## 

## NCERT Solutions for Maths:

## Chapter 12 - Areas Related to

## Circles

Class 10: Maths Chapter 12 solutions. Complete Class 10 Maths Chapter 12 Notes.

NCERT Solutions for Maths: Chapter 12 - Areas Related to Circles

NCERT 10th Maths Chapter 12, class 10 Maths Chapter 12 solutions
Page No: 230

## ClindCareer

Exercise: 12.1
Unless stated otherwise, use $\pi=22 / 7$.

1. The radii of two circles are 19 cm and 9 cm respectively. Find the radius of the circle which has a circumference equal to the sum of the circumferences of the two circles.

Let the radius of the third circle be R .
Circumference of the circle with radius $R=2 \pi R$
Circumference of the circle with radius $19 \mathrm{~cm}=2 \pi \times 19=38 \pi \mathrm{~cm}$
Circumference of the circle with radius $9 \mathrm{~cm}=2 \pi \times 9=18 \pi \mathrm{~cm}$
Sum of the circumference of two circles $=38 \pi+18 \pi=56 \pi \mathrm{~cm}$
Circumference of the third circle $=2 \pi R=56 \pi$
$\Rightarrow 2 \mathrm{mR}=56 \mathrm{mcm}$
$\Rightarrow \mathrm{R}=28 \mathrm{~cm}$
The radius of the circle which has circumference equal to the sum of the circumferences of the two circles is 28 cm .
2. The radii of two circles are 8 cm and 6 cm respectively. Find the radius of the circle having area equal to the sum of the areas of the two circles.

## Answer

Let the radius of the third circle be R .
Area of the circle with radius $R=\pi R^{2}$
Area of the circle with radius $8 \mathrm{~cm}=\pi \times 8^{2}=64 \pi \mathrm{~cm}^{2}$
https://www.indcareer.com/schools/ncert-solutions-for-chapter-12-areas-related-to-circles/

## ClndCareer

Area of the circle with radius $6 \mathrm{~cm}=\pi \times 6^{2}=36 \pi \mathrm{~cm}^{2}$
Sum of the area of two circles $=64 \pi \mathrm{~cm}^{2}+36 \pi \mathrm{~cm}^{2}=100 \pi \mathrm{~cm}^{2}$
Area of the third circle $=\pi R^{2}=100 \pi \mathrm{~cm}^{2}$
$\Rightarrow \pi R^{2}=100 \pi \mathrm{~cm}^{2}$
$\Rightarrow R^{2}=100 \mathrm{~cm}^{2}$
$\Rightarrow R=10 \mathrm{~cm}$
Thus, the radius of the new circle is 10 cm .
3. Fig. 12.3 depicts an archery target marked with its five scoring regions from the centre outwards as Gold, Red, Blue, Black and White. The diameter of the region representing Gold score is 21 cm and each of the other bands is 10.5 cm wide. Find the area of each of the five scoring regions.

Answer
Diameter of Gold circle (first circle) $=21 \mathrm{~cm}$
Radius of first circle, $\mathrm{r}_{1}=21 / 2 \mathrm{~cm}=10.5 \mathrm{~cm}$
Each of the other bands is 10.5 cm wide,
$\therefore$ Radius of second circle, $\mathrm{r}_{2}=10.5 \mathrm{~cm}+10.5 \mathrm{~cm}=21 \mathrm{~cm}$
$\therefore$ Radius of third circle, $\mathrm{r}_{3}=21 \mathrm{~cm}+10.5 \mathrm{~cm}=31.5 \mathrm{~cm}$
$\therefore$ Radius of fourth circle, $\mathrm{r}_{4}=31.5 \mathrm{~cm}+10.5 \mathrm{~cm}=42 \mathrm{~cm}$
$\therefore$ Radius of fifth circle, $\mathrm{r}_{5}=42 \mathrm{~cm}+10.5 \mathrm{~cm}=52.5 \mathrm{~cm}$
Area of gold region $=\pi r_{1}{ }^{2}=\pi(10.5)^{2}=346.5 \mathrm{~cm}^{2}$

## ClndCareer

Area of red region $=$ Area of second circle - Area of first circle $=\pi r_{2}{ }^{2}-$ $346.5 \mathrm{~cm}^{2}$

$$
=\pi(21)^{2}-346.5 \mathrm{~cm}^{2}=1386-346.5 \mathrm{~cm}^{2}=1039.5 \mathrm{~cm}^{2}
$$

Area of blue region $=$ Area of third circle - Area of second circle $=\pi r_{3}{ }^{2}-$ $1386 \mathrm{~cm}^{2}$
$=\pi(31.5)^{2}-1386 \mathrm{~cm}^{2}=3118.5-1386 \mathrm{~cm}^{2}=1732.5 \mathrm{~cm}^{2}$
Area of black region $=$ Area of fourth circle - Area of third circle $=\pi r_{3}{ }^{2}-$ $3118.5 \mathrm{~cm}^{2}$
$=\pi(42)^{2}-1386 \mathrm{~cm}^{2}=5544-3118.5 \mathrm{~cm}^{2}=2425.5 \mathrm{~cm}^{2}$
Area of white region $=$ Area of fifth circle - Area of fourth circle $=\pi r_{4}{ }^{2}-$ $5544 \mathrm{~cm}^{2}$
$=\pi(52.5)^{2}-5544 \mathrm{~cm}^{2}=8662.5-5544 \mathrm{~cm}^{2}=3118.5 \mathrm{~cm}^{2}$

## 4. The wheels of a car are of diameter 80 cm each. How many complete revolutions does each wheel make in 10 minutes when the car is travelling at a speed of 66 km per hour?

## Answer

Diameter of the wheels of a car $=80 \mathrm{~cm}$
Circumference of wheels $=2 \pi r=2 r \times \pi=80 \pi \mathrm{~cm}$
Distance travelled by car in 10 minutes $=(66 \times 1000 \times 100 \times 10) / 60=$ 1100000 cm/s

No. of revolutions = Distance travelled by car/Circumference of wheels

$$
=1100000 / 80 \pi=(1100000 \times 7) /(80 \times 22)=4375
$$

4375 complete revolutions does each wheel make in 10 minutes.

