

\& indCareer
 y indCareer
 \& indCareer

NCERT Solutions for Class 10th Mathematics: Chapter 6 -
 Triangles

Class 10: Mathematics Chapter 6 solutions. Complete Class 10 Mathematics Chapter 6 Notes.
NCERT Solutions for Class 10th Mathematics: Chapter 6 Triangles

NCERT 10th Mathematics Chapter 6, class 10 Mathematics Chapter 6 solutions
Page No: 122
Exercise 6.1

elndCareer

1. Fill in the blanks using correct word given in the brackets:-
(i) All circles are \qquad . (congruent, similar)

- Similar
(ii) All squares are \qquad . (similar, congruent)
- Similar
(iii) All \qquad triangles are similar. (isosceles, equilateral)

Equilateral
(iv) Two polygons of the same number of sides are similar, if (a) their corresponding angles are
\qquad and (b) their corresponding sides are \qquad . (equal, proportional)

- (a) Equal, (b) Proportional

2. Give two different examples of pair of
(i) Similar figures
(ii) Non-similar figures

Answer

(i) Two twenty-rupee notes, Two two rupees coins.
(ii) One rupee coin and five rupees coin, One rupee not and ten rupees note.
3. State whether the following quadrilaterals are similar or not:

ClindCareer

Fig. 6.8

Answer

The given two figures are not similar because their corresponding angles are not equal.

Exercise 6.2

1. In figure.6.17. (i) and (ii), $D E \| B C$. Find $E C$ in (i) and $A D$ in (ii).

Fig. 6.17

Answer

(i) In $\triangle \mathrm{ABC}, \mathrm{DE} / / \mathrm{BC}$ (Given)
$\therefore A D / D B=A E / E C$ [By using Basic proportionality theorem]
$\Rightarrow 1.5 / 3=1 / E C$
$\Rightarrow \Sigma \mathrm{EC}=3 / 1.5$
$E C=3 \times 10 / 15=2 \mathrm{~cm}$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/
ClndCareer

ClndCareer

Hence, $\mathrm{EC}=2 \mathrm{~cm}$.
(ii) In $\triangle A B C, D E / / B C$ (Given)
$\therefore \mathrm{AD} / \mathrm{DB}=\mathrm{AE} / \mathrm{EC}$ [By using Basic proportionality theorem]
$\Rightarrow A D / 7.2=1.8 / 5.4$
$\Rightarrow A D=1.8 \times 7.2 / 5.4=18 / 10 \times 72 / 10 \times 10 / 54=24 / 10$
$\Rightarrow \mathrm{AD}=2.4$
Hence, AD = 2.4 cm .
NCERT 10th Mathematics Chapter 6
2. E and F are points on the sides $P Q$ and $P R$ respectively of a $\triangle P Q R$. For each of the following cases, state whether EF || QR.
(i) $\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4 \mathrm{~cm}$
(ii) $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}$ and $\mathrm{RF}=9 \mathrm{~cm}$
(iii) $\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}$ and $\mathrm{PF}=0.63 \mathrm{~cm}$

Answer

In $\triangle P Q R, E$ and F are two points on side $P Q$ and $P R$ respectively.
(i) $\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}$ (Given)

PF $=3.6 \mathrm{~cm}, \mathrm{FR}=2,4 \mathrm{~cm}$ (Given)
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ElndCareer

$\therefore P E / E Q=3.9 / 3=39 / 30=13 / 10=1.3$ [By using Basic proportionality theorem]
And, $\mathrm{PF} / \mathrm{FR}=3.6 / 2.4=36 / 24=3 / 2=1.5$
So, PE/EQ $=$ PF/FR
Hence, EF is not parallel to QR .
(ii) $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}, \mathrm{RF}=9 \mathrm{~cm}$
\therefore PE/QE $=4 / 4.5=40 / 45=8 / 9$ [By using Basic proportionality theorem]
And, PF/RF = 8/9
So, PE/QE = PF/RF
Hence, $E F$ is parallel to $Q R$.
(iii) $\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}, \mathrm{PF}=0.36 \mathrm{~cm}$ (Given)

Here, $E Q=P Q-P E=1.28-0.18=1.10 \mathrm{~cm}$
And, $\mathrm{FR}=\mathrm{PR}-\mathrm{PF}=2.56-0.36=2.20 \mathrm{~cm}$
So, PE/EQ $=0.18 / 1.10=18 / 110=9 / 55 \ldots$ (i)
And, PE/FR $=0.36 / 2.20=36 / 220=9 / 55 \ldots$ (ii)
$\therefore P E / E Q=P F / F R$.
Hence, EF is parallel to QR.
3. In the fig 6.18, if LM || CB and LN || CD, prove that AM/MB = AN/AD

Fig. 6.18

Answer

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClndCareer

In the given figure, LM || CB
By using basic proportionality theorem, we get,
$A M / M B=A L / L C \ldots(i)$
Similarly, LN || CD
$\therefore \mathrm{AN} / \mathrm{AD}=\mathrm{AL} / \mathrm{LC} \ldots$... ii)
From (i) and (ii), we get
$\mathrm{AM} / \mathrm{MB}=\mathrm{AN} / \mathrm{AD}$
4. In the fig 6.19, DE||AC and DF||AE. Prove that
$B F / F E=B E / E C$

Fig. 6.19

Answer

In $\triangle A B C, D E \| A C$ (Given)
$\therefore B D / D A=B E / E C . . .(i)$ [By using Basic Proportionality Theorem]
In $\triangle A B C, D F| | A E$ (Given)
$\therefore \mathrm{BD} / \mathrm{DA}=\mathrm{BF} / \mathrm{FE} . .$. (ii) [By using Basic Proportionality Theorem]
From equation (i) and (ii), we get
$B E / E C=B F / F E$
NCERT 10th Mathematics Chapter 6
5. In the fig 6.20, DE||OQ and DF||OR, show that EF||QR.
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/
ClndCareer

Fig. 6.20
Answer
In $\triangle P Q O, D E \| O Q$ (Given)
\therefore PD/DO = PE/EQ ...(i) [By using Basic Proportionality Theorem]
In $\triangle P Q O, D E \| O Q$ (Given)
\therefore PD/DO $=$ PF/FR ...(ii) [By using Basic Proportionality Theorem]
From equation (i) and (ii), we get
PE/EQ = PF/FR
In $\triangle \mathrm{PQR}, \mathrm{EF}| | \mathrm{QR}$. [By converse of Basic Proportionality Theorem]
6. In the fig 6.21, A, B and C are points on $O P, O Q$ and $O R$ respectively such that $A B|\mid P Q$ and $A C$ || $P R$. Show that $B C$ || $Q R$.

Fig. 6.21

Answer

In $\triangle \mathrm{OPQ}, \mathrm{AB}| | \mathrm{PQ}$ (Given)
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClndCareer

$\therefore \mathrm{OA} / \mathrm{AP}=\mathrm{OB} / \mathrm{BQ} . .$. (i) [By using Basic Proportionality Theorem]
In $\triangle O P R, A C| | ~ P R ~(G i v e n) ~$
$\therefore \mathrm{OA} / \mathrm{AP}=\mathrm{OC} / \mathrm{CR}$...(ii) [By using Basic Proportionality Theorem]
From equation (i) and (ii), we get
$O B / B Q=O C / C R$
In $\triangle \mathrm{OQR}, \mathrm{BC}| | \mathrm{QR}$. [By converse of Basic Proportionality Theorem].
NCERT 10th Mathematics Chapter 6
7. Using Basic proportionality theorem, prove that a line drawn through the mid-points of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved it in Class IX).

Answer

Given: $\triangle A B C$ in which D is the mid point of $A B$ such that $A D=D B$.
A line parallel to $B C$ intersects $A C$ at E as shown in above figure such that $D E$ || $B C$.
To Prove: E is the mid point of AC.
Proof: D is the mid-point of $A B$.
$\therefore \mathrm{AD}=\mathrm{DB}$
$\Rightarrow A D / B D=1$... (i)
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

In $\triangle A B C, D E| | B C$,
Therefore, AD/DB = AE/EC [By using Basic Proportionality Theorem]
$\Rightarrow 1=\mathrm{AE} / \mathrm{EC}$ [From equation (i)]
$\therefore A E=E C$

Hence, E is the mid point of AC .
NCERT 10th Mathematics Chapter 6
8. Using Converse of basic proportionality theorem, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (Recall that you have done it in Class IX).

Answer

Given: $\triangle A B C$ in which D and E are the mid points of $A B$ and $A C$ respectively such that $A D=B D$ and $A E=E C$.

To Prove: DE || BC
Proof: D is the mid point of AB (Given)
$\therefore A D=D B$
$\Rightarrow A D / B D=1$... (i)
Also, E is the mid-point of AC (Given)
$\therefore A E=E C$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/
ClndCareer

ClndCareer

$\Rightarrow A E / E C=1$ [From equation (i)]
From equation (i) and (ii), we get
AD/BD = AE/EC
Hence, DE || BC [By converse of Basic Proportionality Theorem]
NCERT 10th Mathematics Chapter 6
9. $A B C D$ is a trapezium in which $A B|\mid D C$ and its diagonals intersect each other at the point O. Show that AO/BO = CO/DO.

Answer

Given: $A B C D$ is a trapezium in which $A B \| D C$ in which diagonals $A C$ and $B D$ intersect each other at O.

To Prove: $\mathrm{AO} / \mathrm{BO}=\mathrm{CO} / \mathrm{DO}$
Construction: Through O, draw EO || DC || AB
Proof: In $\triangle A D C$, we have
OE || DC (By Construction)
$\therefore A E / E D=A O / C O$...(i) [By using Basic Proportionality Theorem]
In $\triangle \mathrm{ABD}$, we have
OE || AB (By Construction)
\therefore DE/EA = DO/BO ... (ii) [By using Basic Proportionality Theorem]
From equation (i) and (ii), we get
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/
$A O / C O=B O / D O$
$\Rightarrow \mathrm{AO} / \mathrm{BO}=\mathrm{CO} / \mathrm{DO}$
NCERT 10th Mathematics Chapter 6
10. The diagonals of a quadrilateral $A B C D$ intersect each other at the point O such that $A O / B O=C O / D O$. Show that $A B C D$ is a trapezium.

