

Class 10th - NCERT Solutions Math: Chapter 6 -**Triangles**

indCareer

∰ indCareer

NCERT Solutions for Class 10th Mathematics: Chapter 6 -**Triangles**

Class 10: Mathematics Chapter 6 solutions. Complete Class 10 Mathematics Chapter 6 Notes.

NCERT Solutions for Class 10th Mathematics: Chapter 6 -**Triangles**

NCERT 10th Mathematics Chapter 6, class 10 Mathematics Chapter 6 solutions

Page No: 122

Exercise 6.1

1. Fill in the blanks using correct word given in the brackets:-

(i) All circles are (congruent, similar)
► Similar
(ii) All squares are (similar, congruent)
► Similar
(iii) All triangles are similar. (isosceles, equilateral)
► Equilateral
(iv) Two polygons of the same number of sides are similar, if (a) their corresponding angles are and (b) their corresponding sides are (equal, proportional)
► (a) Equal, (b) Proportional
2. Give two different examples of pair of
(i) Similar figures
(ii) Non-similar figures
Answer
(i) Two twenty-rupee notes, Two two rupees coins.
(ii) One rupee coin and five rupees coin, One rupee not and ten rupees note.
3. State whether the following quadrilaterals are similar or not:

Fig. 6.8

Answer

The given two figures are not similar because their corresponding angles are not equal.

Exercise 6.2

1. In figure.6.17. (i) and (ii), DE || BC. Find EC in (i) and AD in (ii).

Answer

- (i) In △ ABC, DE // BC (Given)
- ∴ AD/DB = AE/EC [By using Basic proportionality theorem]
- \Rightarrow 1.5/3 = 1/EC
- $\Rightarrow \Sigma EC = 3/1.5$

 $EC = 3 \times 10/15 = 2 \text{ cm}$

Hence, EC = 2 cm.

(ii) In △ ABC, DE // BC (Given)

∴ AD/DB = AE/EC [By using Basic proportionality theorem]

 \Rightarrow AD/7.2 = 1.8/5.4

 \Rightarrow AD = 1.8×7.2/5.4 = 18/10 × 72/10 × 10/54 = 24/10

 \Rightarrow AD = 2.4

Hence, AD = 2.4 cm.

NCERT 10th Mathematics Chapter 6

2. E and F are points on the sides PQ and PR respectively of a Δ PQR. For each of the following cases, state whether EF || QR.

(i) PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm and FR = 2.4 cm

(ii) PE = 4 cm, QE = 4.5 cm, PF = 8 cm and RF = 9 cm

(iii) PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm and PF = 0.63 cm

Answer

In ΔPQR, E and F are two points on side PQ and PR respectively.

(i) PE = 3.9 cm, EQ = 3 cm (Given)

PF = 3.6 cm, FR = 2.4 cm (Given)

 \therefore PE/EQ = 3.9/3 = 39/30 = 13/10 = 1.3 [By using Basic proportionality theorem]

And, PF/FR = 3.6/2.4 = 36/24 = 3/2 = 1.5

So, PE/EQ ≠ PF/FR

Hence, EF is not parallel to QR.

(ii) PE = 4 cm, QE = 4.5 cm, PF = 8cm, RF = 9cm

 \therefore PE/QE = 4/4.5 = 40/45 = 8/9 [By using Basic proportionality theorem]

And, PF/RF = 8/9

So, PE/QE = PF/RF

Hence, EF is parallel to QR.

(iii) PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm, PF = 0.36 cm (Given)

Here, EQ = PQ - PE = 1.28 - 0.18 = 1.10 cm

And, FR = PR - PF = 2.56 - 0.36 = 2.20 cm

So, PE/EQ = 0.18/1.10 = 18/110 = 9/55 ... (i)

And, PE/FR = $0.36/2.20 = 36/220 = 9/55 \dots$ (ii)

∴ PE/EQ = PF/FR.

Hence, EF is parallel to QR.

3. In the fig 6.18, if LM || CB and LN || CD, prove that AM/MB = AN/AD

Fig. 6.18

Answer

In the given figure, LM || CB

By using basic proportionality theorem, we get,

AM/MB = AL/LC ... (i)

Similarly, LN || CD

∴ AN/AD = AL/LC ... (ii)

From (i) and (ii), we get

AM/MB = AN/AD

4. In the fig 6.19, DE||AC and DF||AE. Prove that

BF/FE = BE/EC

Fig. 6.19

Answer

In ΔABC, DE || AC (Given)

: BD/DA = BE/EC ...(i) [By using Basic Proportionality Theorem]

In ΔABC, DF || AE (Given)

∴ BD/DA = BF/FE ...(ii) [By using Basic Proportionality Theorem]

From equation (i) and (ii), we get

BE/EC = BF/FE

NCERT 10th Mathematics Chapter 6

5. In the fig 6.20, DE||OQ and DF||OR, show that EF||QR.

Fig. 6.20

Answer

In ΔPQO, DE || OQ (Given)

∴ PD/DO = PE/EQ ...(i) [By using Basic Proportionality Theorem]

In ΔPQO, DE || OQ (Given)

: PD/DO = PF/FR ...(ii) [By using Basic Proportionality Theorem]

From equation (i) and (ii), we get

PE/EQ = PF/FR

In ΔPQR, EF || QR. [By converse of Basic Proportionality Theorem]

6. In the fig 6.21, A, B and C are points on OP, OQ and OR respectively such that AB || PQ and AC || PR. Show that BC || QR.

Fig. 6.21

Answer

In ΔOPQ, AB || PQ (Given)

∴ OA/AP = OB/BQ ...(i) [By using Basic Proportionality Theorem]

In ΔOPR, AC || PR (Given)

∴ OA/AP = OC/CR ...(ii) [By using Basic Proportionality Theorem]

From equation (i) and (ii), we get

OB/BQ = OC/CR

In ΔOQR, BC || QR. [By converse of Basic Proportionality Theorem].

NCERT 10th Mathematics Chapter 6

7. Using Basic proportionality theorem, prove that a line drawn through the mid-points of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved it in Class IX).

Answer

Given: ΔABC in which D is the mid point of AB such that AD=DB.

A line parallel to BC intersects AC at E as shown in above figure such that DE || BC.

To Prove: E is the mid point of AC.

Proof: D is the mid-point of AB.