## ClndCareer

NCERT 10th Maths Chapter 12, class 10 Maths Chapter 12 solutions
5. Tick the correct answer in the following and justify your choice : If the perimeter and the area of a circle are numerically equal, then the radius of the circle is
(A) 2 units
(B) $\pi$ units
(C) 4 units
(D)

7 units

## Answer

Let the radius of the circle be r .
$\therefore$ Perimeter of the circle $=$ Circumference of the circle $=2 \pi r$
$\therefore$ Area of the circle $=\pi r^{2}$
A/q,
$2 \pi r=\pi r^{2}$
$\Rightarrow 2=r$
Thus, the radius of the circle is 2 units. $(\mathrm{A})$ is correct.
NCERT 10th Maths Chapter 12, class 10 Maths Chapter 12 solutions

## Exercise: 12.2

Unless stated otherwise, use $\pi=22 / 7$.

1. Find the area of a sector of a circle with radius 6 cm if angle of the sector is $60^{\circ}$.

## Answer

Area of the sector making angle $\theta=\left(\theta / 360^{\circ}\right) \times \pi r^{2}$
https://www.indcareer.com/schools/ncert-solutions-for-chapter-12-areas-related-to-circles/

## ClindCareer

Area of the sector making angle $60^{\circ}=\left(60^{\circ} / 360^{\circ}\right) \times \pi r^{2} \mathrm{~cm}^{2}$
$=(1 / 6) \times 6^{2} \pi=36 / 6 \mathrm{~m} \mathrm{~cm}^{2}=6 \times 22 / 7 \mathrm{~cm}^{2}=132 / 7 \mathrm{~cm}^{2}$
2. Find the area of a quadrant of a circle whose circumference is 22 cm.

## Answer

Quadrant of a circle means sector is making angle $90^{\circ}$.
Circumference of the circle $=2 \pi r=22 \mathrm{~cm}$
Radius of the circle $=r=22 / 2 \pi \mathrm{~cm}=7 / 2 \mathrm{~cm}$
Area of the sector making angle $90^{\circ}=\left(90^{\circ} / 360^{\circ}\right) \times \pi r^{2} \mathrm{~cm}^{2}$
$=(1 / 4) \times(7 / 2)^{2} \pi=(49 / 16) \pi \mathrm{cm}^{2}=(49 / 16) \times(22 / 7) \mathrm{cm}^{2}=77 / 8 \mathrm{~cm}^{2}$
3. The length of the minute hand of a clock is $\mathbf{1 4} \mathbf{~ c m}$. Find the area swept by the minute hand in 5 minutes.

## Answer

Here, Minute hand of clock acts as radius of the circle.
$\therefore$ Radius of the circle $(r)=14 \mathrm{~cm}$
Angle rotated by minute hand in 1 hour $=360^{\circ}$
$\therefore$ Angle rotated by minute hand in 5 minutes $=360^{\circ} \times 5 / 60=30^{\circ}$
Area of the sector making angle $30^{\circ}=\left(30^{\circ} / 360^{\circ}\right) \times \pi r^{2} \mathrm{~cm}^{2}$
$=(1 / 12) \times 14^{2} \pi=196 / 12 \mathrm{mcm}^{2}=(49 / 3) \times(22 / 7) \mathrm{cm}^{2}=154 / 3 \mathrm{~cm}^{2}$
Area swept by the minute hand in 5 minutes $=154 / 3 \mathrm{~cm}^{2}$
NCERT 10th Maths Chapter 12, class 10 Maths Chapter 12 solutions
https://www.indcareer.com/schools/ncert-solutions-for-chapter-12-areas-related-to-circles/

## elndCareer

4. A chord of a circle of radius 10 cm subtends a right angle at the centre. Find the area of the corresponding : (i) minor segment (ii) major sector. (Use $\pi=3.14$ )


Radius of the circle $=10 \mathrm{~cm}$
Major segment is making $360^{\circ}-90^{\circ}=270^{\circ}$
Area of the sector making angle $270^{\circ}$

$$
=\left(270^{\circ} / 360^{\circ}\right) \times \pi r^{2} \mathrm{~cm}^{2}
$$

$=(3 / 4) \times 10^{2} \pi=75 \mathrm{mcm}^{2}$

$$
=75 \times 3.14 \mathrm{~cm}^{2}=235.5 \mathrm{~cm}^{2}
$$

$\therefore$ Area of the major segment $=235.5 \mathrm{~cm}^{2}$
Height of $\triangle A O B=O A=10 \mathrm{~cm}$
Base of $\triangle A O B=O B=10 \mathrm{~cm}$
Area of $\triangle A O B=1 / 2 \times O A \times O B$

## ClndCareer

$$
=1 / 2 \times 10 \times 10=50 \mathrm{~cm}^{2}
$$

Major segment is making $90^{\circ}$
Area of the sector making angle $90^{\circ}$
$=\left(90^{\circ} / 360^{\circ}\right) \times \pi r^{2} \mathrm{~cm}^{2}$
$=(1 / 4) \times 10^{2} \pi=25 \pi \mathrm{~cm}^{2}$

$$
=25 \times 3.14 \mathrm{~cm}^{2}=78.5 \mathrm{~cm}^{2}
$$

Area of the minor segment $=$ Area of the sector making angle $90^{\circ}-$ Area of $\triangle A O B$

$$
=78.5 \mathrm{~cm}^{2}-50 \mathrm{~cm}^{2}=28.5 \mathrm{~cm}^{2}
$$

NCERT 10th Maths Chapter 12, class 10 Maths Chapter 12 solutions
5. In a circle of radius 21 cm , an arc subtends an angle of $60^{\circ}$ at the centre. Find:
(i) the length of the arc
(ii) area of the sector formed by the arc
(iii) area of the segment formed by the corresponding chord

## Answer



Radius of the circle $=21 \mathrm{~cm}$
(i) Length of the $\operatorname{arc} \mathrm{AB}=\theta / 360^{\circ} \times 2 \pi r$

$$
\begin{aligned}
& =60^{\circ} / 360^{\circ} \times 2 \times 22 / 7 \times 21 \\
& =1 / 6 \times 2 \times 22 / 7 \times 21=22
\end{aligned}
$$

The length of the arc is 22 cm .
(ii) Angle subtend by the arc $=60^{\circ}$

Area of the sector making angle $60^{\circ}=\left(60^{\circ} / 360^{\circ}\right) \times \pi r^{2} \mathrm{~cm}^{2}$

$$
=(1 / 6) \times 21^{2} \pi=441 / 6 \mathrm{mcm}{ }^{2}
$$

$$
=441 / 6 \times 22 / 7 \mathrm{~cm}^{2}=231 \mathrm{~cm}^{2}
$$

$\therefore$ Area of the sector formed by the arc is $231 \mathrm{~cm}^{2}$
(iii) Area of equilateral $\triangle \mathrm{AOB}=\sqrt{ } 3 / 4 \times(\mathrm{OA})^{2}=\sqrt{ } 3 / 4 \times 21^{2}=(441 \sqrt{ } 3) / 4 \mathrm{~cm}^{2}$

