10th Maths Chapter 13, class 10 Maths Chapter 13 solutions

5. A container shaped like a right circular cylinder having diameter 12 cm and height 15 cm is full of ice cream. The ice cream is to be filled into cones of height 12 cm and diameter $\mathbf{6 \mathrm { cm }}$, having a hemispherical

https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/

ClindCareer

shape on the top. Find the number of such cones which can be filled with ice cream.

Answer

Let the height and radius of ice cream container (cylinder) be h 1 and r 1 .

Given,

$$
h_{1}=15 \mathrm{~cm} \text { and } r_{1}=6 \mathrm{~cm}
$$

\therefore The volume of ice cream container (cylinder) $=\pi r_{1}^{2} h_{1}=\frac{22}{7} \times 6 \times 6 \times 15$

$$
=\frac{11880}{7} \mathrm{~cm}^{3}
$$

Now, the cone full with ice-cream having top surface just like a hemisphere.
Also, we have.
Height of the cone, $h_{2}=12 \mathrm{~cm}$
Diameter of the cone, $r_{1}=6 \mathrm{~cm}$
\therefore Radius of the cone $r_{2}=3 \mathrm{~cm}=$ Radius of the hemisphere
:The volume of cone full with ice cream

$$
\begin{aligned}
& =\text { Volume of cone }+ \text { Volume of hemisphere (upper surface level) } \\
& =\frac{1}{3} \pi r_{2}^{2} h_{2}+\frac{2}{3} \pi r_{2}^{3}=\frac{1}{3} \pi\left(r_{2}^{2} h_{2}+2 r_{2}^{3}\right) \\
& =\frac{1}{3} \times \frac{22}{7}\left[(3)^{2} \times 12+2(3)^{3}\right] \\
& =\frac{22}{3 \times 7} \times 9 \times(12+6) \\
& =\frac{22 \times 3 \times 18}{7}=\frac{1188}{7} \mathrm{~cm}^{3}
\end{aligned}
$$

Let ' n ' be number of cones full with ice cream, then
The volume of ice cream container $=n \times$ volume of one cone full with ice cream

$$
\Rightarrow \quad \frac{11880}{7}=n \times \frac{1188}{7} \Rightarrow n=10
$$

Hence, the number of such cones is 10 .
https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/
6. How many silver coins, 1.75 cm in diameter and of thickness 2 mm , must be melted to form a cuboid of dimensions 5.51035 Fm cm cm \times ?

Answer
We know that, every coin has a shape of cylinder. Let radius and height of the coin are r 1 and h 1 respectively.

ClndCareer

Given,

$$
h_{1}=15 \mathrm{~cm} \text { and } r_{1}=6 \mathrm{~cm}
$$

\therefore The volume of ice cream container (cylinder) $=\pi r_{1}^{2} h_{1}=\frac{22}{7} \times 6 \times 6 \times 15$

$$
=\frac{11880}{7} \mathrm{~cm}^{3}
$$

Now, the cone full with ice-cream having top surface just like a hemisphere.
Also, we have.
Height of the cone, $h_{2}=12 \mathrm{~cm}$
Diameter of the cone, $r_{1}=6 \mathrm{~cm}$
\therefore Radius of the cone $r_{2}=3 \mathrm{~cm}=$ Radius of the hemisphere
:The volume of cone full with ice cream
$=$ Volume of cone + Volume of hemisphere (upper surface level)

$$
\begin{aligned}
& =\frac{1}{3} \pi r_{2}^{2} h_{2}+\frac{2}{3} \pi r_{2}^{3}=\frac{1}{3} \pi\left(r_{2}^{2} h_{2}+2 r_{2}^{3}\right) \\
& =\frac{1}{3} \times \frac{22}{7}\left[(3)^{2} \times 12+2(3)^{3}\right] \\
& =\frac{22}{3 \times 7} \times 9 \times(12+6) \\
& =\frac{22 \times 3 \times 18}{7}=\frac{1188}{7} \mathrm{~cm}^{3}
\end{aligned}
$$

Let ' n ' be number of cones full with ice cream, then
The volume of ice cream container $=n \times$ volume of one cone full with ice cream
$\Rightarrow \quad \frac{11880}{7}=n \times \frac{1188}{7} \Rightarrow n=10$
Hence, the number of such cones is 10 .
NCERT 10th Maths Chapter 13, class 10 Maths Chapter 13 solutions

7. A cylindrical bucket, 32 cm high and with radius of base 18 cm , is filled with sand. This bucket is emptied on the ground and a conical heap of sand is formed. If the height of the conical heap is $\mathbf{2 4} \mathbf{~ c m}$, find the radius and slant height of the heap.

https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/

ClndCareer

Answer

Let the radius and slant height of the heap of sand are r and I.
Given, the height of the heap of sand $h=24 \mathrm{~cm}$.