∴ AD=DB

⇒ AD/BD = 1 ... (i)

In ΔABC, DE || BC,

Therefore, AD/DB = AE/EC [By using Basic Proportionality Theorem]

 \Rightarrow 1 = AE/EC [From equation (i)]

∴ AE =EC

Hence, E is the mid point of AC.

NCERT 10th Mathematics Chapter 6

8. Using Converse of basic proportionality theorem, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (Recall that you have done it in Class IX).

Answer

Given: ΔABC in which D and E are the mid points of AB and AC respectively such that AD=BD and AE=EC.

To Prove: DE || BC

Proof: D is the mid point of AB (Given)

∴ AD=DB

⇒ AD/BD = 1 ... (i)

Also, E is the mid-point of AC (Given)

∴ AE=EC

 \Rightarrow AE/EC = 1 [From equation (i)]

From equation (i) and (ii), we get

AD/BD = AE/EC

Hence, DE | BC [By converse of Basic Proportionality Theorem]

NCERT 10th Mathematics Chapter 6

9. ABCD is a trapezium in which AB || DC and its diagonals intersect each other at the point O. Show that AO/BO = CO/DO.

Answer

Given: ABCD is a trapezium in which AB || DC in which diagonals AC and BD intersect each other at O.

To Prove: AO/BO = CO/DO

Construction: Through O, draw EO || DC || AB

Proof: In \triangle ADC, we have

OE || DC (By Construction)

∴ AE/ED = AO/CO ...(i) [By using Basic Proportionality Theorem]

In ΔABD, we have

OE || AB (By Construction)

∴ DE/EA = DO/BO ...(ii) [By using Basic Proportionality Theorem]

From equation (i) and (ii), we get

AO/CO = BO/DO

⇒ AO/BO = CO/DO

NCERT 10th Mathematics Chapter 6

10. The diagonals of a quadrilateral ABCD intersect each other at the point O such that AO/BO = CO/DO. Show that ABCD is a trapezium.

Answer

Given: Quadrilateral ABCD in which diagonals AC and BD intersects each other at O such that AO/BO = CO/DO.

To Prove: ABCD is a trapezium

Construction: Through O, draw line EO, where EO || AB, which meets AD at E.

Proof: In ΔDAB, we have

EO || AB

... DE/EA = DO/OB ...(i) [By using Basic Proportionality Theorem]

Also, AO/BO = CO/DO (Given)

⇒ AO/CO = BO/DO

⇒ CO/AO = BO/DO

⇒ DO/OB = CO/AO ...(ii)

From equation (i) and (ii), we get

DE/EA = CO/AO

Therefore, By using converse of Basic Proportionality Theorem, EO || DC also EO || AB

⇒ AB || DC.

Hence, quadrilateral ABCD is a trapezium with AB || CD.

NCERT 10th Mathematics Chapter 6

Exercise 6.3

1. State which pairs of triangles in Fig. 6.34 are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:

@IndCareer

Fig. 6.34

Answer

(i) In $\triangle ABC$ and $\triangle PQR$, we have

$$\angle A = \angle P = 60^{\circ}$$
 (Given)

$$\angle B = \angle Q = 80^{\circ}$$
 (Given)

$$\angle C = \angle R = 40^{\circ}$$
 (Given)

... ΔABC ~ ΔPQR (AAA similarity criterion)

(ii) In \triangle ABC and \triangle PQR, we have

AB/QR = BC/RP = CA/PQ

.. ΔABC ~ ΔQRP (SSS similarity criterion)

(iii) In ΔLMP and ΔDEF, we have

$$LM = 2.7$$
, $MP = 2$, $LP = 3$, $EF = 5$, $DE = 4$, $DF = 6$

MP/DE = 2/4 = 1/2

PL/DF = 3/6 = 1/2

LM/EF = 2.7/5 = 27/50

Here, MP/DE = PL/DF \neq LM/EF

Hence, \triangle LMP and \triangle DEF are not similar.

(iv) In \triangle MNL and \triangle QPR, we have

MN/QP = ML/QR = 1/2

 $\angle M = \angle Q = 70^{\circ}$

 \therefore \triangle MNL ~ \triangle QPR (SAS similarity criterion)

(v) In \triangle ABC and \triangle DEF, we have

$$AB = 2.5$$
, $BC = 3$, $\angle A = 80^{\circ}$, $EF = 6$, $DF = 5$, $\angle F = 80^{\circ}$

Here, AB/DF = 2.5/5 = 1/2

And, BC/EF = 3/6 = 1/2

 $\Rightarrow \angle B \neq \angle F$

Hence, \triangle ABC and \triangle DEF are not similar.

(vi) In ΔDEF,we have

$$\angle D + \angle E + \angle F = 180^{\circ}$$
 (sum of angles of a triangle)

$$\Rightarrow$$
 70° + 80° + \angle F = 180°

$$\Rightarrow$$
 \angle F = 180° - 70° - 80°

$$\Rightarrow$$
 \angle F = 30°

In PQR, we have

$$\angle P + \angle Q + \angle R = 180$$
 (Sum of angles of Δ)

$$\Rightarrow$$
 $\angle P + 80^{\circ} + 30^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 $\angle P = 180^{\circ} - 80^{\circ} - 30^{\circ}$

$$\Rightarrow \angle P = 70^{\circ}$$

In \triangle DEF and \triangle PQR, we have

$$\angle D = \angle P = 70^{\circ}$$

$$\angle F = \angle Q = 80^{\circ}$$

$$\angle F = \angle R = 30^{\circ}$$

Hence, $\Delta DEF \sim \Delta PQR$ (AAA similarity criterion)

NCERT 10th Mathematics Chapter 6

2. In the fig 6.35, \triangle ODC $\propto \frac{1}{4}$ \triangle OBA, \angle BOC = 125° and \angle CDO = 70°. Find \angle DOC, \angle DCO and \angle OAB.

Fig. 6.35

Answer

DOB is a straight line.

Therefore, $\angle DOC + \angle COB = 180^{\circ}$

$$\Rightarrow$$
 \angle DOC = 180° - 125°

= 55°

In ΔDOC,

$$\angle$$
DCO + \angle CDO + \angle DOC = 180°

(Sum of the measures of the angles of a triangle is 180°.)

$$\Rightarrow$$
 \angle DCO + 70° + 55° = 180°

$$\Rightarrow$$
 \angle DCO = 55°

It is given that \triangle ODC \sim \triangle OBA.