Area of the segment formed by the corresponding chord
= Area of the sector formed by the arc - Area of equilateral $\triangle A O B$
https://www.indcareer.com/schools/ncert-solutions-for-chapter-12-areas-related-to-circles/

## ClindCareer

$$
=231 \mathrm{~cm}^{2}-(441 \sqrt{ } 3) / 4 \mathrm{~cm}^{2}
$$

6. A chord of a circle of radius 15 cm subtends an angle of $60^{\circ}$ at the centre. Find the areas of the corresponding minor and major segments of the circle. (Use $\pi=3.14$ and $\sqrt{ } 3=1.73$ )

Answer
Radius of the circle $=15 \mathrm{~cm}$
$\triangle A O B$ is isosceles as two sides are equal.
$\therefore \angle A=\angle B$
Sum of all angles of triangle $=180^{\circ}$

$$
\begin{aligned}
& \angle A+\angle B+\angle C=180^{\circ} \\
& \Rightarrow 2 \angle A=180^{\circ}-60^{\circ} \\
& \Rightarrow \angle A=120^{\circ} / 2 \\
& \Rightarrow \angle A=60^{\circ}
\end{aligned}
$$

Triangle is equilateral as $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}$
$\therefore \mathrm{OA}=\mathrm{OB}=\mathrm{AB}=15 \mathrm{~cm}$
Area of equilateral $\triangle \mathrm{AOB}=\sqrt{ } 3 / 4 \times(O A)^{2}=\sqrt{ } 3 / 4 \times 15^{2}$

$$
=(225 \sqrt{ } 3) / 4 \mathrm{~cm}^{2}=97.3 \mathrm{~cm}^{2}
$$

Angle subtend at the centre by minor segment $=60^{\circ}$
Area of Minor sector making angle $60^{\circ}=\left(60^{\circ} / 360^{\circ}\right) \times \pi r^{2} \mathrm{~cm}^{2}$
$=(1 / 6) \times 15^{2} \mathrm{mcm}^{2}=225 / 6 \mathrm{mcm}^{2}$

## https://www.indcareer.com/schools/ncert-solutions-for-chapter-12-areas-related-to-circles/

## ClndCareer

$=(225 / 6) \times 3.14 \mathrm{~cm}^{2}=117.75 \mathrm{~cm}^{2}$
Area of the minor segment $=$ Area of Minor sector - Area of equilateral $\triangle A O B$

$$
=117.75 \mathrm{~cm}^{2}-97.3 \mathrm{~cm}^{2}=20.4 \mathrm{~cm}^{2}
$$

Angle made by Major sector $=360^{\circ}-60^{\circ}=300^{\circ}$
Area of the sector making angle $300^{\circ}=\left(300^{\circ} / 360^{\circ}\right) \times \pi r^{2} \mathrm{~cm}^{2}$
$=(5 / 6) \times 15^{2} \mathrm{mcm}^{2}=1125 / 6 \mathrm{mcm}^{2}$

$$
=(1125 / 6) \times 3.14 \mathrm{~cm}^{2}=588.75 \mathrm{~cm}^{2}
$$

Area of major segment $=$ Area of Minor sector + Area of equilateral $\triangle A O B$

$$
=588.75 \mathrm{~cm}^{2}+97.3 \mathrm{~cm}^{2}=686.05 \mathrm{~cm}^{2}
$$

NCERT 10th Maths Chapter 12, class 10 Maths Chapter 12 solutions
7. A chord of a circle of radius 12 cm subtends an angle of $120^{\circ}$ at the centre. Find the area of the corresponding segment of the circle. (Use $\pi=3.14$ and $\sqrt{ } 3=1.73$ )

## Answer



Radius of the circle, $r=12 \mathrm{~cm}$
Draw a perpendicular OD to chord $A B$. It will bisect $A B$.

$$
\angle \mathrm{A}=180^{\circ}-\left(90^{\circ}+60^{\circ}\right)=30^{\circ}
$$

$\cos 30^{\circ}=\mathrm{AD} / \mathrm{OA}$
$\Rightarrow \sqrt{ } 3 / 2=A D / 12$
$\Rightarrow A D=6 \sqrt{ } 3 \mathrm{~cm}$
$\Rightarrow A B=2 \times A D=12 \sqrt{ } 3 \mathrm{~cm}$
$\sin 30^{\circ}=O D / O A$
$\Rightarrow 1 / 2=O D / 12$
$\Rightarrow O D=6 \mathrm{~cm}$
Area of $\triangle A O B=1 / 2 \times$ base $\times$ height

$$
\begin{aligned}
& =1 / 2 \times 12 \sqrt{ } 3 \times 6=36 \sqrt{ } 3 \mathrm{~cm} \\
& =36 \times 1.73=62.28 \mathrm{~cm}^{2}
\end{aligned}
$$

https://www.indcareer.com/schools/ncert-solutions-for-chapter-12-areas-related-to-circles/

## ClindCareer

Angle made by Minor sector $=120^{\circ}$
Area of the sector making angle $120^{\circ}=\left(120^{\circ} / 360^{\circ}\right) \times \pi r^{2} \mathrm{~cm}^{2}$
$=(1 / 3) \times 12^{2} \pi \mathrm{~cm}^{2}=144 / 3 \mathrm{mcm}^{2}$
$=48 \times 3.14 \mathrm{~cm}^{2}=150.72 \mathrm{~cm}^{2}$
$\therefore$ Area of the corresponding Minor segment = Area of the Minor sector Area of $\triangle A O B$

$$
=150.72 \mathrm{~cm}^{2}-62.28 \mathrm{~cm}^{2}
$$

$=88.44 \mathrm{~cm}^{2}$
NCERT 10th Maths Chapter 12, class 10 Maths Chapter 12 solutions
8. A horse is tied to a peg at one corner of a square shaped grass field of side 15 m by means of a 5 m long rope (see Fig. 12.11). Find
(i) the area of that part of the field in which the horse can graze.
(ii) the increase in the grazing area if the rope were 10 m long instead of 5 m. (Use $\pi=3.14$ )

## Answer

Side of square field $=15 \mathrm{~m}$
Length of rope is the radius of the circle, $r=5 \mathrm{~m}$
Since, the horse is tied at one end of square field, it will graze only quarter of the field with radius 5 m .
(i) Area of circle $=\pi r^{2}=3.14 \times 5^{2}=78.5 \mathrm{~m}^{2}$

## ClndCareer

Area of that part of the field in which the horse can graze $=1 / 4$ of area of the circle $=78.5 / 4=19.625 \mathrm{~m}^{2}$
(ii) Area of circle if the length of rope is increased to $10 \mathrm{~m}=\pi \mathrm{r}^{2}=3.14 \times$ $10^{2}=314 \mathrm{~m}^{2}$

Area of that part of the field in which the horse can graze $=1 / 4$ of area of the circle
$=314 / 4=78.5 \mathrm{~m}^{2}$
Increase in grazing area $=78.5 \mathrm{~m}^{2}-19.625 \mathrm{~m}^{2}=58.875 \mathrm{~m}^{2}$
9. A brooch is made with silver wire in the form of a circle with diameter 35 mm . The wire is also used in making 5 diameters which divide the circle into 10 equal sectors as shown in Fig. 12.12. Find:
(i) the total length of the silver wire required.
(ii) the area of each sector of the brooch.