Answer

Given: Quadrilateral $A B C D$ in which diagonals $A C$ and $B D$ intersects each other at O such that AO/BO = CO/DO.

To Prove: $A B C D$ is a trapezium
Construction: Through O, draw line EO, where EO \|AB, which meets AD at E.
Proof: In \triangle DAB, we have
EO || AB
\therefore DE/EA = DO/OB ...(i) [By using Basic Proportionality Theorem]
Also, $\mathrm{AO} / \mathrm{BO}=\mathrm{CO} / \mathrm{DO}$ (Given)
$\Rightarrow \mathrm{AO} / \mathrm{CO}=\mathrm{BO} / \mathrm{DO}$
$\Rightarrow \mathrm{CO} / \mathrm{AO}=\mathrm{BO} / \mathrm{DO}$
$\Rightarrow \mathrm{DO} / \mathrm{OB}=\mathrm{CO} / \mathrm{AO}$
From equation (i) and (ii), we get
$D E / E A=C O / A O$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClndCareer

Therefore, By using converse of Basic Proportionality Theorem, EO || DC also EO || AB
$\Rightarrow A B \| D C$.
Hence, quadrilateral $A B C D$ is a trapezium with $A B|\mid C D$.
NCERT 10th Mathematics Chapter 6

Exercise 6.3

1. State which pairs of triangles in Fig. 6.34 are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:

Fig. 6.34

Answer

(i) In $\triangle A B C$ and $\triangle P Q R$, we have

$$
\begin{aligned}
& \angle A=\angle P=60^{\circ} \text { (Given) } \\
& \angle B=\angle Q=80^{\circ} \text { (Given) } \\
& \angle C=\angle R=40^{\circ} \text { (Given) } \\
& \therefore \triangle A B C \sim \triangle P Q R \text { (AAA similarity criterion) }
\end{aligned}
$$

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/
ClndCareer

ClndCareer

(ii) In $\triangle A B C$ and $\triangle P Q R$, we have
$A B / Q R=B C / R P=C A / P Q$
$\therefore \triangle A B C \sim \triangle Q R P$ (SSS similarity criterion)
(iii) In $\triangle \mathrm{LMP}$ and $\triangle \mathrm{DEF}$, we have
$L M=2.7, M P=2, L P=3, E F=5, D E=4, D F=6$
MP/DE $=2 / 4=1 / 2$
PL/DF $=3 / 6=1 / 2$
$L M / E F=2.7 / 5=27 / 50$
Here, MP/DE $=$ PL/DF $\neq \mathrm{LM} / E F$
Hence, $\triangle \mathrm{LMP}$ and $\triangle \mathrm{DEF}$ are not similar.
(iv) In $\triangle M N L$ and $\triangle Q P R$, we have
$M N / Q P=M L / Q R=1 / 2$
$\angle \mathrm{M}=\angle \mathrm{Q}=70^{\circ}$
$\therefore \triangle \mathrm{MNL} \sim \triangle$ QPR (SAS similarity criterion)
(v) In $\triangle A B C$ and $\triangle D E F$, we have
$A B=2.5, B C=3, \angle A=80^{\circ}, E F=6, D F=5, \angle F=80^{\circ}$
Here, $\mathrm{AB} / \mathrm{DF}=2.5 / 5=1 / 2$
And, $B C / E F=3 / 6=1 / 2$
$\Rightarrow \angle B \neq \angle F$
Hence, $\triangle A B C$ and $\triangle D E F$ are not similar.
(vi) In $\triangle D E F$, we have
$\angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}=180^{\circ}$ (sum of angles of a triangle)
$\Rightarrow 70^{\circ}+80^{\circ}+\angle \mathrm{F}=180^{\circ}$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClndCareer

$\Rightarrow \angle \mathrm{F}=180^{\circ}-70^{\circ}-80^{\circ}$
$\Rightarrow \angle F=30^{\circ}$
In PQR, we have
$\angle P+\angle Q+\angle R=180($ Sum of angles of $\Delta)$
$\Rightarrow \angle \mathrm{P}+80^{\circ}+30^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{P}=180^{\circ}-80^{\circ}-30^{\circ}$
$\Rightarrow \angle P=70^{\circ}$
In $\triangle \mathrm{DEF}$ and $\triangle \mathrm{PQR}$, we have
$\angle \mathrm{D}=\angle \mathrm{P}=70^{\circ}$
$\angle F=\angle Q=80^{\circ}$
$\angle \mathrm{F}=\angle \mathrm{R}=30^{\circ}$
Hence, $\triangle \mathrm{DEF} \sim \triangle \mathrm{PQR}$ (AAA similarity criterion)
NCERT 10th Mathematics Chapter 6
2. In the fig $6.35, \triangle O D C \propto 1 / 4 \triangle O B A, \angle B O C=125^{\circ}$ and $\angle C D O=70^{\circ}$. Find $\angle D O C, \angle$ DCO and $\angle \mathrm{OAB}$.

Fig. 6.35

Answer

DOB is a straight line.
Therefore, $\angle \mathrm{DOC}+\angle \mathrm{COB}=180^{\circ}$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/
ClindCareer
$\Rightarrow \angle D O C=180^{\circ}-125^{\circ}$
$=55^{\circ}$
In \triangle DOC,
$\angle \mathrm{DCO}+\angle \mathrm{CDO}+\angle \mathrm{DOC}=180^{\circ}$
(Sum of the measures of the angles of a triangle is 180°.)
$\Rightarrow \angle D C O+70^{\circ}+55^{\circ}=180^{\circ}$
$\Rightarrow \angle D C O=55^{\circ}$
It is given that $\triangle \mathrm{ODC} \sim \triangle \mathrm{OBA}$.
$\therefore \angle \mathrm{OAB}=\angle \mathrm{OCD}$ [Corresponding angles are equal in similar triangles.]
$\Rightarrow \angle \mathrm{OAB}=55^{\circ}$
$\therefore \angle \mathrm{OAB}=\angle \mathrm{OCD}$ [Corresponding angles are equal in similar triangles.]
$\Rightarrow \angle \mathrm{OAB}=55^{\circ}$
NCERT 10th Mathematics Chapter 6
3. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B$ || $D C$ intersect each other at the point O. Using a similarity criterion for two triangles, show that $A O / O C=O B / O D$

Answer

In $\triangle \mathrm{DOC}$ and $\triangle \mathrm{BOA}$,
$\angle \mathrm{CDO}=\angle \mathrm{ABO}$ [Alternate interior angles as $\mathrm{AB}|\mid \mathrm{CD}$]
$\angle D C O=\angle B A O$ [Alternate interior angles as $A B|\mid C D]$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClindCareer

$\angle D O C=\angle B O A$ [Vertically opposite angles]
$\therefore \triangle \mathrm{DOC} \sim \triangle \mathrm{BOA}$ [AAA similarity criterion]
$\therefore \mathrm{DO} / \mathrm{BO}=\mathrm{OC} / \mathrm{OA}$ [Corresponding sides are proportional]
$\Rightarrow \mathrm{OA} / \mathrm{OC}=\mathrm{OB} / \mathrm{OD}$
NCERT 10th Mathematics Chapter 6

4. In the fig.6.36, QR/QS $=$ QT/PR and $\angle 1=\angle 2$. Show that $\triangle P Q S \sim \Delta T Q R$.

Fig. 6.36

Answer
In $\triangle \mathrm{PQR}, \angle \mathrm{PQR}=\angle \mathrm{PRQ}$
$\therefore P Q=P R . .(i)$
Given, QR/QS = QT/PR
Using (i), we get
QR/QS = QT/QP
In $\triangle \mathrm{PQS}$ and $\triangle T Q R$,
QR/QS = QT/QP [using (ii)]
$\angle Q=\angle Q$
$\therefore \triangle \mathrm{PQS} \sim \Delta \mathrm{TQR}$ [SAS similarity criterion]
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/
ClndCareer

ClndCareer

NCERT 10th Mathematics Chapter 6
5. S and T are point on sides $P R$ and $Q R$ of $\triangle P Q R$ such that $\angle P=\angle R T S$. Show that $\Delta R P Q \sim \Delta R T S$.

Answer

In $\triangle R P Q$ and $\triangle R S T$,
$\angle \mathrm{RTS}=\angle \mathrm{QPS}$ (Given)
$\angle \mathrm{R}=\angle \mathrm{R}$ (Common angle)
$\therefore \triangle \mathrm{RPQ} \sim \triangle \mathrm{RTS}$ (By AA similarity criterion)
6. In the fig 6.37, if $\triangle A B E \cong \triangle A C D$, show that $\triangle A D E \sim \triangle A B C$.