- \therefore \angle OAB = \angle OCD [Corresponding angles are equal in similar triangles.]
- \Rightarrow \angle OAB = 55°
- \therefore \angle OAB = \angle OCD [Corresponding angles are equal in similar triangles.]
- \Rightarrow \angle OAB = 55°

NCERT 10th Mathematics Chapter 6

3. Diagonals AC and BD of a trapezium ABCD with AB \parallel DC intersect each other at the point O. Using a similarity criterion for two triangles, show that AO/OC = OB/OD

Answer

In $\triangle DOC$ and $\triangle BOA$,

∠CDO = ∠ABO [Alternate interior angles as AB || CD]

∠DCO = ∠BAO [Alternate interior angles as AB || CD]

 \angle DOC = \angle BOA [Vertically opposite angles]

... ΔDOC ~ ΔBOA [AAA similarity criterion]

∴ DO/BO = OC/OA [Corresponding sides are proportional]

⇒ OA/OC = OB/OD

NCERT 10th Mathematics Chapter 6

4. In the fig.6.36, QR/QS = QT/PR and $\angle 1 = \angle 2$. Show that $\triangle PQS \sim \triangle TQR$.

Fig. 6.36

Answer

In $\triangle PQR$, $\angle PQR = \angle PRQ$

∴ PQ = PR ...(i)

Given,QR/QS = QT/PR

Using (i), we get

QR/QS = QT/QP ...(ii)

In $\triangle PQS$ and $\triangle TQR$,

QR/QS = QT/QP [using (ii)]

 $\angle Q = \angle Q$

... ΔPQS ~ ΔTQR [SAS similarity criterion]

NCERT 10th Mathematics Chapter 6

5. S and T are point on sides PR and QR of \triangle PQR such that \angle P = \angle RTS. Show that \triangle RPQ ~ \triangle RTS.

Answer

In ΔRPQ and ΔRST,

 \angle RTS = \angle QPS (Given)

 $\angle R = \angle R$ (Common angle)

 \therefore \triangle RPQ ~ \triangle RTS (By AA similarity criterion)

6. In the fig 6.37, if $\triangle ABE \cong \triangle ACD$, show that $\triangle ADE \sim \triangle ABC$.

Fig. 6.37

Answer

It is given that $\triangle ABE \cong \triangle ACD$.

∴ AB = AC [By cpct] ... (i)

And, AD = AE [By cpct] ... (ii)

In \triangle ADE and \triangle ABC,

AD/AB = AE/AC [Dividing equation (ii) by (i)]

 $\angle A = \angle A$ [Common angle]

... ΔADE ~ ΔABC [By SAS similarity criterion]

NCERT 10th Mathematics Chapter 6

7. In the fig 6.38, altitudes AD and CE of \triangle ABC intersect each other at the point P. Show that:

Fig. 6.38

- (i) ΔAEP ~ ΔCDP
- (ii) ΔABD ~ ΔCBE
- (iii) ΔAEP ~ ΔADB
- (iv) ΔPDC ~ ΔBEC
- (i) In $\triangle AEP$ and $\triangle CDP$,

 $\angle AEP = \angle CDP (Each 90^{\circ})$

 \angle APE = \angle CPD (Vertically opposite angles)

Hence, by using AA similarity criterion, ΔAEP ~ ΔCDP (ii) In ΔABD and ΔCBE, $\angle ADB = \angle CEB (Each 90^{\circ})$ $\angle ABD = \angle CBE (Common)$ Hence, by using AA similarity criterion, ΔABD ~ ΔCBE (iii) In \triangle AEP and \triangle ADB, $\angle AEP = \angle ADB (Each 90^{\circ})$ $\angle PAE = \angle DAB$ (Common) Hence, by using AA similarity criterion, ΔAEP ~ ΔADB (iv) In \triangle PDC and \triangle BEC, $\angle PDC = \angle BEC (Each 90^{\circ})$

 \angle PCD = \angle BCE (Common angle)

Hence, by using AA similarity criterion,

ΔPDC ~ ΔBEC

NCERT 10th Mathematics Chapter 6

8. E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Show that $\triangle ABE \sim \triangle CFB$.

Answer

In $\triangle ABE$ and $\triangle CFB$,

 $\angle A = \angle C$ (Opposite angles of a parallelogram)

 \angle AEB = \angle CBF (Alternate interior angles as AE || BC)

 \therefore \triangle ABE ~ \triangle CFB (By AA similarity criterion)

9. In the fig 6.39, ABC and AMP are two right triangles, right angled at B and M respectively, prove that:

(i) ΔABC ~ ΔAMP

(ii) CA/PA = BC/MP

Answer

(i) In ΔABC and ΔAMP, we have

 $\angle A = \angle A$ (common angle)

 \angle ABC = \angle AMP = 90° (each 90°)

- \therefore \triangle ABC ~ \triangle AMP (By AA similarity criterion)
- (ii) As, \triangle ABC ~ \triangle AMP (By AA similarity criterion)

If two triangles are similar then the corresponding sides are equal,

Hence, CA/PA = BC/MP

NCERT 10th Mathematics Chapter 6

10. CD and GH are respectively the bisectors of \angle ACB and \angle EGF such that D and H lie on sides AB and FE of \triangle ABC and \triangle EFG respectively. If \triangle ABC ~ \triangle FEG, Show that:

- (i) CD/GH = AC/FG
- (ii) ΔDCB ~ ΔHGE
- (iii) ΔDCA ~ ΔHGF

Answer

(i) It is given that $\triangle ABC \sim \triangle FEG$.

 \therefore $\angle A = \angle F$, $\angle B = \angle E$, and $\angle ACB = \angle FGE$

 \angle ACB = \angle FGE

 \therefore \angle ACD = \angle FGH (Angle bisector)

And, \angle DCB = \angle HGE (Angle bisector)

In \triangle ACD and \triangle FGH,

 $\angle A = \angle F$ (Proved above)

 \angle ACD = \angle FGH (Proved above)

... ΔACD ~ ΔFGH (By AA similarity criterion)

⇒ CD/GH = AC/FG

(ii) In ΔDCB and ΔHGE,

 \angle DCB = \angle HGE (Proved above)

 $\angle B = \angle E$ (Proved above)

... ΔDCB ~ ΔHGE (By AA similarity criterion)

(iii) In ΔDCA and ΔHGF,

 \angle ACD = \angle FGH (Proved above)

 $\angle A = \angle F$ (Proved above)

 \therefore \triangle DCA \sim \triangle HGF (By AA similarity criterion)

NCERT 10th Mathematics Chapter 6

11. In the following figure, E is a point on side CB produced of an isosceles triangle ABC with AB = AC. If AD \perp BC and EF \perp AC, prove that \triangle ABD \sim \triangle ECF.