## Answer

Number of diameters $=5$
Length of diameter $=35 \mathrm{~mm}$
$\therefore$ Radius $=35 / 2 \mathrm{~mm}$
(i) Total length of silver wire required $=$ Circumference of the circle + Length of 5 diameter

$$
=2 \pi r+(5 \times 35) m m=(2 \times 22 / 7 \times
$$

$35 / 2)+175 \mathrm{~mm}$

$$
=110+175 \mathrm{~mm}=185 \mathrm{~mm}
$$

(ii) Number of sectors $=10$
https://www.indcareer.com/schools/ncert-solutions-for-chapter-12-areas-related-to-circles/

## ClndCareer

Area of each sector $=$ Total area/Number of sectors
Total Area $=\pi r^{2}=22 / 7 \times(35 / 2)^{2}=1925 / 2 \mathrm{~mm}^{2}$
$\therefore$ Area of each sector $=(1925 / 2) \times 1 / 10=385 / 4 \mathrm{~mm}^{2}$
10. An umbrella has 8 ribs which are equally spaced (see Fig. 12.13). Assuming umbrella to be a flat circle of radius 45 cm , find the area between the two consecutive ribs of the umbrella.

## Answer

Number of ribs in umbrella $=8$
Radius of umbrella while flat $=45 \mathrm{~cm}$
Area between the two consecutive ribs of the umbrella $=$
Total area/Number of ribs
Total Area $=\pi r^{2}=22 / 7 \times(45)^{2}=6364.29 \mathrm{~cm}^{2}$
$\therefore$ Area between the two consecutive ribs $=6364.29 / 8 \mathrm{~cm}^{2}$

$$
=795.5 \mathrm{~cm}^{2}
$$

NCERT 10th Maths Chapter 12, class 10 Maths Chapter 12 solutions
11. A car has two wipers which do not overlap. Each wiper has a blade of length 25 cm sweeping through an angle of $115^{\circ}$. Find the total area cleaned at each sweep of the blades.

## Answer

Angle of the sector of circle made by wiper $=115^{\circ}$
Radius of wiper $=25 \mathrm{~cm}$
Area of the sector made by wiper $=\left(115^{\circ} / 360^{\circ}\right) \times \pi r^{2} \mathrm{~cm}^{2}$
https://www.indcareer.com/schools/ncert-solutions-for-chapter-12-areas-related-to-circles/

## ClndCareer

$=23 / 72 \times 22 / 7 \times 25^{2}=23 / 72 \times 22 / 7 \times 625 \mathrm{~cm}^{2}$
$=158125 / 252 \mathrm{~cm}^{2}$
Total area cleaned at each sweep of the blades $=2 \times 158125 / 252 \mathrm{~cm}^{2}$ $=158125 / 126=1254.96 \mathrm{~cm}^{2}$
12. To warn ships for underwater rocks, a lighthouse spreads a red coloured light over a sector of angle $80^{\circ}$ to a distance of 16.5 km . Find the area of the sea over which the ships are warned.
(Use $\pi=3.14$ )
Answer


Let O bet the position of Lighthouse.
Distance over which light spread i.e. radius, $r=16.5 \mathrm{~km}$
Angle made by the sector $=80^{\circ}$
Area of the sea over which the ships are warned = Area made by the sector.

Area of sector $=\left(80^{\circ} / 360^{\circ}\right) \times \pi r^{2} \mathrm{~km}^{2}$
$=2 / 9 \times 3.14 \times(16.5)^{2} \mathrm{~km}^{2}$
https://www.indcareer.com/schools/ncert-solutions-for-chapter-12-areas-related-to-circles/

## ClndCareer

$=189.97 \mathrm{~km}^{2}$
13. A round table cover has six equal designs as shown in Fig. 12.14. If the radius of the cover is 28 cm , find the cost of making the designs at the rate of $₹ 0.35$ per $\mathrm{cm}^{2}$. (Use $\sqrt{ } \mathbf{3}=1.7$ )

## Answer

Number of equal designs $=6$
Radius of round table cover $=28 \mathrm{~cm}$
Cost of making design $=₹ 0.35$ per cm ${ }^{2}$
$\angle \mathrm{O}=360^{\circ} / 6=60^{\circ}$
$\triangle A O B$ is isosceles as two sides are equal. (Radius of the circle)
$\therefore \angle A=\angle B$
Sum of all angles of triangle $=180^{\circ}$

$$
\begin{aligned}
& \angle A+\angle B+\angle O=180^{\circ} \\
& \Rightarrow 2 \angle A=180^{\circ}-60^{\circ} \\
& \Rightarrow \angle A=120^{\circ} / 2 \\
& \Rightarrow \angle A=60^{\circ}
\end{aligned}
$$

Triangle is equilateral as $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}$
Area of equilateral $\triangle \mathrm{AOB}=\sqrt{ } 3 / 4 \times(\mathrm{OA})^{2}=\sqrt{ } 3 / 4 \times 28^{2}=333.2 \mathrm{~cm}^{2}$
Area of sector $\mathrm{ACB}=\left(60^{\circ} / 360^{\circ}\right) \times \pi r^{2} \mathrm{~cm}^{2}$
$=1 / 6 \times 22 / 7 \times 28 \times 28=410.66 \mathrm{~cm}^{2}$
https://www.indcareer.com/schools/ncert-solutions-for-chapter-12-areas-related-to-circles/