Fig. 6.37

Answer

It is given that $\triangle A B E \cong \triangle A C D$.
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/
$\therefore \mathrm{AB}=\mathrm{AC}[\mathrm{By} \mathrm{cpct}] \ldots$ (i)
And, AD = AE [By cpct] ...(ii)
In $\triangle A D E$ and $\triangle A B C$,
$A D / A B=A E / A C[D i v i d i n g$ equation (ii) by (i)]
$\angle \mathrm{A}=\angle \mathrm{A}$ [Common angle]
$\therefore \triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$ [By SAS similarity criterion]
NCERT 10th Mathematics Chapter 6
7. In the fig 6.38, altitudes $A D$ and $C E$ of $\triangle A B C$ intersect each other at the point P. Show that:

Fig. 6.38
(i) $\triangle \mathrm{AEP} \sim \triangle \mathrm{CDP}$
(ii) $\triangle \mathrm{ABD} \sim \triangle \mathrm{CBE}$
(iii) \triangle AEP ~ \triangle ADB
(iv) $\triangle P D C \sim \triangle B E C$
(i) $\ln \triangle A E P$ and $\triangle C D P$,
$\angle \mathrm{AEP}=\angle \mathrm{CDP}\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{APE}=\angle \mathrm{CPD}$ (Vertically opposite angles)
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

Hence, by using AA similarity criterion,
\triangle AEP ~ \triangle CDP
(ii) In $\triangle A B D$ and $\triangle C B E$,
$\angle \mathrm{ADB}=\angle \mathrm{CEB}\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{ABD}=\angle \mathrm{CBE}$ (Common)
Hence, by using AA similarity criterion,
$\triangle \mathrm{ABD} \sim \triangle \mathrm{CBE}$
(iii) In $\triangle A E P$ and $\triangle A D B$,
$\angle A E P=\angle A D B\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{PAE}=\angle \mathrm{DAB}$ (Common)
Hence, by using AA similarity criterion,
$\triangle \mathrm{AEP} \sim \triangle \mathrm{ADB}$
(iv) In $\triangle P D C$ and $\triangle B E C$,
$\angle \mathrm{PDC}=\angle \mathrm{BEC}\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle P C D=\angle B C E$ (Common angle)
Hence, by using AA similarity criterion,
$\triangle \mathrm{PDC} \sim \triangle \mathrm{BEC}$
NCERT 10th Mathematics Chapter 6
8. E is a point on the side $A D$ produced of a parallelogram $A B C D$ and $B E$ intersects $C D$ at F. Show that $\triangle A B E \sim \Delta C F B$.

Answer

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{CFB}$,
$\angle \mathrm{A}=\angle \mathrm{C}$ (Opposite angles of a parallelogram)
$\angle \mathrm{AEB}=\angle \mathrm{CBF}$ (Alternate interior angles as AE || BC)
$\therefore \triangle \mathrm{ABE} \sim \triangle \mathrm{CFB}$ (By AA similarity criterion)
9. In the fig 6.39, ABC and AMP are two right triangles, right angled at B and M respectively, prove that:

Fig. 6.39
(i) $\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$
(ii) $\mathrm{CA} / \mathrm{PA}=\mathrm{BC} / \mathrm{MP}$

Answer

(i) In $\triangle A B C$ and $\triangle A M P$, we have
$\angle \mathrm{A}=\angle \mathrm{A}$ (common angle)
$\angle A B C=\angle A M P=90^{\circ}\left(\right.$ each $\left.90^{\circ}\right)$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClndCareer

$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$ (By AA similarity criterion)
(ii) As, $\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$ (By AA similarity criterion)

If two triangles are similar then the corresponding sides are equal,
Hence, CA/PA = BC/MP
NCERT 10th Mathematics Chapter 6
10. $C D$ and $G H$ are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides $A B$ and $F E$ of $\triangle A B C$ and $\triangle E F G$ respectively. If $\triangle A B C \sim \Delta F E G$, Show that:
(i) $\mathrm{CD} / \mathrm{GH}=\mathrm{AC} / \mathrm{FG}$
(ii) $\triangle \mathrm{DCB} \sim \triangle \mathrm{HGE}$
(iii) \triangle DCA $\sim \Delta H G F$

Answer

(i) It is given that $\triangle \mathrm{ABC} \sim \triangle \mathrm{FEG}$.
$\therefore \angle A=\angle F, \angle B=\angle E$, and $\angle A C B=\angle F G E$
$\angle A C B=\angle F G E$
$\therefore \angle \mathrm{ACD}=\angle \mathrm{FGH}$ (Angle bisector)
And, $\angle \mathrm{DCB}=\angle \mathrm{HGE}$ (Angle bisector)
In $\triangle \mathrm{ACD}$ and $\triangle \mathrm{FGH}$,
$\angle \mathrm{A}=\angle \mathrm{F}$ (Proved above)
$\angle A C D=\angle F G H$ (Proved above)
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/
$\therefore \triangle \mathrm{ACD} \sim \triangle \mathrm{FGH}$ (By AA similarity criterion)
$\Rightarrow \mathrm{CD} / \mathrm{GH}=\mathrm{AC} / \mathrm{FG}$
(ii) In $\triangle \mathrm{DCB}$ and $\triangle \mathrm{HGE}$,
$\angle D C B=\angle H G E($ Proved above $)$
$\angle \mathrm{B}=\angle \mathrm{E}$ (Proved above)
$\therefore \triangle \mathrm{DCB} \sim \Delta H$ GE (By AA similarity criterion)
(iii) In $\triangle D C A$ and $\triangle H G F$,
$\angle \mathrm{ACD}=\angle \mathrm{FGH}$ (Proved above)
$\angle \mathrm{A}=\angle \mathrm{F}$ (Proved above)
$\therefore \triangle$ DCA $\sim \Delta H G F ~(B y ~ A A ~ s i m i l a r i t y ~ c r i t e r i o n) ~$
NCERT 10th Mathematics Chapter 6
11. In the following figure, E is a point on side $C B$ produced of an isosceles triangle $A B C$ with $A B=A C$. If $A D \perp B C$ and $E F \perp A C$, prove that $\triangle A B D \sim \triangle E C F$.

Fig. 6.40

Answer

It is given that $A B C$ is an isosceles triangle.
$\therefore A B=A C$
$\Rightarrow \angle \mathrm{ABD}=\angle \mathrm{ECF}$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClindCareer

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ECF}$,
$\angle \mathrm{ADB}=\angle \mathrm{EFC}\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle B A D=\angle C E F$ (Proved above)
$\therefore \triangle \mathrm{ABD} \sim \triangle \mathrm{ECF}$ (By using AA similarity criterion)
12. Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $Q R$ and median $P M$ of $\triangle P Q R$ (see Fig 6.41). Show that $\triangle A B C \sim \triangle P Q R$.

Fig. 6.41

Answer

Given: $\triangle A B C$ and $\triangle P Q R, A B, B C$ and median $A D$ of $\triangle A B C$ are proportional to sides $P Q, Q R$ and median PM of $\triangle P Q R$
i.e., $A B / P Q=B C / Q R=A D / P M$

To Prove: $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
Proof: $A B / P Q=B C / Q R=A D / P M$
$\Rightarrow \frac{A B}{P Q}=\frac{\frac{1}{2} B C}{\frac{1}{2} Q R}=\frac{A D}{P M} \ldots$ (i)
$\Rightarrow A B / P Q=B C / Q R=A D / P M$ (D is the mid-point of $B C . M$ is the mid point of $Q R$)
$\Rightarrow \triangle \mathrm{ABD} \sim \triangle \mathrm{PQM}$ [SSS similarity criterion]
$\therefore \angle \mathrm{ABD}=\angle \mathrm{PQM}$ [Corresponding angles of two similar triangles are equal]
$\Rightarrow \angle \mathrm{ABC}=\angle \mathrm{PQR}$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

In $\triangle A B C$ and $\triangle P Q R$
$A B / P Q=B C / Q R . . .(i)$
$\angle A B C=\angle P Q R$
From equation (i) and (ii), we get
$\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ [By SAS similarity criterion]
NCERT 10th Mathematics Chapter 6
13. D is a point on the side $B C$ of a triangle $A B C$ such that $\angle A D C=\angle B A C$. Show that $C A^{2}=C B . C D$

Answer

In $\triangle A D C$ and $\triangle B A C$,
$\angle A D C=\angle B A C$ (Given)
$\angle \mathrm{ACD}=\angle \mathrm{BCA}$ (Common angle)
$\therefore \triangle \mathrm{ADC} \sim \triangle \mathrm{BAC}$ (By AA similarity criterion)
We know that corresponding sides of similar triangles are in proportion.
$\therefore \mathrm{CA} / \mathrm{CB}=\mathrm{CD} / \mathrm{CA}$
$\Rightarrow C A^{2}=C B . C D$.
14. Sides $A B$ and $A C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $P R$ and median $P M$ of another triangle PQR. Show that $\triangle A B C \sim \triangle P Q R$.

Answer

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClindCareer

Given: Two triangles $\triangle A B C$ and $\triangle P Q R$ in which $A D$ and $P M$ are medians such that $A B / P Q=$ AC/PR = AD/PM

To Prove: $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
Construction: Produce $A D$ to E so that $A D=D E$. Join $C E$, Similarly produce $P M$ to N such that $P M=M N$, also Join RN.

Proof: In $\triangle A B D$ and $\triangle C D E$, we have
AD = DE [By Construction]
$\mathrm{BD}=\mathrm{DC}[\therefore \mathrm{AP}$ is the median $]$
and, $\angle \mathrm{ADB}=\angle \mathrm{CDE}$ [Vertically opp. angles]
$\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{CDE}$ [By SAS criterion of congruence]
$\Rightarrow A B=C E[C P C T]$...(i)
Also, in $\triangle P Q M$ and $\triangle M N R$, we have
$\mathrm{PM}=\mathrm{MN}[\mathrm{By}$ Construction]
$\mathrm{QM}=\mathrm{MR}[\therefore \mathrm{PM}$ is the median $]$
and, $\angle \mathrm{PMQ}=\angle \mathrm{NMR}$ [Vertically opposite angles]
$\therefore \triangle \mathrm{PQM}=\triangle \mathrm{MNR}$ [By SAS criterion of congruence]
$\Rightarrow P Q=R N[C P C T] ~ . . .(i i)$
Now, $A B / P Q=A C / P R=A D / P M$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/
ClndCareer

elndCareer

$\Rightarrow C E / R N=A C / P R=A D / P M \ldots[F r o m$ (i) and (ii)]
$\Rightarrow C E / R N=A C / P R=2 A D / 2 P M$
$\Rightarrow C E / R N=A C / P R=A E / P N[\therefore 2 A D=A E$ and $2 P M=P N]$
$\therefore \triangle \mathrm{ACE} \sim \triangle \mathrm{PRN}$ [By SSS similarity criterion]
Therefore, $\angle 2=\angle 4$
Similarly, $\angle 1=\angle 3$
$\therefore \angle 1+\angle 2=\angle 3+\angle 4$
$\Rightarrow \angle A=\angle P$.
Now, In $\triangle A B C$ and $\triangle P Q R$, we have
$A B / P Q=A C / P R$ (Given)
$\angle \mathrm{A}=\angle \mathrm{P}[$ From (iii) $]$
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ [By SAS similarity criterion]
NCERT 10th Mathematics Chapter 6
15. A vertical pole of a length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