\therefore Volume of the heap of sand $=\frac{1}{3} \pi r^{2}(24)=8 \pi r^{2}$
Also, given the height and radius of cylindrical bucket are 32 cm and 18 cm ,
respectively.
\therefore Volume of cylindrical bucket $=\pi$ (Radius) $)^{2} \times$ Height $)=\pi(18)^{2} \times 32$
Now, according to question;
Volume of the heap of sand $=$ Volume of the cylindrical bucket
$\Rightarrow \quad 8 \pi r^{2}=\pi \times 18 \times 18 \times 32$
$\Rightarrow \quad r^{2}=18 \times 18 \times 4 \Rightarrow r=36 \mathrm{~cm}$
Now, the slant height of the conical heap of sand

$$
\begin{aligned}
& =\sqrt{h^{2}+r^{2}}=\sqrt{(24)^{2}+(36)^{2}} \\
& =\sqrt{576+1296}=\sqrt{1872} \\
& I=\sqrt{144 \times 13}=12 \sqrt{13} \mathrm{~cm}
\end{aligned}
$$

8. Water in a canal, 6 m wide and 1.5 m deep is flowing with a speed of $10 \mathrm{kmh}^{-1}$. How much area will it irrigate in 30 minutes, if 8 cm of standing water is needed?

Answer

Given, speed of flow of water $(\mathrm{I})=10 \mathrm{kmh}-1=10 \times 1000 \mathrm{mh}^{-1}$
Area of canal $=6 \times 1.5=9 \mathrm{~m}^{2}$
https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/

ClndCareer

Volume of water flowing in $1 \mathrm{~h}=10 \times 1000 \times 9 \mathrm{~m}^{3}$
\therefore Volume of water flowing in $1 / 2 \mathrm{~h}=\frac{10 \times 1000 \times 9}{2}=45000 \mathrm{~m}^{2}$
\therefore Required area for covering 8 cm height of standing water

$$
=\frac{45000}{8} \times 100=562500 \mathrm{~m}^{2}=\frac{562500}{10000} \text { hectares }=56.25 \text { hectares }
$$

9. A farmer connects a pipe of internal diameter 20 cm from a canal into a cylindrical tank in her field, which is 10 m in diameter and $\mathbf{2 ~ m}$ deep. If water flows through the pipe at the rate of $3 \mathbf{~ k m h}^{-1}$, in how much time will the tank be filled?

Answer

Given, speed of flow of water $=3 \mathrm{kmh}^{-1}=3 \times 1000 \mathrm{mh}^{-1}$
\therefore Length of water in $1 \mathrm{~h}=3000 \mathrm{~m}$

$$
\begin{aligned}
& \text { Now, area of face of pipe which form a circle }=\pi\left(\frac{20}{2}\right)^{2} \quad\left(\because A=\pi r^{2}\right) \\
& =100 \pi \mathrm{~cm}^{2}=\frac{\pi}{100} \mathrm{~m}^{2}
\end{aligned} \begin{aligned}
& \therefore \quad \text { Volume of cylindrical tank }=\pi \times\left(\frac{10}{2}\right)^{2} \times 2=50 \pi \mathrm{~m}^{3} \quad\left(\because V=\pi r^{2} h\right) \\
& \begin{aligned}
\text { Required time } & =\frac{\text { Volume of cylindrical tank }}{\text { Area of face of pipe } \times \text { Length of water }} \\
& =\frac{50 \pi}{\frac{\pi}{100} \times 3000} \mathrm{~h}=\frac{50 \times 60 \times 100}{3000} \mathrm{~min}=100 \mathrm{~min}
\end{aligned}
\end{aligned}
$$

Exercise 13.4

NCERT 10th Maths Chapter 13, class 10 Maths Chapter 13 solutions
https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/

ElndCareer

1. A drinking glass is in the shape of a frustum of a cone of height 14 cm . The diameters of its two circular ends are 4 cm and 2 cm . Find the capacity of the glass.