## CllndCareer

Area of design $=$ Area of sector $A C B-$ Area of equilateral $\triangle A O B$

$$
=410.66 \mathrm{~cm}^{2}-333.2 \mathrm{~cm}^{2}=77.46 \mathrm{~cm}^{2}
$$

Area of 6 design $=6 \times 77.46 \mathrm{~cm}^{2}=464.76 \mathrm{~cm}^{2}$
Total cost of making design $=464.76 \mathrm{~cm}^{2} \times ₹ 0.35$ per cm $^{2}=₹ 162.66$
14. Tick the correct answer in the following : Area of a sector of angle p (in degrees) of a circle with radius $R$ is
(A) $p / 180 \times 2 \pi R$
(B) $\mathrm{p} / 180 \times \pi \mathrm{R}^{2}$
(C) $p / 360 \times 2 \pi R$
(D) $p / 720 \times 2 \pi R^{2}$

## Answer

Area of a sector of angle $p=p / 360 \times \pi R^{2}$
$=p / 360 \times 2 / 2 \times \pi R^{2}$

$$
=2 p / 720 \times 2 \pi R^{2}
$$

Hence, Option (D) is correct.
NCERT 10th Maths Chapter 12, class 10 Maths Chapter 12 solutions

## Exercise: 12.3

Unless stated otherwise, use $\pi=22 / 7$

1. Find the area of the shaded region in Fig. 12.19, if $P Q=24 \mathrm{~cm}, P R=$ 7 cm and $O$ is the centre of the circle.

## Answer

$P Q=24 \mathrm{~cm}$ and $P R=7 \mathrm{~cm}$
$\angle \mathrm{P}=90^{\circ}$ (Angle in the semi-circle)
$\therefore$ QR is hypotenuse of the circle $=$ Diameter of the circle.
https://www.indcareer.com/schools/ncert-solutions-for-chapter-12-areas-related-to-circles/

## ClndCareer

By Pythagoras theorem,
$\mathrm{QR}^{2}=\mathrm{PR}^{2}+\mathrm{PQ}^{2}$
$\Rightarrow Q R^{2}=7^{2}+24^{2}$
$\Rightarrow \mathrm{QR}^{2}=49+576$
$\Rightarrow \mathrm{QR}^{2}=625$
$\Rightarrow Q R=25 \mathrm{~cm}$
$\therefore$ Radius of the circle $=25 / 2 \mathrm{~cm}$
Area of the semicircle $=\left(\pi R^{2}\right) / 2$

$$
=(22 / 7 \times 25 / 2 \times 25 / 2) / 2 \mathrm{~cm}^{2}
$$

$=13750 / 56 \mathrm{~cm}^{2}=245.54 \mathrm{~cm}^{2}$
Area of the $\triangle P Q R=1 / 2 \times P R \times P Q$

$$
=1 / 2 \times 7 \times 24 \mathrm{~cm}^{2}
$$

$=84 \mathrm{~cm}^{2}$
Area of the shaded region $=245.54 \mathrm{~cm}^{2}-84 \mathrm{~cm}^{2}=161.54 \mathrm{~cm}^{2}$
NCERT 10th Maths Chapter 12, class 10 Maths Chapter 12 solutions
2. Find the area of the shaded region in Fig. 12.20, if radii of the two concentric circles with centre $O$ are 7 cm and 14 cm respectively and $\angle A O C=40^{\circ}$.

## Answer



Fig. 12.20
Radius inner circle $=7 \mathrm{~cm}$
Radius of outer circle $=14 \mathrm{~cm}$
Angle made by sector $=40^{\circ}$
Area of the sector OAC $=\left(40^{\circ} / 360^{\circ}\right) \times \pi r^{2} \mathrm{~cm}^{2}$
$=1 / 9 \times 22 / 7 \times 14^{2}=68.44 \mathrm{~cm}^{2}$
Area of the sector $\mathrm{OBD}=\left(40^{\circ} / 360^{\circ}\right) \times \pi r^{2} \mathrm{~cm}^{2}$
$=1 / 9 \times 22 / 7 \times 7^{2}=17.11 \mathrm{~cm}^{2}$
Area of the shaded region ABDC = Area of the sector OAC - Area of the sector circle OBD

$$
=68.44 \mathrm{~cm}^{2}-17.11 \mathrm{~cm}^{2}=51.33 \mathrm{~cm}^{2}
$$

3. Find the area of the shaded region in Fig. 12.21, if $A B C D$ is a square of side 14 cm and APD and BPC are semicircles.


Fig. 12.21
https://www.indcareer.com/schools/ncert-solutions-for-chapter-12-areas-related-to-circles/

## ClndCareer

## Answer

There are two semicircles in the figure.
Side of the square $=14 \mathrm{~cm}$
Diameter of the semicircle $=14 \mathrm{~cm}$
$\therefore$ Radius of the semicircle $=7 \mathrm{~cm}$
Area of the square $=14 \times 14=196 \mathrm{~cm}^{2}$
Area of the semicircle $=\left(\pi R^{2}\right) / 2$

$$
=(22 / 7 \times 7 \times 7) / 2 \mathrm{~cm}^{2}=77 \mathrm{~cm}^{2}
$$

Area of two semicircles $=2 \times 77 \mathrm{~cm}^{2}=154 \mathrm{~cm}^{2}$
Area of the shaded region $=196 \mathrm{~cm}^{2}-154 \mathrm{~cm}^{2}=42 \mathrm{~cm}^{2}$
NCERT 10th Maths Chapter 12, class 10 Maths Chapter 12 solutions
4. Find the area of the shaded region in Fig. 12.22, where a circular arc of radius 6 cm has been drawn with vertex $O$ of an equilateral triangle OAB of side 12 cm as centre.

## Answer

$O A B$ is an equilateral triangle with each angle equal to $60^{\circ}$.
Area of the sector is common in both.
Radius of the circle $=6 \mathrm{~cm}$.
Side of the triangle $=12 \mathrm{~cm}$.
Area of the equilateral triangle $=\sqrt{ } 3 / 4 \times(O A)^{2}=\sqrt{ } 3 / 4 \times 12^{2}=36 \sqrt{3} \mathrm{~cm}^{2}$
Area of the circle $=\pi R^{2}=22 / 7 \times 6^{2}=792 / 7 \mathrm{~cm}^{2}$
https://www.indcareer.com/schools/ncert-solutions-for-chapter-12-areas-related-to-circles/

## ClindCareer

Area of the sector making angle $60^{\circ}=\left(60^{\circ} / 360^{\circ}\right) \times \pi r^{2} \mathrm{~cm}^{2}$
$=1 / 6 \times 22 / 7 \times 6^{2} \mathrm{~cm}^{2}=132 / 7 \mathrm{~cm}^{2}$
Area of the shaded region = Area of the equilateral triangle + Area of the circle - Area of the sector

$$
=36 \sqrt{ } 3 \mathrm{~cm}^{2}+792 / 7 \mathrm{~cm}^{2}-132 / 7 \mathrm{~cm}^{2}
$$

$=(36 \sqrt{ } 3+660 / 7) \mathrm{cm}^{2}$

## 5. From each corner of a square of side 4 cm a quadrant of a circle of radius 1 cm is cut and also a circle of diameter 2 cm is cut as shown in Fig. 12.23. Find the area of the remaining portion of the square.