Answer

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

Length of the vertical pole $=6 \mathrm{~m}$ (Given)
Shadow of the pole $=4 \mathrm{~m}$ (Given)
Let Height of tower $=h \mathrm{~m}$
Length of shadow of the tower $=28 \mathrm{~m}$ (Given)
In $\triangle A B C$ and $\triangle D E F$,
$\angle \mathrm{C}=\angle \mathrm{E}$ (angular elevation of sum)
$\angle B=\angle F=90^{\circ}$
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ (By AA similarity criterion)
$\therefore A B / D F=B C / E F$ (If two triangles are similar corresponding sides are proportional)
$\therefore 6 / h=4 / 28$
$\Rightarrow h=6 \times 28 / 4$
$\Rightarrow h=6 \times 7$
$\Rightarrow h=42 \mathrm{~m}$
Hence, the height of the tower is 42 m .
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/
ClndCareer

ElndCareer

16. If $A D$ and $P M$ are medians of triangles $A B C$ and $P Q R$, respectively where $\triangle A B C \sim$ $\triangle P Q R$ prove that $A B / P Q=A D / P M$.

Answer

It is given that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
We know that the corresponding sides of similar triangles are in proportion. $\therefore \mathrm{AB} / \mathrm{PQ}=\mathrm{AC} / \mathrm{PR}=$ BC/QR ...(i)

Also, $\angle \mathrm{A}=\angle \mathrm{P}, \angle \mathrm{B}=\angle \mathrm{Q}, \angle \mathrm{C}=\angle \mathrm{R}$
Since AD and PM are medians, they will divide their opposite sides. $\therefore \mathrm{BD}=\mathrm{BC} / 2$ and $\mathrm{QM}=$ QR/2 ...(iii)

From equations (i) and (iii), we get
$A B / P Q=B D / Q M \ldots$ (iv)
In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{PQM}$,
$\angle \mathrm{B}=\angle \mathrm{Q}$ [Using equation (ii)]
$A B / P Q=B D / Q M$ [Using equation (iv)]
$\therefore \triangle A B D \sim \triangle P Q M$ (By SAS similarity criterion) $\Rightarrow A B / P Q=B D / Q M=A D / P M$.
NCERT 10th Mathematics Chapter 6

Exercise 6.4

1. Let $\triangle A B C \sim \triangle D E F$ and their areas be, respectively, $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $E F=15.4 \mathrm{~cm}$, find $B C$.

Answer

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClndCareer

It is given that,
Area of $\triangle A B C=64 \mathrm{~cm}^{2}$
Area of $\triangle D E F=121 \mathrm{~cm}^{2}$
$E F=15.4 \mathrm{~cm}$
and, $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
\therefore Area of $\Delta \mathrm{ABC} /$ Area of $\triangle \mathrm{DEF}=\mathrm{AB}^{2} / \mathrm{DE}^{2}$
$=\mathrm{AC}^{2} / \mathrm{DF}^{2}=\mathrm{BC}^{2} / \mathrm{EF}^{2}$
[If two triangles are similar, ratio of their areas are equal to the square of the ratio of their corresponding sides]

$$
\begin{aligned}
& \therefore 64 / 121=B C^{2} / E F^{2} \\
& \Rightarrow(8 / 11)^{2}=(B C / 15.4)^{2} \\
& \Rightarrow 8 / 11=B C / 15.4 \\
& \Rightarrow B C=8 \times 15.4 / 11 \\
& \Rightarrow B C=8 \times 1.4 \\
& \Rightarrow B C=11.2 \mathrm{~cm}
\end{aligned}
$$

2. Diagonals of a trapezium $A B C D$ with $A B|\mid D C$ intersect each other at the point O. If $A B$ $=2 C D$, find the ratio of the areas of triangles $A O B$ and COD.

Answer

$A B C D$ is a trapezium with $A B|\mid D C$. Diagonals $A C$ and $B D$ intersect each other at point O.
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClndCareer

In $\triangle A O B$ and $\triangle C O D$, we have
$\angle 1=\angle 2$ (Alternate angles)
$\angle 3=\angle 4$ (Alternate angles)
$\angle 5=\angle 6$ (Vertically opposite angle)
$\therefore \triangle \mathrm{AOB} \sim \triangle C O D$ [By AAA similarity criterion]
Now, Area of ($\triangle \mathrm{AOB}) /$ Area of $(\triangle \mathrm{COD})$
$=A B^{2} / C D^{2}$ [If two triangles are similar then the ratio of their areas are equal to the square of the ratio of their corresponding sides]
$=(2 C D)^{2} / C D^{2}[\therefore A B=C D]$
\therefore Area of $(\triangle A O B) /$ Area of $(\Delta C O D)$
$=4 C D^{2} / C D=4 / 1$
Hence, the required ratio of the area of $\triangle A O B$ and $\triangle C O D=4: 1$
3. In the fig 6.53, $A B C$ and DBC are two triangles on the same base $B C$. If $A D$ intersects $B C$ at O, show that area $(\triangle A B C) /$ area $(\triangle D B C)=A O / D O$.

Fig. 6.53

Answer

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

Given: $A B C$ and DBC are triangles on the same base $B C$. Ad intersects $B C$ at O.
To Prove: area $(\triangle A B C) /$ area $(\triangle D B C)=A O / D O$.
Construction: Let us draw two perpendiculars AP and DM on line BC.
Proof: We know that area of a triangle $=1 / 2 \times$ Base \times Height
$\therefore \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{\frac{1}{2} B C \times A P}{\frac{1}{2} B C \times D M}=\frac{A P}{D M}$
In $\triangle \mathrm{APO}$ and $\triangle \mathrm{DMO}$,
$\angle \mathrm{APO}=\angle \mathrm{DMO}\left(\right.$ Each equals to $\left.90^{\circ}\right)$
$\angle \mathrm{AOP}=\angle \mathrm{DOM}$ (Vertically opposite angles)
$\therefore \triangle \mathrm{APO} \sim \triangle \mathrm{DMO}$ (By AA similarity criterion) \therefore AP/DM $=\mathrm{AO} / \mathrm{DO}$
\Rightarrow area $(\triangle A B C) /$ area $(\triangle D B C)=A O / D O$.
4. If the areas of two similar triangles are equal, prove that they are congruent.

Answer

Given: $\triangle A B C$ and $\triangle P Q R$ are similar and equal in area.
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/
ClndCareer

ClndCareer

To Prove: $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$
Proof: Since, $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$

$$
\begin{aligned}
& \therefore \text { Area of }(\triangle A B C) / \text { Area of }(\triangle P Q R)=B C^{2} / Q R^{2} \\
& \Rightarrow B C^{2} / Q R^{2}=1[\text { Since, Area }(\triangle A B C)=(\triangle P Q R) \\
& \Rightarrow B C^{2} / Q R^{2} \\
& \Rightarrow B C=Q R
\end{aligned}
$$

Similarly, we can prove that
$A B=P Q$ and $A C=P R$
Thus, $\triangle A B C \cong \triangle P Q R$ [BY SSS criterion of congruence]
5. D, E and F are respectively the mid-points of sides $A B, B C$ and $C A$ of $\triangle A B C$. Find the ratio of the area of $\triangle D E F$ and $\triangle A B C$.

Answer

Given: D, E and F are the mid-points of the sides $A B, B C$ and $C A$ respectively of the $\triangle A B C$.
To Find: area($\triangle D E F)$ and area($\triangle A B C$)
Solution: In $\triangle A B C$, we have
F is the mid point of $A B$ (Given)
E is the mid-point of $A C$ (Given)
So, by the mid-point theorem, we have
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClndCareer

FE || $B C$ and $F E=1 / 2 B C$
$\Rightarrow F E$ || $B C$ and $F E$ || $B D[B D=1 / 2 B C]$
\therefore BDEF is parallelogram [Opposite sides of parallelogram are equal and parallel]
Similarly in $\triangle F B D$ and $\triangle D E F$, we have
FB = DE (Opposite sides of parallelogram BDEF)
FD = FD (Common)
$B D=F E($ Opposite sides of parallelogram BDEF)
$\therefore \triangle \mathrm{FBD} \cong \triangle \mathrm{DEF}$
Similarly, we can prove that
$\triangle \mathrm{AFE} \cong \triangle \mathrm{DEF}$
$\Delta E D C \cong \Delta D E F$
If triangles are congruent,then they are equal in area.

```
So, \(\operatorname{area}(\triangle F B D)=\operatorname{area}(\triangle D E F) . . .(i)\)
\(\operatorname{area}(\triangle \mathrm{AFE})=\operatorname{area}(\triangle \mathrm{DEF}) . . .(\mathrm{ii})\)
and, \(\operatorname{area}(\triangle E D C)=\operatorname{area}(\triangle D E F) . . .(i i i)\)
Now, \(\operatorname{area}(\triangle \mathrm{ABC})=\operatorname{area}(\triangle \mathrm{FBD})+\operatorname{area}(\triangle \mathrm{DEF})+\operatorname{area}(\triangle \mathrm{AFE})+\operatorname{area}(\triangle \mathrm{EDC}) \ldots\) (iv)
\(\operatorname{area}(\triangle A B C)=\operatorname{area}(\triangle \mathrm{DEF})+\operatorname{area}(\triangle \mathrm{DEF})+\operatorname{area}(\triangle \mathrm{DEF})+\operatorname{area}(\triangle \mathrm{DEF})\)
\(\Rightarrow \operatorname{area}(\Delta \mathrm{DEF})=1 / 4 \mathrm{area}(\Delta \mathrm{ABC})\) [From (i), (ii) and (iii)]
\(\Rightarrow \operatorname{area}(\triangle D E F) /\) area \((\triangle A B C)=1 / 4\)
```