Answer

Let the height of the frustum of a cone be h.

and radius of both ends of the frustum are r_{1} and r_{2}, respectively,
Given, $h=14 \mathrm{~cm}, r_{1}=1 \mathrm{~cm}$ and $r_{2}=2 \mathrm{~cm}$
\therefore The volume (capacity) of drinking glass (frustum of a cone)

$$
\begin{aligned}
& =\frac{\pi}{3} h\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right) \\
& =\frac{1}{3} \times \frac{22}{7} \times 14\left\{(1)^{2}+(2)^{2}+(1)(2)\right\} \\
& =\frac{44}{3}(1+4+2)=\frac{44 \times 7}{3}=\frac{308}{3}=102 \frac{2}{3} \mathrm{~cm}^{3}
\end{aligned}
$$

2. The slant height of a frustum of a cone is 4 cm and the perimeters (circumference) of its circular ends are 18 cm and 6 cm . Find the curved surface area of the frustum.

Answer

Let the slant height of the frustum be I and radius of the both ends of the frustum be r1 and r2.

3. A fez, the cap used by the turks, is shaped like the frustum of a cone (see figure). If its radius on the open side is 10 cm , radius at the upper base is 4 cm and its slant height is 15 cm , find the area of material used for making it.

Answer

https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/

ClndCareer

Let the slant height of fez be I and the radius of upper end which is closed be r 1 and the other end which is open be r2.

Given, $\quad l=15 \mathrm{~cm}, t_{1}=4 \mathrm{~cm}$ and $r_{2}=10 \mathrm{~cm}$
\therefore The area of upper end of fez which is circular and closed $=\pi r_{1}^{2}$

$$
=\pi(4)^{2}=16 \pi \mathrm{~cm}^{2}
$$

Hence, total curved surface area of the fez = Lateral surface area of frustum

$$
\begin{aligned}
& \quad \text { +Area of upper close end } \\
& =\pi\left(r_{1}+r_{2}\right) l+\pi r_{1}^{2} \\
& =\pi\{(4+10) 15+16\} \\
& =\frac{22}{7}(210+16)=\frac{22 \times 226}{7}=\frac{4972}{7} \\
& =710 \frac{2}{7} \mathrm{~cm}^{2}
\end{aligned}
$$

NCERT 10th Maths Chapter 13, class 10 Maths Chapter 13 solutions
4. A container, opened from the top and made up of a metal sheet, is in the form of a frustum of a cone of height 16 cm with radii of its lower and upper ends as 8 cm and 20 cm , respectively. Find the cost of the milk which can completely fill the container, at the rate of ` 20 per litre. Also find the cost of metal sheet used to make the container. If it costs ₹8 per $100 \mathrm{~cm}^{2}$. (Take $\boldsymbol{\pi}=3.14$)

Answer

Let h be the height of the container, which is in the form of a frustum of a cone whose lower end is closed and upper end is opened. Also, let the radius of its lower end be r1 and upper end be r2.

https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/

ElndCareer

Given, $h=16 \mathrm{~cm}, r_{1}=8 \mathrm{~cm}$ and $r_{2}=20 \mathrm{~cm}$
$\therefore \quad$ Volume of the container $=\frac{\pi}{3} \times h\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right)$

$$
\begin{aligned}
& =\frac{3.14}{3} \times 16\left\{(8)^{2}+(20)^{2}+8 \times 20\right\} \\
& =\frac{3.14 \times 16 \times(64+400+160)}{3} \\
& =\frac{3.14 \times 16 \times 624}{3} \mathrm{~cm}^{3} \\
& =\frac{3.14 \times 16 \times 624}{3 \times 1000} \mathrm{~L} \quad\left(\because 1 \mathrm{~cm}^{3}=\frac{1}{1000} \mathrm{~L}\right)
\end{aligned}
$$

\because The cost of 1 L milk $=₹ 20$
\therefore The cost of $\left(\frac{3.14 \times 16 \times 624}{3 \times 1000}\right)$ L milk $=₹ \frac{3.14 \times 16 \times 624 \times 20}{3 \times 1000}$

$$
\begin{aligned}
& =\frac{626995.2}{3000} \\
& =208.99 \\
& =₹ 209
\end{aligned}
$$

Now, the area of its lower end (which is closed) $=\pi r_{1}^{2}=64 \pi \mathrm{~cm}^{2}$