## Answers

Side of the square $=4 \mathrm{~cm}$
Radius of the circle $=1 \mathrm{~cm}$
Four quadrant of a circle are cut from corner and one circle of radius are cut from middle.

Area of square $=(\text { side })^{2}=4^{2}=16 \mathrm{~cm}^{2}$
Area of the quadrant $=\left(\pi R^{2}\right) / 4 \mathrm{~cm}^{2}=\left(22 / 7 \times 1^{2}\right) / 4=11 / 14 \mathrm{~cm}^{2}$
$\therefore$ Total area of the 4 quadrants $=4 \times(11 / 14) \mathrm{cm}^{2}=22 / 7 \mathrm{~cm}^{2}$
Area of the circle $=\pi R^{2} \mathrm{~cm}^{2}=\left(22 / 7 \times 1^{2}\right)=22 / 7 \mathrm{~cm}^{2}$
Area of the shaded region = Area of square - (Area of the 4 quadrants + Area of the circle)

$$
\begin{gathered}
=16 \mathrm{~cm}^{2}-(22 / 7+22 / 7) \mathrm{cm}^{2} \\
=68 / 7 \mathrm{~cm}^{2}
\end{gathered}
$$

https://www.indcareer.com/schools/ncert-solutions-for-chapter-12-areas-related-to-circles/
6. In a circular table cover of radius 32 cm , a design is formed leaving an equilateral triangle $A B C$ in the middle as shown in Fig. 12.24. Find the area of the design.


Fig. 12.24

## Answer

Radius of the circle $=32 \mathrm{~cm}$
Draw a median AD of the triangle passing through the centre of the circle.
$\Rightarrow B D=A B / 2$
Since, $A D$ is the median of the triangle
$\therefore A O=$ Radius of the circle $=2 / 3 A D$
$\Rightarrow 2 / 3 \mathrm{AD}=32 \mathrm{~cm}$
$\Rightarrow A D=48 \mathrm{~cm}$
In $\triangle$ ADB,

https://www.indcareer.com/schools/ncert-solutions-for-chapter-12-areas-related-to-circles/

## ClindCareer

By Pythagoras theorem,

$$
\begin{aligned}
& A B^{2}=A D^{2}+B D^{2} \\
& \Rightarrow A B^{2}=48^{2}+(A B / 2)^{2} \\
& \Rightarrow A B^{2}=2304+A B^{2} / 4 \\
& \Rightarrow 3 / 4\left(A B^{2}\right)=2304 \\
& \Rightarrow A B^{2}=3072 \\
& \Rightarrow A B=32 \sqrt{ } 3 \mathrm{~cm}
\end{aligned}
$$

Area of $\triangle A D B=\sqrt{ } 3 / 4 \times(32 \sqrt{ } 3)^{2} \mathrm{~cm}^{2}=768 \sqrt{ } 3 \mathrm{~cm}^{2}$
Area of circle $=\pi R^{2}=22 / 7 \times 32 \times 32=22528 / 7 \mathrm{~cm}^{2}$
Area of the design $=$ Area of circle - Area of $\triangle A D B$

$$
=(22528 / 7-768 \sqrt{ } 3) \mathrm{cm}^{2}
$$

NCERT 10th Maths Chapter 12, class 10 Maths Chapter 12 solutions
7. In Fig. 12.25, ABCD is a square of side 14 cm . With centres $A, B, C$ and $D$, four circles are drawn such that each circle touch externally two of the remaining three circles. Find the area of the shaded region.

## Answer

Side of square $=14 \mathrm{~cm}$
Four quadrants are included in the four sides of the square.
$\therefore$ Radius of the circles $=14 / 2 \mathrm{~cm}=7 \mathrm{~cm}$
Area of the square $\mathrm{ABCD}=14^{2}=196 \mathrm{~cm}^{2}$
Area of the quadrant $=\left(\pi R^{2}\right) / 4 \mathrm{~cm}^{2}=\left(22 / 7 \times 7^{2}\right) / 4 \mathrm{~cm}^{2}$
https://www.indcareer.com/schools/ncert-solutions-for-chapter-12-areas-related-to-circles/

## ClndCareer

$=77 / 2 \mathrm{~cm}^{2}$
Total area of the quadrant $=4 \times 77 / 2 \mathrm{~cm}^{2}=154 \mathrm{~cm}^{2}$
Area of the shaded region = Area of the square ABCD - Area of the quadrant

$$
=196 \mathrm{~cm}^{2}-154 \mathrm{~cm}^{2}
$$

$=42 \mathrm{~cm}^{2}$

## 8. Fig. 12.26 depicts a racing track whose left and right ends are semicircular.

The distance between the two inner parallel line segments is 60 m and they are each 106 m long. If
the track is 10 m wide, find :
(i) the distance around the track along its inner edge
(ii) the area of the track.

## Answer

Width of track $=10 \mathrm{~m}$
Distance between two parallel lines $=60 \mathrm{~m}$
Length of parallel tracks = 106 m

https://www.indcareer.com/schools/ncert-solutions-for-chapter-12-areas-related-to-circles/

## ClndCareer

$D E=C F=60 \mathrm{~m}$
Radius of inner semicircle, $\mathrm{r}=\mathrm{OD}=\mathrm{O}^{\prime} \mathrm{C}$

$$
=60 / 2 \mathrm{~m}=30 \mathrm{~m}
$$

Radius of outer semicircle, $R=O A=O^{\prime} B$

$$
=30+10 \mathrm{~m}=40 \mathrm{~m}
$$

Also, $\mathrm{AB}=\mathrm{CD}=\mathrm{EF}=\mathrm{GH}=106 \mathrm{~m}$
Distance around the track along its inner edge $=C D+E F+2 \times$ (Circumference of inner semicircle)

$$
=106+106+(2 \times \pi r) m=
$$

$212+(2 \times 22 / 7 \times 30) m$

$$
=212+1320 / 7 m=2804 / 7
$$

m
Area of the track $=$ Area of ABCD + Area EFGH $+2 \times$ (area of outer semicircle) $-2 \times$ (area of inner
semicircle)

$$
\begin{aligned}
& =(A B \times C D)+(E F \times G H)+2 \times\left(\pi r^{2} / 2\right)-2 \times\left(\pi R^{2} / 2\right) \mathrm{m}^{2} \\
& =(106 \times 10)+(106 \times 10)+2 \times \pi / 2\left(r^{2}-R^{2}\right) \mathrm{m}^{2} \\
& =2120+22 / 7 \times 70 \times 10 \mathrm{~m}^{2} \\
& \quad=4320 \mathrm{~m}^{2}
\end{aligned}
$$