Fig. 6.40

Answer

It is given that ABC is an isosceles triangle.

∴ AB = AC

⇒ ∠ABD = ∠ECF

In ΔABD and ΔECF.

 $\angle ADB = \angle EFC (Each 90^\circ)$

 \angle BAD = \angle CEF (Proved above)

 \therefore \triangle ABD ~ \triangle ECF (By using AA similarity criterion)

12. Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of Δ PQR (see Fig 6.41). Show that Δ ABC ~ Δ PQR.

Fig. 6.41

Answer

Given: ΔABC and ΔPQR , AB, BC and median AD of ΔABC are proportional to sides PQ, QR and median PM of ΔPQR

i.e., AB/PQ = BC/QR = AD/PM

To Prove: ΔABC ~ ΔPQR

Proof: AB/PQ = BC/QR = AD/PM

$$\Rightarrow \frac{AB}{PQ} = \frac{\frac{1}{2}BC}{\frac{1}{2}QR} = \frac{AD}{PM}...(i)$$

 \Rightarrow AB/PQ = BC/QR = AD/PM (D is the mid-point of BC. M is the mid point of QR)

 \Rightarrow \triangle ABD \sim \triangle PQM [SSS similarity criterion]

 \therefore \angle ABD = \angle PQM [Corresponding angles of two similar triangles are equal]

 $\Rightarrow \angle ABC = \angle PQR$

In ΔABC and ΔPQR

AB/PQ = BC/QR ...(i)

 \angle ABC = \angle PQR ...(ii)

From equation (i) and (ii), we get

 \triangle ABC ~ \triangle PQR [By SAS similarity criterion]

NCERT 10th Mathematics Chapter 6

13. D is a point on the side BC of a triangle ABC such that \angle ADC = \angle BAC. Show that CA² = CB.CD

Answer

In \triangle ADC and \triangle BAC,

 $\angle ADC = \angle BAC$ (Given)

 \angle ACD = \angle BCA (Common angle)

 \triangle ADC ~ \triangle BAC (By AA similarity criterion)

We know that corresponding sides of similar triangles are in proportion.

∴ CA/CB =CD/CA

 \Rightarrow CA² = CB.CD.

14. Sides AB and AC and median AD of a triangle ABC are respectively proportional to sides PQ and PR and median PM of another triangle PQR. Show that \triangle ABC \sim \triangle PQR.

Answer

Given: Two triangles \triangle ABC and \triangle PQR in which AD and PM are medians such that AB/PQ = AC/PR = AD/PM

To Prove: ΔABC ~ ΔPQR

Construction: Produce AD to E so that AD = DE. Join CE, Similarly produce PM to N such that PM = MN, also Join RN.

Proof: In \triangle ABD and \triangle CDE, we have

AD = DE [By Construction]

BD = DC [\therefore AP is the median]

and, $\angle ADB = \angle CDE$ [Vertically opp. angles]

∴ ∆ABD ≅ ∆CDE [By SAS criterion of congruence]

⇒ AB = CE [CPCT] ...(i)

Also, in $\triangle PQM$ and $\triangle MNR$, we have

PM = MN [By Construction]

QM = MR [\therefore PM is the median]

and, $\angle PMQ = \angle NMR$ [Vertically opposite angles]

 \therefore \triangle PQM = \triangle MNR [By SAS criterion of congruence]

⇒ PQ = RN [CPCT] ...(ii)

Now, AB/PQ = AC/PR = AD/PM

 \Rightarrow CE/RN = AC/PR = AD/PM ...[From (i) and (ii)]

 \Rightarrow CE/RN = AC/PR = 2AD/2PM

 \Rightarrow CE/RN = AC/PR = AE/PN [\therefore 2AD = AE and 2PM = PN]

... ΔACE ~ ΔPRN [By SSS similarity criterion]

Therefore, $\angle 2 = \angle 4$

Similarly, $\angle 1 = \angle 3$

 $\therefore \angle 1 + \angle 2 = \angle 3 + \angle 4$

 $\Rightarrow \angle A = \angle P \dots (iii)$

Now, In \triangle ABC and \triangle PQR, we have

AB/PQ = AC/PR (Given)

 $\angle A = \angle P$ [From (iii)]

 \therefore \triangle ABC ~ \triangle PQR [By SAS similarity criterion]

NCERT 10th Mathematics Chapter 6

15. A vertical pole of a length 6 m casts a shadow 4m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

Answer

EIndCareer

Length of the vertical pole = 6m (Given)

Shadow of the pole = 4 m (Given)

Let Height of tower = h m

Length of shadow of the tower = 28 m (Given)

In ΔABC and ΔDEF,

 $\angle C = \angle E$ (angular elevation of sum)

$$\angle B = \angle F = 90^{\circ}$$

 \therefore \triangle ABC ~ \triangle DEF (By AA similarity criterion)

:. AB/DF = BC/EF (If two triangles are similar corresponding sides are proportional)

 $\therefore 6/h = 4/28$

 $\Rightarrow h = 6 \times 28/4$

 $\Rightarrow h = 6 \times 7$

 $\Rightarrow h = 42 \text{ m}$

Hence, the height of the tower is 42 m.

16. If AD and PM are medians of triangles ABC and PQR, respectively where \triangle ABC ~ \triangle PQR prove that AB/PQ = AD/PM.

Answer

It is given that $\triangle ABC \sim \triangle PQR$

We know that the corresponding sides of similar triangles are in proportion. AB/PQ = AC/PR = BC/QR ...(i)

Also, $\angle A = \angle P$, $\angle B = \angle Q$, $\angle C = \angle R$...(ii)

Since AD and PM are medians, they will divide their opposite sides. ∴ BD = BC/2 and QM = QR/2 ...(iii)

From equations (i) and (iii), we get

AB/PQ = BD/QM ...(iv)

In $\triangle ABD$ and $\triangle PQM$,

 $\angle B = \angle Q$ [Using equation (ii)]

AB/PQ = BD/QM [Using equation (iv)]

∴ \triangle ABD ~ \triangle PQM (By SAS similarity criterion) \Rightarrow AB/PQ = BD/QM = AD/PM.