From figure,

$$
\begin{aligned}
P C=D P^{\prime} & =\frac{C D-P P^{\prime}}{2}=\frac{40-16}{2} \quad\left(\because P P^{\prime}=A B\right) \\
& =\frac{24}{2}=12 \mathrm{~cm}
\end{aligned}
$$

\therefore In right angled $B P C$,

$$
\begin{aligned}
& \\
& \Rightarrow \quad \\
& B C^{2}=P C^{2}+B P^{2} \quad \text { (By Pythagoras theorem) } \\
& \Rightarrow \quad B C^{2}=(12)^{2}+(16)^{2} \\
&=144+256=400=(20)^{2} \\
& \Rightarrow \\
& B C=20 \mathrm{~cm}
\end{aligned}
$$

which is the slant height (l) of the container.
Now, the curved surface area of frustum $=\pi\left(r_{1}+r_{2}\right) l+\pi r_{1}^{2}$

$$
\begin{aligned}
& =3.14(8+20) \times 20+3.14 \times 64 \\
& =3.14(28 \times 20+64)=3.14 \times 624 \\
& =1959.36 \mathrm{~cm}^{2}
\end{aligned}
$$

\because The cost of metal sheet per $100 \mathrm{~cm}^{2}=₹ 8$
5. A metallic right circular cone 20 cm high and whose vertical angle is 60° is cut into two parts at the middle of its height by a plane parallel to its base. If the frustum so obtained be drawn into a wire of diameter $1 / 16 \mathrm{~cm}$, find the length of the wire.

Answer

Let r 1 and r 2 be the radii of the frustum of upper and lower ends cut by a plane. Given, height of the cone $=20 \mathrm{~cm}$.
\therefore Height of the frustum $=10 \mathrm{~cm}$

Clnd Career

$$
\begin{aligned}
& \text { Now, in } \triangle A O E, \\
& \Rightarrow \quad \cot 60^{\circ}=\frac{O E}{A O}=\frac{r_{1}}{10} \\
& \Rightarrow
\end{aligned} \quad\left[\because \theta=60^{\circ} \text { (given)] } \begin{array}{rl}
10 & =\frac{1}{\sqrt{3}} \\
\Rightarrow \quad r_{1} & =\frac{10}{\sqrt{3}} \mathrm{~cm}
\end{array} .\right.
$$

Again, in $\triangle A O^{\circ} C$.

$$
\begin{aligned}
\cot 60^{\circ} & =\frac{O^{\prime} C}{A O^{\prime}}=\frac{r_{2}}{20} \\
\Rightarrow \quad \frac{1}{\sqrt{3}} & =\frac{r_{2}}{20} \Rightarrow r_{2}=\frac{20}{\sqrt{3}} \mathrm{~cm} \\
\therefore \quad \text { Volume of the frustum } & =\frac{\pi}{3} h\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right) \\
& =\frac{\pi}{3} \times 10\left(\frac{100}{3}+\frac{400}{3}+\frac{200}{3}\right) \text { (given)] } \\
& =\frac{7000 \pi}{9} \mathrm{~cm}^{3}
\end{aligned}
$$

Let the length of the wire be h.
Given, the diameter of drawn wire from frustum is $\frac{1}{16} \mathrm{~cm}$

$$
\begin{array}{ll}
\therefore & \text { Radius of wire }=\frac{1}{32} \mathrm{~cm} \\
\text { So, } & \text { volume of wire (cylinder) }=\pi\left(\frac{1}{32}\right)^{2} \times h
\end{array}
$$

Now, according to the question,
Volume of the frustum $=$ Volume of the wire

$$
\begin{array}{ll}
\Rightarrow & \frac{7000 \pi}{9}=\frac{\pi h}{32 \times 32} \\
\Rightarrow & h=\frac{7000 \times 32 \times 32}{9} \\
\Rightarrow & h=\frac{7000 \times 32 \times 32}{9 \times 100} \\
\Rightarrow & h=7964.44 \mathrm{~m}
\end{array}
$$

Exercise 13.5 (Optional)

NCERT 10th Maths Chapter 13, class 10 Maths Chapter 13 solutions

1. A copper wire, 3 mm in diameter, is wound about a cylinder whose length is 12 cm and diameter 10 cm , so as to cover the curved surface

https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/

ClindCareer

of the cylinder. Find the length and mass of the wire, assuming the density of copper to be 8.88 g per cm^{3}.