NCERT 10th Maths Chapter 12, class 10 Maths Chapter 12 solutions
9. In Fig. 12.27, AB and CD are two diameters of a circle (with centre O) perpendicular to each other and OD is the diameter of the smaller circle. If $O A=\mathbf{7 c m}$, find the area of the shaded region.
https://www.indcareer.com/schools/ncert-solutions-for-chapter-12-areas-related-to-circles/

## ClindCareer

## Answer

Radius of larger circle, $R=7 \mathrm{~cm}$
Radius of smaller circle, $r=7 / 2 \mathrm{~cm}$
Height of $\triangle B C A=O C=7 \mathrm{~cm}$
Base of $\triangle B C A=A B=14 \mathrm{~cm}$
Area of $\triangle B C A=1 / 2 \times A B \times O C=1 / 2 \times 7 \times 14=49 \mathrm{~cm}^{2}$
Area of larger circle $=\pi R^{2}=22 / 7 \times 7^{2}=154 \mathrm{~cm}^{2}$
Area of larger semicircle $=154 / 2 \mathrm{~cm}^{2}=77 \mathrm{~cm}^{2}$
Area of smaller circle $=\pi r^{2}=22 / 7 \times 7 / 2 \times 7 / 2=77 / 2 \mathrm{~cm}^{2}$
Area of the shaded region = Area of larger circle - Area of triangle - Area of larger semicircle + Area of smaller circle

Area of the shaded region $=(154-49-77+77 / 2) \mathrm{cm}^{2}$
$=133 / 2 \mathrm{~cm}^{2}=66.5 \mathrm{~cm}^{2}$
10. The area of an equilateral triangle $A B C$ is $17320.5 \mathrm{~cm}^{2}$. With each vertex of the triangle as centre, a circle is drawn with radius equal to half the length of the side of the triangle (see Fig. 12.28). Find the area of the shaded region. (Use $\pi=3.14$ and $\sqrt{ } 3=1.73205$ )

## Answer

$A B C$ is an equilateral triangle.
$\therefore \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}$
There are three sectors each making $60^{\circ}$.
https://www.indcareer.com/schools/ncert-solutions-for-chapter-12-areas-related-to-circles/

## ElndCareer

Area of $\triangle A B C=17320.5 \mathrm{~cm}^{2}$
$\Rightarrow \sqrt{ } 3 / 4 \times(\text { side })^{2}=17320.5$
$\Rightarrow(\text { side })^{2}=17320.5 \times 4 / 1.73205$
$\Rightarrow(\text { side })^{2}=4 \times 10^{4}$
$\Rightarrow$ side $=200 \mathrm{~cm}$
Radius of the circles $=200 / 2 \mathrm{~cm}=100 \mathrm{~cm}$
Area of the sector $=\left(60^{\circ} / 360^{\circ}\right) \times \pi r^{2} \mathrm{~cm}^{2}$
$=1 / 6 \times 3.14 \times(100)^{2} \mathrm{~cm}^{2}$
$=15700 / 3 \mathrm{~cm}^{2}$
Area of 3 sectors $=3 \times 15700 / 3=15700 \mathrm{~cm}^{2}=$

Area of the shaded region $=$ Area of equilateral triangle $A B C$ - Area of 3 sectors

$$
=17320.5-15700 \mathrm{~cm}^{2}=1620.5 \mathrm{~cm}^{2}
$$

NCERT 10th Maths Chapter 12, class 10 Maths Chapter 12 solutions
11. On a square handkerchief, nine circular designs each of radius 7 cm are made (see Fig. 12.29). Find the area of the remaining portion of the handkerchief.

## Answer



Fig. 12.29
Number of circular design $=9$
Radius of the circular design $=7 \mathrm{~cm}$
There are three circles in one side of square handkerchief.
$\therefore$ Side of the square $=3 \times$ diameter of circle $=3 \times 14=42 \mathrm{~cm}$
Area of the square $=42 \times 42 \mathrm{~cm}^{2}=1764 \mathrm{~cm}^{2}$
Area of the circle $=\pi r^{2}=22 / 7 \times 7 \times 7=154 \mathrm{~cm}^{2}$
Total area of the design $=9 \times 154=1386 \mathrm{~cm}^{2}$
Area of the remaining portion of the handkerchief = Area of the square Total area of the design

$$
=1764-1386=378
$$

$\mathrm{cm}^{2}$
12. In Fig. 12.30, OACB is a quadrant of a circle with centre $O$ and radius 3.5 cm . If $\mathrm{OD}=\mathbf{2 ~ c m}$, find the area of the
(i) quadrant OACB,
(ii) shaded region.


Fig. 12.30

## Answer

Radius of the quadrant $=3.5 \mathrm{~cm}=7 / 2 \mathrm{~cm}$
(i) Area of quadrant $\mathrm{OACB}=\left(\pi \mathrm{R}^{2}\right) / 4 \mathrm{~cm}^{2}$

$$
=(22 / 7 \times 7 / 2 \times 7 / 2) / 4 \mathrm{~cm}^{2}
$$

$=77 / 8 \mathrm{~cm}^{2}$
(ii) Area of triangle $\mathrm{BOD}=1 / 2 \times 7 / 2 \times 2 \mathrm{~cm}^{2}$

$$
=7 / 2 \mathrm{~cm}^{2}
$$

Area of shaded region = Area of quadrant - Area of triangle BOD

$$
=(77 / 8-7 / 2) \mathrm{cm}^{2}=49 / 8 \mathrm{~cm}^{2}
$$

$=6.125 \mathrm{~cm}^{2}$
13. In Fig. 12.31, a square $O A B C$ is inscribed in a quadrant OPBQ. If $O A=20 \mathrm{~cm}$, find the area of the shaded region. (Use $\pi=3.14$ )