NCERT 10th Mathematics Chapter 6

Exercise 6.4

1. Let \triangle ABC ~ \triangle DEF and their areas be, respectively, 64 cm² and 121 cm². If EF = 15.4 cm, find BC.

Answer

It is given that,

Area of $\triangle ABC = 64 \text{ cm}^2$

Area of $\Delta DEF = 121 \text{ cm}^2$

EF = 15.4 cm

and, ΔABC ~ ΔDEF

 \therefore Area of $\triangle ABC/Area$ of $\triangle DEF = AB^2/DE^2$

 $= AC^2/DF^2 = BC^2/EF^2 ...(i)$

[If two triangles are similar, ratio of their areas are equal to the square of the ratio of their corresponding sides]

 \therefore 64/121 = BC²/EF²

 \Rightarrow (8/11)² = (BC/15.4)²

 \Rightarrow 8/11 = BC/15.4

 \Rightarrow BC = 8×15.4/11

 \Rightarrow BC = 8 × 1.4

⇒ BC = 11.2 cm

2. Diagonals of a trapezium ABCD with AB || DC intersect each other at the point O. If AB = 2CD, find the ratio of the areas of triangles AOB and COD.

Answer

ABCD is a trapezium with AB || DC. Diagonals AC and BD intersect each other at point O.

In $\triangle AOB$ and $\triangle COD$, we have

 $\angle 1 = \angle 2$ (Alternate angles)

 $\angle 3 = \angle 4$ (Alternate angles)

 $\angle 5 = \angle 6$ (Vertically opposite angle)

 \therefore \triangle AOB ~ \triangle COD [By AAA similarity criterion]

Now, Area of $(\Delta AOB)/Area$ of (ΔCOD)

= AB²/CD² [If two triangles are similar then the ratio of their areas are equal to the square of the ratio of their corresponding sides]

= $(2CD)^2/CD^2$ [... AB = CD]

 \therefore Area of (\triangle AOB)/Area of (\triangle COD)

 $= 4CD^2/CD = 4/1$

Hence, the required ratio of the area of $\triangle AOB$ and $\triangle COD = 4:1$

3. In the fig 6.53, ABC and DBC are two triangles on the same base BC. If AD intersects BC at O, show that area (ΔABC) /area $(\Delta DBC) = AO/DO$.

Answer

Given: ABC and DBC are triangles on the same base BC. Ad intersects BC at O.

To Prove: area ($\triangle ABC$)/area ($\triangle DBC$) = AO/DO.

Construction: Let us draw two perpendiculars AP and DM on line BC.

Proof: We know that area of a triangle = $1/2 \times \text{Base} \times \text{Height}$

$$\therefore \frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta DEF)} = \frac{\frac{1}{2}\operatorname{BC} \times \operatorname{AP}}{\frac{1}{2}\operatorname{BC} \times \operatorname{DM}} = \frac{\operatorname{AP}}{\operatorname{DM}}$$

In ΔAPO and ΔDMO,

 $\angle APO = \angle DMO$ (Each equals to 90°)

 $\angle AOP = \angle DOM$ (Vertically opposite angles)

 \therefore \triangle APO ~ \triangle DMO (By AA similarity criterion). \therefore AP/DM = AO/DO

 \Rightarrow area (\triangle ABC)/area (\triangle DBC) = AO/DO.

4. If the areas of two similar triangles are equal, prove that they are congruent.

Answer

Given: \triangle ABC and \triangle PQR are similar and equal in area.

To Prove: ΔABC ≅ ΔPQR

Proof: Since, ΔABC ~ ΔPQR

 \therefore Area of (\triangle ABC)/Area of (\triangle PQR) = BC²/QR²

 \Rightarrow BC²/QR² =1 [Since, Area(\triangle ABC) = (\triangle PQR)

 \Rightarrow BC²/QR²

 \Rightarrow BC = QR

Similarly, we can prove that

AB = PQ and AC = PR

Thus, ΔABC ≅ ΔPQR [BY SSS criterion of congruence]

5. D, E and F are respectively the mid-points of sides AB, BC and CA of \triangle ABC. Find the ratio of the area of \triangle DEF and \triangle ABC.

Answer

Given: D, E and F are the mid-points of the sides AB, BC and CA respectively of the \triangle ABC.

To Find: area(\triangle DEF) and area(\triangle ABC)

Solution: In $\triangle ABC$, we have

F is the mid point of AB (Given)

E is the mid-point of AC (Given)

So, by the mid-point theorem, we have

FE || BC and FE = 1/2BC

⇒ FE || BC and FE || BD [BD = 1/2BC]

∴ BDEF is parallelogram [Opposite sides of parallelogram are equal and parallel]

Similarly in \triangle FBD and \triangle DEF, we have

FB = DE (Opposite sides of parallelogram BDEF)

FD = FD (Common)

BD = FE (Opposite sides of parallelogram BDEF)

∴ ∆FBD ≅ ∆DEF

Similarly, we can prove that

ΔAFE ≅ ΔDEF

ΔEDC ≅ ΔDEF

If triangles are congruent, then they are equal in area.

So, $area(\Delta FBD) = area(\Delta DEF) ...(i)$

 $area(\Delta AFE) = area(\Delta DEF) ...(ii)$

and, area(Δ EDC) = area(Δ DEF) ...(iii)

Now, area($\triangle ABC$) = area($\triangle FBD$) + area($\triangle DEF$) + area($\triangle AFE$) + area($\triangle EDC$) ...(iv)

 $area(\Delta ABC) = area(\Delta DEF) + area(\Delta DEF) + area(\Delta DEF) + area(\Delta DEF)$

 \Rightarrow area(\triangle DEF) = 1/4area(\triangle ABC) [From (i), (ii) and (iii)]

 \Rightarrow area(\triangle DEF)/area(\triangle ABC) = 1/4

Hence, area(Δ DEF):area(Δ ABC) = 1:4

6. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

Answer

Given: AM and DN are the medians of triangles ABC and DEF respectively and \triangle ABC ~ \triangle DEF.

To Prove: $area(\Delta ABC)/area(\Delta DEF) = AM^2/DN^2$

Proof: ΔABC ~ ΔDEF (Given)

 \therefore area(\triangle ABC)/area(\triangle DEF) = (AB²/DE²) ...(i)

and, AB/DE = BC/EF = CA/FD ...(ii)

In \triangle ABM and \triangle DEN, we have

 $\angle B = \angle E$ [Since $\triangle ABC \sim \triangle DEF$]

AB/DE = BM/EN [Prove in (i)]

... ΔABC ~ ΔDEF [By SAS similarity criterion]

⇒ AB/DE = AM/DN ... (iii)

∴ ΔABM ~ ΔDEN

As the areas of two similar triangles are proportional to the squares of the corresponding sides.