Answer

Since, the diameter of the wire is 3 mm .
When a wire is one round wound about a cylinder, it covers a 3 mm of length of the cylinder.

Given, length of the cylinder $=12 \mathrm{~cm}=120 \mathrm{~mm}$
\therefore Number of rounds to cover $120 \mathrm{~mm}=120 / 3=40$
Given, diameter of a cylinder is $\mathrm{d}=10 \mathrm{~cm}$
\therefore Radius, $r=10 / 2=5 \mathrm{~cm}$
\therefore Length of wire required to complete one round $=2 \pi r=2 \pi(5)=10 \pi \mathrm{~cm}$
\therefore Length of the wire in covering the whole surface
$=$ Length of the wire in completing 40 rounds
$=10 \pi \times 40=400 \pi \mathrm{~cm}$
$=400 \times 3.14=1256 \mathrm{~cm}$
Now, radius of copper wire $=3 / 2 \mathrm{~mm}=3 / 20 \mathrm{~cm}$

$$
\begin{array}{ll}
\therefore \quad \text { Volume of wire } & =\pi\left(\frac{3}{20}\right)^{2}(400 \pi)=9 \pi^{2} \mathrm{~cm}^{3} \\
\therefore \quad \text { Mass of wire } & =9 \pi^{2} \times \text { density } \\
& \\
& =9(3.14)^{2} \times 8.88 \\
& =88.74 \times 8.88=788 \mathrm{~g} \text { (approx) }
\end{array}
$$

2. A right triangle, whose sides are 3 cm and 4 cm (other than hypotenuse) is made to revolve about its hypotenuse. Find the

ClndCareer

volume and surface area of the double cone so formed. (Choose value of π as found appropriate).

Answer

Here, $A B C$ is a right angled triangle at A and $B C$ is the hypotenuse.

$$
\therefore \quad B C=\sqrt{3^{2}+4^{2}}=\sqrt{25}=5 \mathrm{~cm}
$$

As $\triangle A B C$ revolves about the hypotenuse $B C$. It formes two cones $A B D$ and $A C D$.
Since, $\triangle A E B$ and $\triangle A B C$ are similar.

$$
\begin{array}{ll}
\therefore & \frac{A E}{C A}=\frac{A B}{B C} \Rightarrow \frac{A E}{4}=\frac{3}{5} \\
\Rightarrow & A E=\frac{12}{5}=2.4 \mathrm{~cm}
\end{array}
$$

So, radius of the base of cone $=A E=2.4$
Now, in right angled $\triangle A B E$,

$$
\begin{aligned}
B E & =\sqrt{A B^{2}-A E^{2}}=\sqrt{9-(2.4)^{2}}=\sqrt{3.24} \\
& =1.8 \mathrm{~cm} \\
\therefore \quad C E & =B C-B E=5-1.8=3.2 \mathrm{~cm} \\
\text { Now, } \quad \text { volume of the cone } A B D & =\frac{1}{3} \times \frac{22}{7} \times(2.4)^{2} \times 1.8 \\
& =\frac{22}{21} \times 10.368=10.86 \mathrm{~cm}^{3}
\end{aligned}
$$

and

$$
\text { volume of the cone } A C D=\frac{1}{3} \times \frac{22}{7} \times(2.4)^{2} \times 3.2
$$

$$
=\frac{405.504}{21}=19.31 \mathrm{~cm}^{3}
$$

\therefore Required volume of double cone $=10.86+19.31=30.17 \mathrm{~cm}^{3}$
Now, surface area of cone $A B D=\pi r i=\frac{22}{7} \times 2.4 \times 3$

$$
=\frac{158.4}{7}=22.63 \mathrm{~cm}^{2}
$$

and

$$
\text { surface area of cone } \begin{aligned}
A C D & =\frac{22}{7} \times 2.4 \times 4 \\
& =\frac{211.2}{7}=30.17 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Required surface area of double cone $=22.63+30.17=52.8 \mathrm{~cm}^{2}$
https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/

ClndCareer

3. A cistern, internally measuring $150 \mathrm{~cm} \times 120 \mathrm{~cm} \times 110 \mathrm{~cm}$, has $129600 \mathrm{~cm}^{3}$ of water in it. Porous bricks are placed in the water until the cistern is full to the brim. Each brick absorbs one-seventeenth of its own volume of water. how many bricks can be put in without overflowing the water, each brick being $22.5 \mathrm{~cm} \times 7.5 \mathrm{~cm} \times 6.5 \mathrm{~cm}$?