## Answer



Fig. 12.31
Side of square $=O A=A B=20 \mathrm{~cm}$
Radius of the quadrant $=\mathrm{OB}$
OAB is right angled triangle
By Pythagoras theorem in $\triangle \mathrm{OAB}$,
$O B^{2}=A B^{2}+O A^{2}$
$\Rightarrow \mathrm{OB}^{2}=20^{2}+20^{2}$
$\Rightarrow \mathrm{OB}^{2}=400+400$
$\Rightarrow \mathrm{OB}^{2}=800$
$\Rightarrow O B=20 \sqrt{ } 2 \mathrm{~cm}$
Area of the quadrant $=\left(\pi R^{2}\right) / 4 \mathrm{~cm}^{2}=3.14 / 4 \times(20 \sqrt{ } 2)^{2} \mathrm{~cm}^{2}=628 \mathrm{~cm}^{2}$
Area of the square $=20 \times 20=400 \mathrm{~cm}^{2}$
Area of the shaded region = Area of the quadrant - Area of the square

$$
=628-400 \mathrm{~cm}^{2}=228 \mathrm{~cm}^{2}
$$

14. $A B$ and $C D$ are respectively arcs of two concentric circles of radii 21 cm and 7 cm and centre $O$ (see Fig. 12.32). If $\angle A O B=30^{\circ}$, find the area of the shaded region.

## ClindCareer

## Answer

Radius of the larger circle, $\mathrm{R}=21 \mathrm{~cm}$
Radius of the smaller circle, $r=7 \mathrm{~cm}$
Angle made by sectors of both concentric circles $=30^{\circ}$
Area of the larger sector $=\left(30^{\circ} / 360^{\circ}\right) \times \pi R^{2} \mathrm{~cm}^{2}$
$=1 / 12 \times 22 / 7 \times 21^{2} \mathrm{~cm}^{2}$
$=231 / 2 \mathrm{~cm}^{2}$
Area of the smaller circle $=\left(30^{\circ} / 360^{\circ}\right) \times \pi r^{2} \mathrm{~cm}^{2}$
$=1 / 12 \times 22 / 7 \times 7^{2} \mathrm{~cm}^{2}$
$=77 / 6 \mathrm{~cm}^{2}$
Area of the shaded region $=231 / 2-77 / 6 \mathrm{~cm}^{2}$
$=616 / 6 \mathrm{~cm}^{2}=308 / 3 \mathrm{~cm}^{2}$
15. In Fig. 12.33, $A B C$ is a quadrant of a circle of radius 14 cm and a semicircle is drawn with $B C$
as diameter. Find the area of the shaded region.

## Answer

Radius of the the quadrant ABC of circle $=14 \mathrm{~cm}$
$A B=A C=14 \mathrm{~cm}$
$B C$ is diameter of semicircle.
$A B C$ is right angled triangle.
By Pythagoras theorem in $\triangle A B C$,
https://www.indcareer.com/schools/ncert-solutions-for-chapter-12-areas-related-to-circles/

## ClndCareer

$B C^{2}=A B^{2}+A C^{2}$
$\Rightarrow \mathrm{BC}^{2}=14^{2}+14^{2}$
$\Rightarrow B C=14 \sqrt{ } 2 \mathrm{~cm}$
Radius of semicircle $=14 \sqrt{ } 2 / 2 \mathrm{~cm}=7 \sqrt{ } 2 \mathrm{~cm}$
Area of $\triangle A B C=1 / 2 \times 14 \times 14=98 \mathrm{~cm}^{2}$
Area of quadrant $=1 / 4 \times 22 / 7 \times 14 \times 14=154 \mathrm{~cm}^{2}$
Area of the semicircle $=1 / 2 \times 22 / 7 \times 7 \sqrt{ } 2 \times 7 \sqrt{ } 2=154 \mathrm{~cm}^{2}$
Area of the shaded region =Area of the semicircle + Area of $\triangle \mathrm{ABC}$ - Area of quadrant

$$
=154+98-154 \mathrm{~cm}^{2}=98 \mathrm{~cm}^{2}
$$

16. Calculate the area of the designed region in Fig. 12.34 common between the two quadrants of circles of radius 8 cm each.

## Answer



Fig. 12.34
$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD}=8 \mathrm{~cm}$
Area of $\triangle A B C=$ Area of $\triangle A D C=1 / 2 \times 8 \times 8=32 \mathrm{~cm}^{2}$
Area of quadrant AECB $=$ Area of quadrant AFCD $=1 / 4 \times 22 / 7 \times 8^{2}$
https://www.indcareer.com/schools/ncert-solutions-for-chapter-12-areas-related-to-circles/
$=352 / 7 \mathrm{~cm}^{2}$
Area of shaded region $=($ Area of quadrant AECB - Area of $\triangle A B C)+$ (Area of quadrant AFCD - Area of $\triangle A D C$ )

$$
=(352 / 7-32)+(352 / 7-32) \mathrm{cm}^{2}
$$

$$
=2 \times(352 / 7-32) \mathrm{cm}^{2}
$$

NCERT Solutions for Maths Chapter 12

## ClindCareer

## Chapterwise NCERT Solutions for Class 10 Maths:

- Chapter 1 Real Numbers
- Chapter 2 Polynomials
- Chapter 3 Pair of Linear Equations in Two Variables
- Chapter 4 Quadratic Equations
- Chapter 5 Arithmetic Progressions
- Chapter 6 Triangles
- Chapter 7 Coordinate Geometry
- Chapter 8 Introduction to Trigonometry
- Chapter 9 Applications of Trigonometry
- Chapter 10 Circle
- Chapter 11 Constructions
- Chapter 12 Areas related to Circles
- Chapter 13 Surface Areas and Volumes
- Chapter 14 Statistics
- Chapter 15 Probability


## ClndCareer

## About NCERT

The National Council of Educational Research and Training is an autonomous organization of the Government of India which was established in 1961 as a literary, scientific, and charitable Society under the Societies Registration Act. The major objectives of NCERT and its constituent units are to: undertake, promote and coordinate research in areas related to school education; prepare and publish model textbooks, supplementary material, newsletters, journals and develop educational kits, multimedia digital materials, etc.
Organise pre-service and in-service training of teachers; develop and disseminate innovative educational techniques and practices;collaborate and network with state educational departments, universities, NGOs and other educational institutions; act as a clearing house for ideas and information in matters related to school education; and act as a nodal agency for achieving the goals of Universalisation of Elementary Education. In addition to research, development, training, extension, publication and dissemination activities, NCERT is an implementation agency for bilateral cultural exchange programmes with other countries in the field of school education.Its headquarters are located at Sri Aurobindo Marg in New Delhi. Visit the Official NCERT website to learn more.