 \therefore area($\triangle ABC$)/area($\triangle DEF$) = AB^2/DE^2 = AM^2/DN^2

7. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

Answer

Given: ABCD is a square whose one diagonal is AC. \triangle APC and \triangle BQC are two equilateral triangles described on the diagonals AC and side BC of the square ABCD.

To Prove: $area(\Delta BQC) = 1/2area(\Delta APC)$

Proof: ΔAPC and ΔBQC are both equilateral triangles (Given)

... ΔAPC ~ ΔBQC [AAA similarity criterion]

 \therefore area(\triangle APC)/area(\triangle BQC) = (AC²/BC²) = AC²/BC²

 \Rightarrow area(\triangle APC) = 2 × area(\triangle BQC)

 \Rightarrow area(\triangle BQC) = 1/2area(\triangle APC)

Tick the correct answer and justify:

8. ABC and BDE are two equilateral triangles such that D is the mid-point of BC. Ratio of the area of triangles ABC and BDE is

(A) 2 : 1

(B) 1:2

(C) 4:1

(D) 1:4

Answer

 \triangle ABC and \triangle BDE are two equilateral triangle. D is the mid point of BC.

Let each side of triangle is 2a.

As, ΔABC ~ ΔBDE

: area(
$$\triangle$$
ABC)/area(\triangle BDE) = AB²/BD² = (2a)²/(a)² = 4a²/a² = 4/1 = 4:1

Hence, the correct option is (C).

9. Sides of two similar triangles are in the ratio 4 : 9. Areas of these triangles are in the ratio

(A) 2 : 3

(B) 4:9

(C) 81:16

(D) 16:81

Answer

Let ABC and DEF are two similarity triangles \triangle ABC \sim \triangle DEF (Given)

and, AB/DE = AC/DF = BC/EF = 4/9 (Given)

- : area(\triangle ABC)/area(\triangle DEF) = AB²/DE² [the ratio of the areas of these triangles will be equal to the square of the ratio of the corresponding sides]
- : area(\triangle ABC)/area(\triangle DEF) = (4/9)² = 16/81 = 16:81

NCERT 10th Mathematics Chapter 6

Hence, the correct option is (D).

Exercise 6.5

- 1. Sides of triangles are given below. Determine which of them are right triangles? In case of a right triangle, write the length of its hypotenuse.
- (i) 7 cm, 24 cm, 25 cm
- (ii) 3 cm, 8 cm, 6 cm
- (iii) 50 cm, 80 cm, 100 cm
- (iv) 13 cm, 12 cm, 5 cm

Answer

(i) Given that the sides of the triangle are 7 cm, 24 cm, and 25 cm.

Squaring the lengths of these sides, we will get 49, 576, and 625.

$$49 + 576 = 625$$

$$(7)^2 + (24)^2 = (25)^2$$

The sides of the given triangle are satisfying Pythagoras theorem. Hence, it is right angled triangle.

Length of Hypotenuse = 25 cm

(ii) Given that the sides of the triangle are 3 cm, 8 cm, and 6 cm.

Squaring the lengths of these sides, we will get 9, 64, and 36.

However, $9 + 36 \neq 64$

Or,
$$3^2 + 6^2 \neq 8^2$$

Clearly, the sum of the squares of the lengths of two sides is not equal to the square of the length of the third side.

Therefore, the given triangle is not satisfying Pythagoras theorem.

(iii) Given that sides are 50 cm, 80 cm, and 100 cm.

Squaring the lengths of these sides, we will get 2500, 6400, and 10000.

However, $2500 + 6400 \neq 10000$

Or,
$$50^2 + 80^2 \neq 100^2$$

Clearly, the sum of the squares of the lengths of two sides is not equal to the square of the length of the third side.

Therefore, the given triangle is not satisfying Pythagoras theorem.

Hence, it is not a right triangle.

(iv) Given that sides are 13 cm, 12 cm, and 5 cm.

Squaring the lengths of these sides, we will get 169, 144, and 25.

Clearly, 144 + 25 = 169

Or. $12^2 + 5^2 = 13^2$

The sides of the given triangle are satisfying Pythagoras theorem.

Therefore, it is a right triangle.

Length of the hypotenuse of this triangle is 13 cm.

2. PQR is a triangle right angled at P and M is a point on QR such that PM \perp QR. Show that PM² = QM × MR.

Answer

Given: $\triangle PQR$ is right angled at P is a point on QR such that PM $\perp QR$.

To prove: $PM^2 = QM \times MR$

Proof: In ΔPQM, we have

 $PQ^2 = PM^2 + QM^2$ [By Pythagoras theorem]

Or, $PM^2 = PQ^2 - QM^2 ...(i)$

In ΔPMR, we have

 $PR^2 = PM^2 + MR^2$ [By Pythagoras theorem]

Or, $PM^2 = PR^2 - MR^2 ...(ii)$

Adding (i) and (ii), we get

$$2PM^2 = (PQ^2 + PM^2) - (QM^2 + MR^2)$$

=
$$QR^2 - QM^2 - MR^2$$
 [: $QR^2 = PQ^2 + PR^2$]

$$= (QM + MR)^2 - QM^2 - MR^2$$

- $= 2QM \times MR$
- $\therefore PM^2 = QM \times MR$

3. In Fig. 6.53, ABD is a triangle right angled at A and AC \perp BD. Show that

(i)
$$AB^2 = BC \times BD$$

(ii)
$$AC^2 = BC \times DC$$

(iii)
$$AD^2 = BD \times CD$$

Answer

(i) In \triangle ADB and \triangle CAB, we have

 \angle DAB = \angle ACB (Each equals to 90°)

 $\angle ABD = \angle CBA$ (Common angle)

... ΔADB ~ ΔCAB [AA similarity criterion]

⇒ AB/CB = BD/AB

 \Rightarrow AB² = CB × BD

(ii) Let $\angle CAB = x$

In ΔCBA,

$$\angle$$
 CBA = 180° - 90° - x

$$\angle$$
 CBA = 90° - x

Similarly, in ΔCAD

$$\angle$$
CAD = 90° - \angle CBA = 90° - x

$$\angle$$
 CDA = 180° - 90° - (90° - x)

$$\angle CDA = x$$

In \triangle CBA and \triangle CAD, we have

$$\angle$$
CBA = \angle CAD

$$\angle CAB = \angle CDA$$

$$\angle$$
ACB = \angle DCA (Each equals to 90°)

... ΔCBA ~ ΔCAD [By AAA similarity criterion]

$$\Rightarrow$$
 AC² = DC × BC

(iii) In ΔDCA and ΔDAB, we have

$$\angle$$
DCA = \angle DAB (Each equals to 90°)

$$\angle$$
CDA = \angle ADB (common angle)

... ΔDCA ~ ΔDAB [By AA similarity criterion]

$$\Rightarrow$$
 AD² = BD × CD

4. ABC is an isosceles triangle right angled at C. Prove that $AB^2 = 2AC^2$.

Answer

Given that $\triangle ABC$ is an isosceles triangle right angled at C.