Answer

Given, internally dimensions of cistern $=150 \mathrm{~cm} \times 120 \mathrm{~cm} \times 110 \mathrm{~cm}$
\therefore Volume of cistern $=150 \times 120 \times 110$
$=1980000 \mathrm{~cm}^{3}$
Volume of water $=129600 \mathrm{~cm}^{3}$
\therefore Volume of cistern to be filled $=1980000-129600=1850400 \mathrm{~cm}^{3}$
Let required number of bricks $=\mathrm{n}$

Then water absorbed by n bricks $=n\left(\frac{1096.875}{17}\right) \mathrm{cm}^{3}$
Now, $\quad 1850400+n\left(\frac{1096.875}{17}\right)=n(1096.875)$
$\Rightarrow \quad n \times 1096.875 \times \frac{16}{17}=1850400$
$\Rightarrow \quad n=\frac{1850400 \times 17}{1096.875 \times 16}$ $=1792.4102=1792$ (approx)
Hence, 1792 brickes can be put in cistern.
NCERT 10th Maths Chapter 13, class 10 Maths Chapter 13 solutions
4. In one fortnight of a given month, there was a rainfall of 10 cm in a river valley. If the area of the valley is $97280 \mathbf{~ k m}^{2}$, show that the total rainfall was approximately equivalent to the addition to the normal water of three rivers each 1072 km long, 75 m wide and 3 m deep.

Answer

https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/

CllndCareer

Given, area of the valley $=97280 \mathrm{~km}^{2}$

$$
\begin{array}{lr}
\text { and } & \text { rainfall }=10 \mathrm{~cm}=\frac{10}{100 \times 1000} \mathrm{~km} \\
\therefore & \text { Volume of rainfall }=\frac{97280 \times 10}{100 \times 1000}=9.728 \mathrm{~km}^{3}
\end{array}
$$

Also, given length of the river $=1072 \mathrm{~km}$

$$
\begin{align*}
& \qquad \text { breadth of the river }=75 \mathrm{~m}=\frac{75}{1000} \mathrm{~km} \\
& \text { and height (deep) of the river }=3 \mathrm{~m}=\frac{3}{1000} \mathrm{~km} \\
& \therefore \quad \text { Volume of one river }=1072 \times \frac{75}{1000} \times \frac{3}{1000}=0.2412 \mathrm{~km}^{3} \tag{ii}
\end{align*}
$$

So, volume of three rivers $=3 \times 0.2412=0.7236 \mathrm{~km}^{3}$
From Eqs. (i) and (ii), it is clear that total rainfall is not approximately equivalent to normal water of three rivers.
5. An oil funnel made of tin sheet consists of a 10 cm long cylindrical portion attached to a frustum of a cone. If the total height is $\mathbf{2 2} \mathbf{~ c m}$, diameter of the cylindrical portion is 8 cm and the diameter of the top of the funnel is $18 \mathbf{c m}$, find the area of the tin sheet required to make the funnel.

Answer

Given, oil funnel is a combination of a cylinder and a frustum of a cone.
Also, given height of cylindrical portion $h=10 \mathrm{~cm}$

ClndCareer

Radius $\left(r_{1}\right)$ of upper circular end of frustum part $=\frac{18}{2}=9 \mathrm{~cm}$
Radius $\left(r_{2}\right)$ of lower circular end of frustum part $=$ radius of circular end of cylindrical part $=\frac{8}{2}=4 \mathrm{~cm}$

Height (h_{1}) of frustum part $=22-10=12 \mathrm{~cm}$
Height $\left(\mathrm{h}_{2}\right)$ of cylindrical part $=10 \mathrm{~cm}$ slant height (l) of frustum part
$=\sqrt{\left(r_{1}-r_{2}\right)^{2}+h^{2}}=\sqrt{(9-4)^{2}+(12)^{2}}=13 \mathrm{~cm}$
Area of tin sheet required $=$ CSA of frustum part + CSA of cylindrical part

$$
\begin{aligned}
& =\pi\left(r_{1}+r_{2}\right) l+2 \pi r_{2} h_{2} \\
& =\frac{22}{7} \times(9+4) \times 13+2 \times \frac{22}{7} \times 4 \times 10 \\
& =\frac{22}{7}[169+80]=\frac{22 \times 249}{7} \\
& =782 \frac{4}{7} \mathrm{~cm}^{2}
\end{aligned}
$$

NCERT 10th Maths Chapter 13, class 10 Maths Chapter 13 solutions

6. Derive the formula for the curved surface area and total surface area of the frustum of a cone. Using the symbols as explained.