Hence, $\operatorname{area}(\triangle D E F): \operatorname{area}(\triangle A B C)=1: 4$
6. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

Answer
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClndCareer

4

Given: AM and DN are the medians of triangles $A B C$ and DEF respectively and $\triangle A B C \sim \triangle D E F$.
To Prove: $\operatorname{area}(\triangle \mathrm{ABC}) / \operatorname{area}(\triangle \mathrm{DEF})=\mathrm{AM}^{2} / \mathrm{DN}^{2}$
Proof: $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ (Given)
\therefore area $(\triangle A B C) / \operatorname{area}(\triangle D E F)=\left(\mathrm{AB}^{2} / D E^{2}\right) \ldots(\mathrm{i})$
and, $A B / D E=B C / E F=C A / F D$

A

In $\triangle A B M$ and $\triangle D E N$, we have
$\angle B=\angle E[$ Since $\triangle A B C \sim \triangle D E F]$
$A B / D E=B M / E N[$ Prove in (i)]
$\therefore \triangle A B C \sim \triangle D E F$ [By SAS similarity criterion]
$\Rightarrow A B / D E=A M / D N$
$\therefore \triangle \mathrm{ABM} \sim \triangle \mathrm{DEN}$
As the areas of two similar triangles are proportional to the squares of the corresponding sides.
\therefore area $(\triangle \mathrm{ABC}) / \operatorname{area}(\triangle \mathrm{DEF})=\mathrm{AB}^{2} / \mathrm{DE}^{2}=\mathrm{AM}^{2} / \mathrm{DN}^{2}$
7. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

Answer

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClindCareer

Δ

Given: $A B C D$ is a square whose one diagonal is $A C . \triangle A P C$ and $\triangle B Q C$ are two equilateral triangles described on the diagonals $A C$ and side $B C$ of the square $A B C D$.

To Prove: $\operatorname{area}(\triangle B Q C)=1 / 2 a r e a(\triangle A P C)$
Proof: $\triangle \mathrm{APC}$ and $\triangle \mathrm{BQC}$ are both equilateral triangles (Given)
$\therefore \triangle \mathrm{APC} \sim \triangle \mathrm{BQC}$ [AAA similarity criterion]
\therefore area $(\triangle \mathrm{APC}) /$ area $(\triangle \mathrm{BQC})=\left(\mathrm{AC}^{2} / \mathrm{BC}^{2}\right)=\mathrm{AC}^{2} / \mathrm{BC}^{2}$
!
$\Rightarrow \operatorname{area}(\triangle \mathrm{APC})=2 \times \operatorname{area}(\triangle \mathrm{BQC})$
$\Rightarrow \operatorname{area}(\Delta \mathrm{BQC})=1 / 2 \mathrm{area}(\triangle \mathrm{APC})$

Tick the correct answer and justify:
8. $A B C$ and BDE are two equilateral triangles such that D is the mid-point of BC. Ratio of the area of triangles $A B C$ and $B D E$ is
(A) $2: 1$
(B) $1: 2$
(C) $4: 1$
(D) $1: 4$

Answer
4
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

elndCareer

$\triangle A B C$ and $\triangle B D E$ are two equilateral triangle. D is the mid point of $B C$.
$\therefore B D=D C=1 / 2 B C$
Let each side of triangle is $2 a$.
As, $\triangle \mathrm{ABC} \sim \triangle \mathrm{BDE}$
\therefore area $(\triangle A B C) /$ area $(\triangle B D E)=A B^{2} / B D^{2}=(2 a)^{2} /(a)^{2}=4 a^{2} / a^{2}=4 / 1=4: 1$
Hence, the correct option is (C).
9. Sides of two similar triangles are in the ratio 4:9. Areas of these triangles are in the ratio
(A) $2: 3$
(B) $4: 9$
(C) $81: 16$
(D) $16: 81$

Answer
A

Let $A B C$ and DEF are two similarity triangles $\triangle A B C \sim \triangle D E F$ (Given)
and, $\mathrm{AB} / \mathrm{DE}=\mathrm{AC} / \mathrm{DF}=\mathrm{BC} / E F=4 / 9$ (Given)
\therefore area $(\triangle \mathrm{ABC}) /$ area $(\triangle \mathrm{DEF})=\mathrm{AB}^{2} / \mathrm{DE}^{2}$ [the ratio of the areas of these triangles will be equal to the square of the ratio of the corresponding sides]
\therefore area $(\triangle A B C) /$ area $(\triangle D E F)=(4 / 9)^{2}=16 / 81=16: 81$
NCERT 10th Mathematics Chapter 6
Hence, the correct option is (D).

Exercise 6.5

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

1. Sides of triangles are given below. Determine which of them are right triangles? In case of a right triangle, write the length of its hypotenuse.
(i) $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$
(ii) $3 \mathrm{~cm}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$
(iii) $50 \mathrm{~cm}, 80 \mathrm{~cm}, 100 \mathrm{~cm}$
(iv) $13 \mathrm{~cm}, 12 \mathrm{~cm}, 5 \mathrm{~cm}$

Answer
(i) Given that the sides of the triangle are $7 \mathrm{~cm}, 24 \mathrm{~cm}$, and 25 cm .

Squaring the lengths of these sides, we will get 49, 576, and 625.
$49+576=625$
$(7)^{2}+(24)^{2}=(25)^{2}$
The sides of the given triangle are satisfying Pythagoras theorem. Hence, it is right angled triangle.

Length of Hypotenuse $=25 \mathrm{~cm}$
(ii) Given that the sides of the triangle are $3 \mathrm{~cm}, 8 \mathrm{~cm}$, and 6 cm .

Squaring the lengths of these sides, we will get 9,64 , and 36 .
However, $9+36 \neq 64$
Or, $3^{2}+6^{2} \neq 8^{2}$
Clearly, the sum of the squares of the lengths of two sides is not equal to the square of the length of the third side.

Therefore, the given triangle is not satisfying Pythagoras theorem.
(iii) Given that sides are $50 \mathrm{~cm}, 80 \mathrm{~cm}$, and 100 cm .

Squaring the lengths of these sides, we will get 2500, 6400, and 10000.
However, $2500+6400 \neq 10000$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClndCareer

Or, $50^{2}+80^{2} \neq 100^{2}$
Clearly, the sum of the squares of the lengths of two sides is not equal to the square of the length of the third side.

Therefore, the given triangle is not satisfying Pythagoras theorem.
Hence, it is not a right triangle.
(iv) Given that sides are $13 \mathrm{~cm}, 12 \mathrm{~cm}$, and 5 cm .

Squaring the lengths of these sides, we will get 169,144 , and 25.
Clearly, $144+25=169$
Or, $12^{2}+5^{2}=13^{2}$
The sides of the given triangle are satisfying Pythagoras theorem.
Therefore, it is a right triangle.
Length of the hypotenuse of this triangle is 13 cm .
2. $P Q R$ is a triangle right angled at P and M is a point on $Q R$ such that $P M \perp Q R$. Show that $\mathrm{PM}^{2}=\mathbf{Q M} \times \mathbf{M R}$.

Answer
A

Given: $\triangle P Q R$ is right angled at P is a point on $Q R$ such that $P M \perp Q R$.
To prove: $\mathrm{PM}^{2}=\mathrm{QM} \times \mathrm{MR}$
Proof: In $\triangle P Q M$, we have
$\mathrm{PQ}^{2}=\mathrm{PM}^{2}+\mathrm{QM}^{2}[$ By Pythagoras theorem $]$
Or, $\mathrm{PM}^{2}=\mathrm{PQ}^{2}-\mathrm{QM}^{2} \ldots$ (i)
In $\triangle P M R$, we have
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClndCareer

$P R^{2}=\mathrm{PM}^{2}+\mathrm{MR}^{2}$ [By Pythagoras theorem $]$
Or, $\mathrm{PM}^{2}=\mathrm{PR}^{2}-\mathrm{MR}^{2} \ldots$ (ii)
Adding (i) and (ii), we get

$$
\begin{aligned}
& 2 P M^{2}=\left(P Q^{2}+P M^{2}\right)-\left(Q M^{2}+M R^{2}\right) \\
& =Q R^{2}-Q M^{2}-M R^{2} \quad\left[\therefore Q R^{2}=P Q^{2}+P R^{2}\right] \\
& =(Q M+M R)^{2}-Q M^{2}-M R^{2} \\
& =2 Q M \times M R \\
& \therefore P M^{2}=Q M \times M R
\end{aligned}
$$

3. In Fig. 6.53, $A B D$ is a triangle right angled at A and $A C \perp B D$. Show that
(i) $A B^{2}=B C \times B D$
(ii) $\mathrm{AC}^{2}=\mathrm{BC} \times \mathrm{DC}$
(iii) $A D^{2}=B D \times C D$

A

Answer
(i) In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{CAB}$, we have
$\angle \mathrm{DAB}=\angle \mathrm{ACB}\left(\right.$ Each equals to $\left.90^{\circ}\right)$
$\angle \mathrm{ABD}=\angle \mathrm{CBA}$ (Common angle)
$\therefore \triangle \mathrm{ADB} \sim \triangle \mathrm{CAB}$ [AA similarity criterion]
$\Rightarrow A B / C B=B D / A B$
$\Rightarrow A B^{2}=C B \times B D$
(ii) Let $\angle \mathrm{CAB}=x$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/
ClndCareer

ClndCareer

In $\triangle C B A$,

$$
\begin{aligned}
& \angle \mathrm{CBA}=180^{\circ}-90^{\circ}-x \\
& \angle \mathrm{CBA}=90^{\circ}-x
\end{aligned}
$$

Similarly, in $\triangle C A D$

$$
\begin{aligned}
& \angle C A D=90^{\circ}-\angle \mathrm{CBA}=90^{\circ}-x \\
& \angle \mathrm{CDA}=180^{\circ}-90^{\circ}-\left(90^{\circ}-x\right) \\
& \angle C D A=x
\end{aligned}
$$