In $\triangle ACB$, $\angle C = 90^{\circ}$

AC = BC (Given)

 $AB^2 = AC^2 + BC^2$ ([By using Pythagoras theorem]

 $= AC^2 + AC^2$ [Since, AC = BC]

 $AB^2 = 2AC^2$

5. ABC is an isosceles triangle with AC = BC. If $AB^2 = 2AC^2$, prove that ABC is a right triangle.

Answer

Given that $\triangle ABC$ is an isosceles triangle having AC = BC and AB² = 2AC²

In ΔACB,

AC = BC (Given)

 $AB^2 = 2AC^2$ (Given)

 $AB^2 = AC^2 + AC^2$

 $= AC^2 + BC^2$ [Since, AC = BC]

Hence, By Pythagoras theorem $\triangle ABC$ is right angle triangle.

6. ABC is an equilateral triangle of side 2a. Find each of its altitudes.

Answer

EIndCareer

ABC is an equilateral triangle of side 2a.

Draw, AD ⊥ BC

In \triangle ADB and \triangle ADC, we have

AB = AC [Given]

AD = AD [Given]

 \angle ADB = \angle ADC [equal to 90°]

Therefore, $\triangle ADB \cong \triangle ADC$ by RHS congruence.

Hence, BD = DC [by CPCT]

In right angled $\triangle ADB$,

$$AB^2 = AD^2 + BD^2$$

$$(2a)^2 = AD^2 + a^2$$

$$\Rightarrow$$
 AD² = 4 a^2 - a^2

$$\Rightarrow$$
 AD² = 3 a^2

7. Prove that the sum of the squares of the sides of rhombus is equal to the sum of the squares of its diagonals.

Answer

ABCD is a rhombus whose diagonals AC and BD intersect at O. [Given]

We have to prove that,

$$AB^2 + BC^2 + CD^2 + AD^2 = AC^2 + BD^2$$

Since, the diagonals of a rhombus bisect each other at right angles.

Therefore, AO = CO and BO = DO

In ΔAOB,

$$\angle AOB = 90^{\circ}$$

$$AB^2 = AO^2 + BO^2 \dots$$
 (i) [By Pythagoras]

Similarly,

$$AD^2 = AO^2 + DO^2 ...$$
 (ii)

$$DC^2 = DO^2 + CO^2 ...$$
 (iii)

$$BC^2 = CO^2 + BO^2 ...$$
 (iv)

Adding equations (i) + (ii) + (iii) + (iv) we get,

$$AB^2 + AD^2 + DC^2 + BC^2 = 2(AO^2 + BO^2 + DO^2 + CO^2)$$

=
$$4AO^2 + 4BO^2$$
 [Since, AO = CO and BO =DO]

$$= (2AO)^2 + (2BO)^2 = AC^2 + BD^2$$

8. In Fig. 6.54, O is a point in the interior of a triangle

ABC, OD \perp BC, OE \perp AC and OF \perp AB. Show that

(i)
$$OA^2 + OB^2 + OC^2 - OD^2 - OE^2 - OF^2 = AF^2 + BD^2 + CE^2$$
,

(ii)
$$AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2$$
.

Answer

Join OA, OB and OC

(i) Applying Pythagoras theorem in $\triangle AOF$, we have

$$OA^2 = OF^2 + AF^2$$

Similarly, in ΔBOD

$$OB^2 = OD^2 + BD^2$$

Similarly, in ΔCOE

$$OC^2 = OE^2 + EC^2$$

Adding these equations,

$$OA^2 + OB^2 + OC^2 = OF^2 + AF^2 + OD^2 + BD^2 + OE^2 + EC^2$$

$$OA^2 + OB^2 + OC^2 - OD^2 - OE^2 - OF^2 = AF^2 + BD^2 + CE^2$$
.

(ii)
$$AF^2 + BD^2 + EC^2 = (OA^2 - OE^2) + (OC^2 - OD^2) + (OB^2 - OF^2)$$

$$AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2$$
.

9. A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.

Answer

Let BA be the wall and Ac be the ladder,

Therefore, by Pythagoras theorem, we have

$$AC^2 = AB^2 + BC^2$$

$$10^2 = 8^2 + BC^2$$

$$BC^2 = 100 - 64$$

$$BC^2 = 36$$

Therefore, the distance of the foot of the ladder from the base of the wall is 6 m.

10. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?

Answer

Let AB be the pole and AC be the wire.

By Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

$$24^2 = 18^2 + BC^2$$

$$BC^2 = 576 - 324$$

$$BC^2 = 252$$

BC=
$$6\sqrt{7}$$
m

Therefore, the distance from the base is $6\sqrt{7}$ m.

11. An aeroplane leaves an airport and flies due north at a speed of 1,000 km per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1,200 km per hour. How far apart will be the two planes after hours?

Answer

Speed of first aeroplane = 1000 km/hr

Distance covered by first aeroplane due north in km

hours (OA) = $100 \times 3/2 \text{ km} = 1500$

Speed of second aeroplane = 1200 km/hr

Distance covered by second aeroplane due west in 1800 km

hours (OB) = $1200 \times 3/2 \text{ km} =$

In right angle $\triangle AOB$, we have

$$AB^2 = AO^2 + OB^2$$

$$\Rightarrow$$
 AB² =(1500)2 + (1800)2

$$\Rightarrow$$
 AB = $\sqrt{2250000} + 3240000$

 $= \sqrt{5490000}$

$$\Rightarrow$$
 AB = 300 $\sqrt{61}$ km

Hence, the distance between two aeroplanes will be $300\sqrt{61}$ km.

12. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is 12 m, find the distance between their tops.

Answer

Let CD and AB be the poles of height 11 m and 6 m.