Answer

Leth be the height, I be the slant height and r_{1} and r_{2} be the radii of the bases $\left(r_{1}>r_{2}\right)$ of the frustum of a cone. We complete the conical part OCD. https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/

The frustum of the right circular cone can be viewed as the difference of the two right circular cones OAB and OCD. Let slant height of the cone OAB be l_{1} and its height be h_{1} i.e., $\mathrm{OB}=\mathrm{OA}=\mathrm{I}_{1}$ and $\mathrm{OP}=\mathrm{h}_{1}$

The frustum of the right circular cone can be viewed as the difference of the two right circular cones $O A B$ and $O C D$. Let slant height of the cone $O A B$ be l_{1} and its height be h_{1} i.e., $O B=O A=l_{1}$ and $O P=h_{1}$

Then in $\triangle A C E$,

CllndCareer

$$
l=\sqrt{h^{2}+\left(r_{1}-r_{2}\right)^{2}}
$$

Slant height of the cone $O C D=l_{1}-l$

$$
\begin{array}{ll}
\because & \Delta O Q D \sim \Delta O P B \\
& \frac{O D}{O B}=\frac{D Q}{P B} \Rightarrow \frac{l_{1}-l}{l_{1}}=\frac{r_{2}}{r_{1}} \\
\Rightarrow & 1-\frac{l}{l_{1}}=\frac{r_{2}}{r_{1}} \\
\Rightarrow & \frac{l}{l_{1}}=1-\frac{r_{2}}{r_{1}}=\frac{r_{1}-r_{2}}{r_{1}} \\
\Rightarrow & l_{1}=\frac{l r_{1}}{r_{1}-r_{2}} \\
\therefore & l_{1}-l=\frac{r_{1}}{r_{1}-r_{2}}-l=\frac{l r_{2}}{r_{1}-r_{2}} \tag{ii}
\end{array}
$$

(AA similarity criterion)

Hence, curved surface area of the frustum of cone

$$
\begin{aligned}
& =\text { curved surface area of the cone } O A B \\
& \quad-\text { curved surface area of the cone } O C D \\
& =\pi r_{1} l_{1}-\pi r_{2}\left(l_{1}-l\right) \\
& =\pi r_{1} \frac{l r_{1}}{r_{1}-r_{2}}-\pi r_{2} \frac{l r_{2}}{r_{1}-r_{2}} \quad \text { [From Eqs. (i) and (ii)] } \\
& =\pi l\left[\frac{r_{1}^{2}-r_{2}^{2}}{r_{1}-r_{2}}\right]=\pi l\left(r_{1}+r_{2}\right)
\end{aligned}
$$

Therefore, curved surface area of the frustum of cone $=\pi l\left(r_{1}+r_{2}\right)$
where,

$$
l=\sqrt{h^{2}+\left(r_{1}-r_{2}\right)^{2}}
$$

If A_{1} and A_{2} are the surface areas $\left(A_{1}>A_{2}\right)$ of two circular bases, then

$$
A_{1}=\pi r_{1}^{2} \text { and } A_{2}=\pi r_{2}^{2}
$$

So, the total surface area of the frustum of cone
where,

$$
\begin{aligned}
& =\pi l\left(r_{1}+r_{2}\right)+\pi r_{1}^{2}+\pi r_{2}^{2} \\
& l=\sqrt{h^{2}+\left(r_{1}-r_{2}\right)^{2}}
\end{aligned}
$$

7. Derive the formula for the volume of the frustum of a cone given to you in the section 13.5 using the symbols as explained.