In $\triangle C B A$ and $\triangle C A D$, we have

$$
\begin{aligned}
& \angle \mathrm{CBA}=\angle \mathrm{CAD} \\
& \angle \mathrm{CAB}=\angle \mathrm{CDA} \\
& \angle \mathrm{ACB}=\angle \mathrm{DCA} \text { (Each equals to } 90^{\circ} \text {) } \\
& \therefore \triangle \mathrm{CBA} \sim \triangle \mathrm{CAD} \text { [By AAA similarity criterion] } \\
& \Rightarrow \mathrm{AC} / \mathrm{DC}=\mathrm{BC} / \mathrm{AC} \\
& \Rightarrow \mathrm{AC}^{2}=\mathrm{DC} \times \mathrm{BC} \\
& \text { (iii) } \operatorname{In} \triangle \mathrm{DCA} \text { and } \triangle \mathrm{DAB}, \text { we have } \\
& \angle \mathrm{DCA}=\angle \mathrm{DAB} \text { (Each equals to } 90^{\circ} \text {) } \\
& \angle \mathrm{CDA}=\angle \mathrm{ADB} \text { (common angle) } \\
& \therefore \triangle \mathrm{DCA} \sim \triangle \mathrm{DAB} \text { [By AA similarity criterion] } \\
& \Rightarrow \mathrm{DC} / D A=\mathrm{DA} / D A \\
& \Rightarrow \mathrm{AD} 2 \\
& 2=\mathrm{BD} \times \mathrm{CD}
\end{aligned}
$$

4. $A B C$ is an isosceles triangle right angled at C. Prove that $A B^{2}=2 A C^{2}$.

Answer

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClindCareer

A

Given that $\triangle A B C$ is an isosceles triangle right angled at C.
In $\triangle \mathrm{ACB}, \angle \mathrm{C}=90^{\circ}$
$A C=B C$ (Given)
$A B^{2}=A C^{2}+B C^{2}$ ([By using Pythagoras theorem $]$
$=A C^{2}+A C^{2}[$ Since, $A C=B C]$
$A B^{2}=2 A C^{2}$
5. $A B C$ is an isosceles triangle with $A C=B C$. If $A B^{2}=2 A C^{2}$, prove that $A B C$ is a right triangle.

Answer

A

Given that $\triangle A B C$ is an isosceles triangle having $A C=B C$ and $A B^{2}=2 A C^{2}$
In $\triangle \mathrm{ACB}$,
$A C=B C$ (Given)
$A B^{2}=2 A C^{2}$ (Given)
$A B^{2}=A C^{2}+A C^{2}$
$=A C^{2}+B C^{2}[$ Since, $A C=B C]$
Hence, By Pythagoras theorem $\triangle A B C$ is right angle triangle.
6. $A B C$ is an equilateral triangle of side 2 a . Find each of its altitudes.

Answer

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

$A B C$ is an equilateral triangle of side $2 a$.
Draw, $A D \perp B C$
In $\triangle A D B$ and $\triangle A D C$, we have
$A B=A C$ [Given]
$A D=A D$ [Given]
$\angle \mathrm{ADB}=\angle \mathrm{ADC}$ [equal to 90°]
Therefore, $\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$ by RHS congruence.
Hence, BD = DC [by CPCT]
In right angled $\triangle A D B$,
$A B^{2}=A D^{2}+B D^{2}$
$(2 a)^{2}=A D^{2}+a^{2}$
$\Rightarrow A D^{2}=4 a^{2}-a^{2}$
$\Rightarrow A D^{2}=3 a^{2}$
$\Rightarrow A D=\sqrt{ } 3 a$
7. Prove that the sum of the squares of the sides of rhombus is equal to the sum of the squares of its diagonals.
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/
ClndCareer

ClindCareer

Answer

-

$A B C D$ is a rhombus whose diagonals $A C$ and $B D$ intersect at O. [Given]
We have to prove that,
$A B^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}=A \mathrm{C}^{2}+\mathrm{BD}^{2}$
Since, the diagonals of a rhombus bisect each other at right angles.
Therefore, $\mathrm{AO}=\mathrm{CO}$ and $\mathrm{BO}=\mathrm{DO}$
In $\triangle A O B$,
$\angle \mathrm{AOB}=90^{\circ}$
$A B^{2}=A O^{2}+B O^{2} \ldots$ (i) [By Pythagoras]
Similarly,

$$
\begin{align*}
& \mathrm{AD}^{2}=\mathrm{AO}^{2}+\mathrm{DO}^{2} \ldots \text { (ii) } \tag{ii}\\
& \mathrm{DC}^{2}=\mathrm{DO}^{2}+\mathrm{CO}^{2} \ldots \text { (iii) } \tag{iii}\\
& \mathrm{BC}^{2}=\mathrm{CO}^{2}+\mathrm{BO}^{2} \ldots \text { (iv) } \tag{iv}\\
& \text { Adding equations (i) }+ \text { (ii) }+ \text { (iii) }+ \text { (iv) we get, } \\
& \mathrm{AB}^{2}+\mathrm{AD}^{2}+\mathrm{DC}^{2}+\mathrm{BC}^{2}=2\left(\mathrm{AO}^{2}+\mathrm{BO}^{2}+\mathrm{DO}^{2}+\mathrm{CO}^{2}\right) \\
& =4 \mathrm{AO}^{2}+4 \mathrm{BO}^{2}[\text { Since, } \mathrm{AO}=\mathrm{CO} \text { and } \mathrm{BO}=\mathrm{DO}] \\
& =(2 \mathrm{AO})^{2}+(2 \mathrm{BO})^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}
\end{align*}
$$

8. In Fig. 6.54, O is a point in the interior of a triangle

-

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClindCareer

$A B C, O D \perp B C, O E \perp A C$ and $O F \perp A B$. Show that
(i) $O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=A F^{2}+B D^{2}+C E^{2}$,
(ii) $A F^{2}+B D^{2}+C E^{2}=A E^{2}+C D^{2}+B F^{2}$.

Answer

Join OA, OB and OC
Δ
(i) Applying Pythagoras theorem in $\triangle A O F$, we have
$O A^{2}=O F^{2}+A^{2}$
Similarly, in $\triangle B O D$
$\mathrm{OB}^{2}=\mathrm{OD}^{2}+\mathrm{BD}^{2}$
Similarly, in \triangle COE
$\mathrm{OC}^{2}=\mathrm{OE}^{2}+\mathrm{EC}^{2}$
Adding these equations,
$O A^{2}+O B^{2}+O C^{2}=O F^{2}+\mathrm{AF}^{2}+O D^{2}+\mathrm{BD}^{2}+\mathrm{OE}^{2}+\mathrm{EC}^{2}$
$O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=A F^{2}+B D^{2}+C E^{2}$.
(ii) $A F^{2}+B D^{2}+E C^{2}=\left(O A^{2}-O E^{2}\right)+\left(O C^{2}-O D^{2}\right)+\left(O B^{2}-O F^{2}\right)$
$\therefore A F^{2}+B D^{2}+C E^{2}=A E^{2}+C D^{2}+B F^{2}$.
9. A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.

Answer

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

Let BA be the wall and Ac be the ladder,

Therefore, by Pythagoras theorem,we have
$A C^{2}=A B^{2}+B C^{2}$
$10^{2}=8^{2}+B C^{2}$
$B C^{2}=100-64$
$B C^{2}=36$
$B C=6 m$
Therefore, the distance of the foot of the ladder from the base of the wall is 6 m .
10. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?

Answer

Let $A B$ be the pole and $A C$ be the wire.
By Pythagoras theorem,
$A C^{2}=A B^{2}+B C^{2}$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/
ClndCareer

ClindCareer

$24^{2}=18^{2}+B C^{2}$
$\mathrm{BC}^{2}=576-324$
$\mathrm{BC}^{2}=252$
$B C=6 \sqrt{ } 7 m$
Therefore, the distance from the base is $6 \sqrt{ } 7 \mathrm{~m}$.
11. An aeroplane leaves an airport and flies due north at a speed of $1,000 \mathrm{~km}$ per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of $1,200 \mathrm{~km}$ per hour. How far apart will be the two planes after hours?

Answer

A

Speed of first aeroplane $=1000 \mathrm{~km} / \mathrm{hr}$

Distance covered by first aeroplane due north in km

Speed of second aeroplane $=1200 \mathrm{~km} / \mathrm{hr}$

Distance covered by second aeroplane due west in \qquad hours $(O B)=1200 \times 3 / 2 \mathrm{~km}=$ 1800 km

In right angle $\triangle A O B$, we have
$A B^{2}=A O^{2}+O B^{2}$
$\Rightarrow A B^{2}=(1500) 2+(1800) 2$
$\Rightarrow A B=\sqrt{ } 2250000+3240000$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClndCareer

$=\sqrt{ } 5490000$
$\Rightarrow A B=300 \sqrt{ } 61 \mathrm{~km}$
Hence, the distance between two aeroplanes will be $300 \sqrt{ } 61 \mathrm{~km}$.
12. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is $\mathbf{1 2} \mathbf{~ m}$, find the distance between their tops.

Answer

A

Let $C D$ and $A B$ be the poles of height 11 m and 6 m .
Therefore, $C P=11-6=5 \mathrm{~m}$
From the figure, it can be observed that $A P=12 m$
Applying Pythagoras theorem for $\triangle A P C$, we get
$A P^{2}=P C^{2}+A C^{2}$
$(12 m)^{2}+(5 m)^{2}=(A C)^{2}$
$A C^{2}=(144+25) m^{2}=169 \mathrm{~m}^{2}$
$A C=13 m$
Therefore, the distance between their tops is 13 m .
13. D and E are points on the sides $C A$ and $C B$ respectively of a triangle $A B C$ right angled at C. Prove that $A E^{2}+B D^{2}=A B^{2}+D E^{2}$.

Answer
A
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClndCareer

Applying Pythagoras theorem in $\triangle A C E$, we get
$A C^{2}+C E^{2}=A E^{2}$
Applying Pythagoras theorem in $\triangle B C D$, we get
$B C^{2}+C D^{2}=B D^{2}$
Using equations (i) and (ii), we get
$A C^{2}+C E^{2}+B C^{2}+C D^{2}=A E^{2}+B D^{2}$
Applying Pythagoras theorem in $\triangle C D E$, we get
$D E^{2}=C D^{2}+C E^{2}$
Applying Pythagoras theorem in $\triangle A B C$, we get
$A B^{2}=A C^{2}+C B^{2}$
Putting these values in equation (iii), we get
$D E^{2}+A B^{2}=A E^{2}+B D^{2}$.
14. The perpendicular from A on side $B C$ of a $\triangle A B C$ intersects $B C$ at D such that $D B=$ $3 C D$ (see Fig. 6.55). Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$.

A

Answer

Given that in $\triangle A B C$, we have
$A D \perp B C$ and $B D=3 C D$
In right angle triangles ADB and ADC, we have
$A B^{2}=A D^{2}+B D^{2} \ldots$ (i)
$A C^{2}=A D^{2}+D C^{2} \ldots$ (ii) [By Pythagoras theorem]
Subtracting equation (ii) from equation (i), we get https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

$$
\begin{aligned}
& A B^{2}-A C^{2}=B D^{2}-D C^{2} \\
& =9 C D^{2}-C D^{2}[\therefore B D=3 C D] \\
& =9 C D^{2}=8(B C / 4)^{2}[\text { Since, } B C=D B+C D=3 C D+C D=4 C D] \\
& \text { Therefore }, A B^{2}-A C^{2}=B C^{2} / 2 \\
& \Rightarrow 2\left(A B^{2}-A C^{2}\right)=B C^{2} \\
& \Rightarrow 2 A B^{2}-2 A C^{2}=B C^{2} \\
& \therefore 2 A B^{2}=2 A C^{2}+B C^{2} .
\end{aligned}
$$

15. In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $B D=1 / 3 B C$. Prove that $9 A D^{2}=7 A B^{2}$.

Answer

-

Let the side of the equilateral triangle be a, and $A E$ be the altitude of $\triangle A B C$.
$\therefore B E=E C=B C / 2=a / 2$
And, $\mathrm{AE}=a \sqrt{ } 3 / 2$
Given that, $B D=1 / 3 B C$
$\therefore B D=a / 3$
$D E=B E-B D=a / 2-a / 3=a / 6$
Applying Pythagoras theorem in $\triangle A D E$, we get
$A D^{2}=A E^{2}+D E^{2}$
A
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/
$\Rightarrow 9 \mathrm{AD}^{2}=7 \mathrm{AB}^{2}$
16. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

Answer

Let the side of the equilateral triangle be a, and $A E$ be the altitude of $\triangle A B C$.
$\therefore B E=E C=B C / 2=a / 2$
Applying Pythagoras theorem in $\triangle A B E$, we get
$A B^{2}=A E^{2}+B E^{2}$

$4 A E^{2}=3 a^{2}$
$\Rightarrow 4 \times($ Square of altitude $)=3 \times($ Square of one side $)$
17. Tick the correct answer and justify: $\operatorname{In} \triangle A B C, A B=6 \sqrt{ } 3 \mathrm{~cm}, A C=12 \mathrm{~cm}$ and $B C=6$ cm . The angle B is:
(A) 120°
(B) 60°
(C) 90°
(D) 45°

Answer
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClndCareer

A

Given that, $A B=6 \sqrt{3} \mathrm{~cm}, A C=12 \mathrm{~cm}$, and $B C=6 \mathrm{~cm}$
We can observe that
$A B^{2}=108$
$A C^{2}=144$
And, $\mathrm{BC}^{2}=36$
$A B^{2}+B C^{2}=A C^{2}$
The given triangle, $\triangle A B C$, is satisfying Pythagoras theorem.
Therefore, the triangle is a right triangle, right-angled at B.
$\therefore \angle B=90^{\circ}$

Hence, the correct option is (C).
NCERT 10th Mathematics Chapter 6, class 10 Mathematics Chapter 6 solutions

Exercise 6.6

1. In Fig. 6.56, $P S$ is the bisector of $\angle Q P R$ of $\triangle P Q R$. Prove that $Q S / S R=P Q / P R$

Answer

Given, in figure, PS is the bisector of $\angle \mathrm{QPR}$ of $\triangle \mathrm{PQR}$.
Now, draw RT SP || to meet QP produced in T.
Proof:
\because RT SP || and transversal PR intersects them
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/
ClndCareer

ClindCareer

$\therefore \angle 1=\angle 2$ (Alternate interior angle)...(i)
\therefore RT SP || and transversalQT intersects them
-
$\therefore \angle 3=\angle 4$ (Corresponding angle) ...(ii)
But $\angle 1=\angle 3$ (Given)
$\therefore \angle 2=\angle 4$ [From Eqs. (i) and (ii)]
$\therefore \mathrm{PT}=\mathrm{PR} \ldots($ iii) $(\because$ Sides opposite to equal angles of a triangle are equal)
Now, in $\triangle Q R T$,
PS || RT (By construction)
\therefore QS/SR $=P Q / P T$ (By basic proportionally theorem)
\Rightarrow QS/SR = PQ/PR [From Eq. (iii)]
2. In Fig. 6.57, D is a point on hypotenuse $A C$ of $\triangle A B C$, such that $B D \perp A C, D M \perp B C$ and $D N \perp A B$. Prove that :
(i) $\mathrm{DM}^{2}=\mathrm{DN} . \mathrm{MC}$
(ii) $\mathrm{DN}^{2}=\mathrm{DM} . \mathrm{AN}$

Answer

Given that, D is a point on hypotenuse $A C$ of $\triangle A B C, D M \perp B C$ and $D N \perp A B$.
Now, join NM. Let BD and NM intersect at O.

-

(i) In $\triangle \mathrm{DMC}$ and $\triangle \mathrm{NDM}$,
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/
$\angle \mathrm{DMC}=\angle \mathrm{NDM}\left(\right.$ Each equal to $\left.90^{\circ}\right)$
$\angle M C D=\angle D M N$
Let MCD $=\angle 1$
Then, $\angle \mathrm{MDC}=90^{\circ}-\left(90^{\circ}-\angle 1\right)$
$=\angle 1\left(\because \angle M C D+\angle M D C+\angle D M C=180^{\circ}\right)$
$\therefore \angle \mathrm{ODM}=90^{\circ}-\left(90^{\circ}-\angle 1\right)$
$=\angle 1$
$\Rightarrow \angle \mathrm{DMN}=\angle 1$
$\therefore \Delta \mathrm{DMO} \sim \Delta \mathrm{NDM}$ (AA similarity criterion)
$\therefore \mathrm{DM} / \mathrm{ND}=\mathrm{MC} / \mathrm{DM}$
(Corresponding sides of the similar triangles are proportional)
$\Rightarrow \mathrm{DM}^{2}=\mathrm{MC} \mathrm{ND}$
(ii) In $\triangle \mathrm{DNM}$ and $\triangle \mathrm{NAD}$,
$\angle \mathrm{NDM}=\angle \mathrm{AND}\left(\right.$ Each equal to $\left.90^{\circ}\right)$
$\angle D N M=\angle N A D$
Let $\angle N A D=\angle 2$
Then, $\angle \mathrm{NDA}=90^{\circ}-\angle 2$
$\because \angle \mathrm{NDA}+\angle \mathrm{DAN}+\angle \mathrm{DNA}=180^{\circ}$
$\therefore \angle \mathrm{ODN}=90^{\circ}-\left(90^{\circ}-\angle 2\right)=\angle 2$
$\therefore \angle \mathrm{DNO}=\angle 2$
$\therefore \triangle \mathrm{DNM} \sim \triangle \mathrm{NAD}$ (AA similarity criterion)
$\therefore \mathrm{DN} / \mathrm{NA}=\mathrm{DM} / \mathrm{ND}$
\Rightarrow DN/AN = DM/DN
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/
$\Rightarrow \mathrm{DN}^{2}=\mathrm{DM} \times \mathrm{AN}$
3. In Fig. 6.58, $A B C$ is a triangle in which $\angle A B C>90^{\circ}$ and $A D \perp C B$ produced. Prove that $A C^{2}=A B^{2}+B C^{2}+2 B C . B D$.

A

Answer

Given that, in figure, ABC is a triangle in which $\angle \mathrm{ABC}>90^{\circ}$ and $A D \perp C B$ produced.
Proof :
In right ADC,
$\angle D=90^{\circ}$
$A C^{2}=A D^{2}+D C^{2}$ (By Pythagoras theorem)
$=A D^{2}+(B D+B C)^{2}[\because D C=D B+B C]$
$=\left(A D^{2}+D B^{2}\right)+B C^{2}+2 B D \cdot B C\left[\because(\mathbf{a}+\mathbf{b})^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}+2 a b\right]$
$=A B^{2}+B C^{2}+2 B C \cdot B D$
$\left[\because\right.$ In right $A D B$ with $\left.\angle D=90^{\circ}, A B^{2}=A D^{2}+D B^{2}\right]$ (By Pythagoras theorem)
4. In Fig. 6.59, $A B C$ is a triangle in which $\angle A B C<90^{\circ}$ and $A D \perp B C$. Prove that $A C^{2}=A B^{2}$ $+B C^{2}-2 B C . B D$.