Answer

Leth be the height, I be the slant height and r_{1} and r_{2} be the radii of the bases $\left(r_{1}>r_{2}\right)$ of the frustum of a cone. We complete the conical part OCD. https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/
ClindCareer

ClndCareer

The frustum of the right circular cone can be viewed as the difference of the two right circular cones OAB and OCD. Let the height of the cone OAB be h_{1} and its slant height be l_{1}.

i.e., $O P=h_{1}$ and $O A=O B=l_{1}$

Then, height of the cone $O C D=h_{1}-1$
$\Delta \mathrm{OQD} \sim \Delta \mathrm{OPB}$ (AA similarity criterion)

ClndCareer

$$
\begin{array}{lc}
\therefore & \frac{O Q}{O P}=\frac{Q D}{P B} \\
\Rightarrow & \frac{h_{1}-h}{h_{1}}=\frac{r_{2}}{r_{1}} \\
\Rightarrow & 1-\frac{h}{h_{1}}=\frac{r_{2}}{r_{1}} \\
\Rightarrow & \frac{h}{h_{1}}=1-\frac{r_{2}}{r_{1}}=\frac{r_{1}-r_{2}}{r_{1}} \Rightarrow h_{1}=\frac{h r_{1}}{r_{1}-r_{2}} \tag{i}
\end{array}
$$

Now, height of the cone $O C D=h_{1}-h=\frac{h r_{1}}{r_{1}-r_{2}}-h$

$$
\begin{equation*}
=\frac{h r_{2}}{r_{1}-r_{2}} \tag{ii}
\end{equation*}
$$

$\therefore \quad$ Volume of the frustum of cone $=$ Volume of the cone $O A B$

- Volume of the cone $O C D$

$$
\begin{aligned}
& =\frac{1}{3} \pi r_{1}^{2} h_{1}-\frac{1}{3} \pi r_{2}^{2}\left(h_{1}-h\right) \\
& =\frac{\pi}{3}\left[r_{1}^{2} \frac{h r_{1}}{r_{1}-r_{2}}-r_{2}^{2} \frac{h r_{2}}{r_{1}-r_{2}}\right]
\end{aligned}
$$

[From Eqs. (i) and (ii)]

$$
=\frac{\pi h}{3}\left[\frac{r_{1}^{3}-r_{2}^{3}}{r_{1}-r_{2}}\right]=\frac{1}{3} \pi h\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right)
$$

Therefore, volume of the frustum of cone is $\frac{1}{3} \pi h\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right)$.
If A_{1} and A_{2} are the surface areas $\left(A_{1}>A_{2}\right)$ of the two circular bases, then

$$
A_{1}=\pi r_{1}^{2} \text { and } A_{2}=\pi r_{2}^{2}
$$

Then, volume of the frustum of the cone $=\frac{h}{3}\left[\pi r_{1}^{2}+\pi r_{2}^{2}+\sqrt{\pi r_{1}^{2}} \sqrt{\pi r^{2}}\right]$

$$
=\frac{h}{3}\left(A_{1}+A_{2}+\sqrt{A_{1} A_{2}}\right)
$$

NCERT 10th Maths Chapter 13, class 10 Maths Chapter 13 solutions

https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/

ClindCareer

Chapterwise NCERT Solutions for Class 10 Maths:

- Chapter 1 Real Numbers
- Chapter 2 Polynomials
- Chapter 3 Pair of Linear Equations in Two Variables
- Chapter 4 Quadratic Equations
- Chapter 5 Arithmetic Progressions
- Chapter 6 Triangles
- Chapter 7 Coordinate Geometry
- Chapter 8 Introduction to Trigonometry
- Chapter 9 Applications of Trigonometry
- Chapter 10 Circle
- Chapter 11 Constructions
- Chapter 12 Areas related to Circles
- Chapter 13 Surface Areas and Volumes
- Chapter 14 Statistics
- Chapter 15 Probability

ClndCareer

About NCERT

The National Council of Educational Research and Training is an autonomous organization of the Government of India which was established in 1961 as a literary, scientific, and charitable Society under the Societies Registration Act. The major objectives of NCERT and its constituent units are to: undertake, promote and coordinate research in areas related to school education; prepare and publish model textbooks, supplementary material, newsletters, journals and develop educational kits, multimedia digital materials, etc.
Organise pre-service and in-service training of teachers; develop and disseminate innovative educational techniques and practices;collaborate and network with state educational departments, universities, NGOs and other educational institutions; act as a clearing house for ideas and information in matters related to school education; and act as a nodal agency for achieving the goals of Universalisation of Elementary Education. In addition to research, development, training, extension, publication and dissemination activities, NCERT is an implementation agency for bilateral cultural exchange programmes with other countries in the field of school education.Its headquarters are located at Sri Aurobindo Marg in New Delhi. Visit the Official NCERT website to learn more.
https://www.indcareer.com/schools/ncert-solutions-for-chapter-13-surface-areas-and-volumes/ ClindCareer