A

Answer

Given that, in figure, $A B C$ is a triangle in which $\angle A B C<90^{\circ}$ and $A D \perp B C$.
Proof:

ClindCareer

In right $\triangle A D C$,

$$
\begin{aligned}
& \angle D=90^{\circ} \\
& A C^{2}=A D^{2}+D C^{2}(B y \text { Pythagoras theorem }) \\
& =A D^{2}+(B C-B D)^{2}[\because B C=B D+D C] \\
& =A D^{2}+(B C-B D)^{2}(B C=B D+D C) \\
& =A D^{2}+B C^{2}+B D^{2}-2 B C \cdot B D\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right] \\
& =\left(A D^{2}+B D^{2}\right)+B C^{2}-2 B C \cdot B D \\
& =A B^{2}+B C^{2}-2 B C \cdot B D
\end{aligned}
$$

$\left\{\right.$ In right $\triangle A D B$ with $\left.\angle D=90^{\circ}, A B^{2}=A D^{2}+B D^{2}\right\}$ (By Pythagoras theorem)

$$
\mathbf{\Delta}
$$

Answer

Given that, in figure, $A D$ is a median of a $\triangle A B C$ and $A M \perp B C$.
Proof:
(i) In right $\triangle \mathrm{AMC}$,

6. Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.

Answer
Given that, $A B C D$ is a parallelogram whose diagonals are $A C$ and $B D$.
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClndCareer

Now, draw $\mathrm{AM} \perp \mathrm{DC}$ and $\mathrm{BN} \perp \mathrm{D}$ (produced).
Proof:
In right $\triangle \mathrm{AMD}$ and $\triangle \mathrm{BNC}$,
$A D=B C$ (Opposite sides of a parallelogram)
$A M=B N$ (Both are altitudes of the same parallelogram to the same base),
$\triangle \mathrm{AMD} \doteq \triangle \mathrm{BNC}$ (RHS congruence criterion)
MD = NC (CPCT) ---(i)
In right $\triangle B N D$,
$\angle \mathrm{N}=90^{\circ}$
$B D^{2}=B N^{2}+D N^{2}(B y$ Pythagoras theorem $)$
$=\mathrm{BN}^{2}+(\mathrm{DC}+\mathrm{CN})^{2}(\because \mathrm{DN}=\mathrm{DC}+\mathrm{CN})$
$=\mathrm{BN}^{2}+\mathrm{DC}^{2}+\mathrm{CN}^{2}+2 \mathrm{DC} . \mathrm{CN}\left[\because(\mathbf{a}+\mathbf{b})^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}+\mathbf{2 a b}\right]$
$=\left(\mathrm{BN}^{2}+\mathrm{CN}^{2}\right)+\mathrm{DC}^{2}+2 \mathrm{DC} . \mathrm{CN}$
$=B C^{2}+D C^{2}+2 D C . C N--\left(\right.$ (ii) $\left(\because\right.$ In right $\triangle B N C$ with $\left.\angle N=90^{\circ}\right)$
$\mathrm{BN}^{2}+\mathrm{CN}^{2}=\mathrm{BC}^{2}$ (By Pythagoras theorem)
In right $\triangle \mathrm{AMC}$,
$\angle \mathrm{M}=90^{\circ}$
$A C^{2}=A M^{2}+M C^{2}(\because M C=D C-D M)$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/
ClndCareer

ElndCareer

$=A M^{2}+(D C-D M)^{2}\left[\because(\mathbf{a}+\mathbf{b})^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}+2 \mathbf{a b}\right]$
$=\mathrm{AM}^{2}+\mathrm{DC}^{2}+\mathrm{DM}^{2}-2 \mathrm{DC} . \mathrm{DM}$
$\left(A M^{2}+D M^{2}\right)+D C^{2}-2 D C . D M$
$=A D^{2}+D C^{2}-2 D C . D M$
[\because In right triangle AMD with $\angle \mathrm{M}=90^{\circ}, \mathrm{AD}^{2}=\mathrm{AM}^{2}+\mathrm{DM}^{2}$ (By Pythagoras theorem)]
$=A D^{2}+A B^{2}=2 D C . C N--$ (iii)
$[\because D C=A B$, opposite sides of parallelogram and $B M=C N$ from eq (i)]
Now, on adding Eqs. (iii) and (ii), we get
$A C^{2}+B D^{2}=\left(A D^{2}+A B^{2}\right)+\left(B C^{2}+D C^{2}\right)$
$=A B^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}$
7. In Fig. 6.61, two chords $A B$ and CD intersect each other at the point P. Prove that :
(i) $\triangle \mathrm{APC} \sim \triangle \mathrm{DPB}$
(ii) $\mathrm{AP} . \mathrm{PB}=\mathrm{CP} . \mathrm{DP}$
Δ

Answer

Given that, in figure, two chords $A B$ and $C D$ intersects each other at the point P. Proof:
(i) $\triangle \mathrm{APC}$ and $\triangle \mathrm{DPB}$
$\angle \mathrm{APC}=\angle \mathrm{DPB}$ (Vertically opposite angles)
$\angle \mathrm{CAP}=\angle \mathrm{BDP}$ (Angles in the same segment)
$\therefore \Delta \mathrm{APC} \sim \Delta \mathrm{DPB}$ (AA similarity criterion)
(ii) $\triangle \mathrm{APC} \sim \Delta \mathrm{DPB}$ [Proved in (i)]
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClndCareer

$\therefore \mathrm{AP} / \mathrm{DP}=\mathrm{CP} / \mathrm{BP}$
(\therefore Corresponding sides of two similar triangles are proportional)
\Rightarrow AP.BP $=\mathrm{CP} . \mathrm{DP}$
\Rightarrow AP.PB $=$ CP.DP

NCERT 10th Mathematics Chapter 6, class 10 Mathematics Chapter 6 solutions
8. In Fig. 6.62, two chords $A B$ and $C D$ of a circle intersect each other at the point P (when produced) outside the circle. Prove that
(i) $\triangle \mathrm{PAC} \sim \triangle \mathrm{PDB}$
(ii) PA.PB = PC.PD

θ

Answer

Given that, in figure, two chords $A B$ and $C D$ of a circle intersect each other at the point P (when produced) out the circle.
(i) We know that, in a cyclic quadrilaterals, the exterior angle is equal to the interior opposite angle.

Therefore, $\angle \mathrm{PAC}=\angle \mathrm{PDB} \ldots$...(i)
and $\angle P C A=\angle P B D$
In view of Eqs. (i) and (ii), we get
$\Delta \mathrm{PAC} \sim \Delta \mathrm{PDB}$ (\because AA similarity criterion)
(ii) \triangle PAC $\sim \triangle$ PDB [Proved in (i)]
$\therefore \mathrm{PA} / \mathrm{PD}=\mathrm{PC} / \mathrm{PB}$

(\because Corresponding sides of the similar triangles are proportional)

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClndCareer

$\Rightarrow \mathrm{PA} \cdot \mathrm{PB}=\mathrm{PC} . \mathrm{PD}$
9. In Fig. 6.63, D is a point on side $B C$ of $\triangle A B C$ such that $B D / C D=A B / A C$. Prove that $A D$ is the bisector of $\angle B A C$.

Answer

Given that, D is a point on side $B C$ of $\triangle A B C$ such that $B D / C D=A B / A C$
Now, from BA produce cut off AE = A. JoinCE.

10. Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, how much string does she have out (see Fig. 6.64)? If she pulls in the string at the rate of 5 cm per second, what will be the horizontal distance of the fly from her after 12 seconds?

Answer

Length of the string that she has out

$$
\begin{aligned}
& =\sqrt{(1.8)^{2}+(2.4)^{2}} \quad \quad \text { (Using Pythagoras theorem) } \\
& =\sqrt{3.24+5.76}=3 \mathrm{~m}
\end{aligned}
$$

Hence, she has 3 m string out.
Length of the string pulled in $12 \mathrm{~s}=5 \times 12=60 \mathrm{~cm}=0.6 \mathrm{~m}$

\therefore Length of remaining string left out $=3.0-0.6=2.4 \mathrm{~m}$

$$
\begin{array}{rlrl}
B D^{2} & =A D^{2}-A B^{2} \quad \text { (By Pythagoras theorem) } \\
& =(2.4)^{2}-(1.8)^{2}=5.76-3.24=2.52 \\
\Rightarrow \quad B D & =\sqrt{2.52}=1.59 \mathrm{~m} & \text { (Approx.) }
\end{array}
$$

Hence, the horizontal distance of the fly from Nazima after 12 s

$$
\begin{equation*}
=1.2+1.59=2.79 \mathrm{~m} \tag{Approx.}
\end{equation*}
$$

NCERT 10th Mathematics Chapter 6, class 10 Mathematics Chapter 6 solutions

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl es/

ClindCareer

Chapterwise NCERT Solutions for Class 10 Maths:

- Chapter 1 Real Numbers
- Chapter 2 Polynomials
- Chapter 3 Pair of Linear Equations in Two Variables
- Chapter 4 Quadratic Equations
- Chapter 5 Arithmetic Progressions
- Chapter 6 Triangles
- Chapter 7 Coordinate Geometry
- Chapter 8 Introduction to Trigonometry
- Chapter 9 Applications of Trigonometry
- Chapter 10 Circle
- Chapter 11 Constructions
- Chapter 12 Areas related to Circles
- Chapter 13 Surface Areas and Volumes
- Chapter 14 Statistics
- Chapter 15 Probability

ClndCareer

About NCERT

The National Council of Educational Research and Training is an autonomous organization of the Government of India which was established in 1961 as a literary, scientific, and charitable Society under the Societies Registration Act. The major objectives of NCERT and its constituent units are to: undertake, promote and coordinate research in areas related to school education; prepare and publish model textbooks, supplementary material, newsletters, journals and develop educational kits, multimedia digital materials, etc.
Organise pre-service and in-service training of teachers; develop and disseminate innovative educational techniques and practices;collaborate and network with state educational departments, universities, NGOs and other educational institutions; act as a clearing house for ideas and information in matters related to school education; and act as a nodal agency for achieving the goals of Universalisation of Elementary Education. In addition to research, development, training, extension, publication and dissemination activities, NCERT is an implementation agency for bilateral cultural exchange programmes with other countries in the field of school education.Its headquarters are located at Sri Aurobindo Marg in New Delhi. Visit the Official NCERT website to learn more.

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangl

 es/