Therefore, CP = 11 - 6 = 5 m

From the figure, it can be observed that AP = 12m

Applying Pythagoras theorem for \triangle APC, we get

$$AP^2 = PC^2 + AC^2$$

$$(12m)^2 + (5m)^2 = (AC)^2$$

$$AC^2 = (144+25)m^2 = 169 \text{ m}^2$$

$$AC = 13m$$

Therefore, the distance between their tops is 13 m.

13. D and E are points on the sides CA and CB respectively of a triangle ABC right angled at C. Prove that $AE^2 + BD^2 = AB^2 + DE^2$.

Answer

Applying Pythagoras theorem in \triangle ACE, we get

$$AC^2 + CE^2 = AE^2(i)$$

Applying Pythagoras theorem in ΔBCD , we get

$$BC^2 + CD^2 = BD^2(ii)$$

Using equations (i) and (ii), we get

$$AC^2 + CE^2 + BC^2 + CD^2 = AE^2 + BD^2 ...(iii)$$

Applying Pythagoras theorem in Δ CDE, we get

$$DE^2 = CD^2 + CE^2$$

Applying Pythagoras theorem in ΔABC , we get

$$AB^2 = AC^2 + CB^2$$

Putting these values in equation (iii), we get

$$DE^2 + AB^2 = AE^2 + BD^2$$
.

14. The perpendicular from A on side BC of a \triangle ABC intersects BC at D such that DB = 3CD (see Fig. 6.55). Prove that $2AB^2 = 2AC^2 + BC^2$.

Answer

Given that in ΔABC, we have

In right angle triangles ADB and ADC, we have

$$AB^2 = AD^2 + BD^2 ...(i)$$

$$AC^2 = AD^2 + DC^2$$
 ...(ii) [By Pythagoras theorem]

Subtracting equation (ii) from equation (i), we get https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-6-triangles/

$$AB^2 - AC^2 = BD^2 - DC^2$$

=
$$9CD^2 - CD^2$$
 [: BD = $3CD$]

$$= 9CD^2 = 8(BC/4)^2$$
 [Since, BC = DB + CD = 3CD + CD = 4CD]

Therefore, $AB^2 - AC^2 = BC^2/2$

$$\Rightarrow$$
 2(AB² - AC²) = BC²

$$\Rightarrow$$
 2AB² - 2AC² = BC²

$$\therefore 2AB^2 = 2AC^2 + BC^2$$
.

15. In an equilateral triangle ABC, D is a point on side BC such that BD = 1/3BC. Prove that 9AD 2 = 7AB 2 .

Answer

Let the side of the equilateral triangle be a, and AE be the altitude of \triangle ABC.

$$\therefore$$
 BE = EC = BC/2 = $a/2$

And, AE =
$$a\sqrt{3}/2$$

Given that, BD = 1/3BC

$$\therefore$$
 BD = $a/3$

$$DE = BE - BD = a/2 - a/3 = a/6$$

Applying Pythagoras theorem in $\triangle ADE$, we get

$$AD^2 = AE^2 + DE^2$$

$$\Rightarrow$$
 9 AD² = 7 AB²

16. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

Answer

Let the side of the equilateral triangle be a, and AE be the altitude of \triangle ABC.

$$\therefore$$
 BE = EC = BC/2 = $a/2$

Applying Pythagoras theorem in ΔABE, we get

$$AB^2 = AE^2 + BE^2$$

$$4AE^{2} = 3a^{2}$$

 \Rightarrow 4 × (Square of altitude) = 3 × (Square of one side)

17. Tick the correct answer and justify: In \triangle ABC, AB = $6\sqrt{3}$ cm, AC = 12 cm and BC = 6 cm. The angle B is:

- (A) 120°
- $(B) 60^{\circ}$
- (C) 90°
- (D) 45°

Answer

Given that, AB = $6\sqrt{3}$ cm, AC = 12 cm, and BC = 6 cm

We can observe that

 $AB^2 = 108$

 $AC^2 = 144$

And, $BC^2 = 36$

 $AB^2 + BC^2 = AC^2$

The given triangle, $\triangle ABC$, is satisfying Pythagoras theorem.

Therefore, the triangle is a right triangle, right-angled at B.

∴ ∠B = 90°

Hence, the correct option is (C).

NCERT 10th Mathematics Chapter 6, class 10 Mathematics Chapter 6 solutions

Exercise 6.6

1. In Fig. 6.56, PS is the bisector of \angle QPR of \triangle PQR. Prove that QS/SR = PQ/PR

Answer

Given, in figure, PS is the bisector of \angle QPR of \triangle PQR.

Now, draw RT SP || to meet QP produced in T.

Proof:

∴ RT SP || and transversal PR intersects them

- \therefore $\angle 1 = \angle 2$ (Alternate interior angle)...(i)
- ... RT SP || and transversalQT intersects them

 \therefore $\angle 3 = \angle 4$ (Corresponding angle) ...(ii)

But $\angle 1 = \angle 3$ (Given)

- \therefore $\angle 2 = \angle 4$ [From Eqs. (i) and (ii)]
- ∴ PT = PR ...(iii) (∵ Sides opposite to equal angles of a triangle are equal)

Now, in $\triangle QRT$,

PS || RT (By construction)

- ∴ QS/SR = PQ/PT (By basic proportionally theorem)
- ⇒ QS/SR = PQ/PR [From Eq. (iii)]
- 2. In Fig. 6.57, D is a point on hypotenuse AC of Δ ABC, such that BD \perp AC, DM \perp BC and DN \perp AB. Prove that :
- (i) $DM^2 = DN.MC$
- (ii) $DN^2 = DM.AN$

Answer

Given that, D is a point on hypotenuse AC of \triangle ABC, DM \perp BC and DN \perp AB.

Now, join NM. Let BD and NM intersect at O.

(i) In \triangle DMC and \triangle NDM,

 \angle DMC = \angle NDM (Each equal to 90°)

 \angle MCD = \angle DMN

Let MCD = ∠1

Then, $\angle MDC = 90^{\circ} - (90^{\circ} - \angle 1)$

 $= \angle 1 (: \angle MCD + \angle MDC + \angle DMC = 180^{\circ})$

 \therefore \angle ODM = 90° - (90° - \angle 1)

= ∠1

 $\Rightarrow \angle DMN = \angle 1$

∴ ∆DMO ~ ∆NDM (AA similarity criterion)

.. DM/ND = MC/DM

(Corresponding sides of the similar triangles are proportional)

 \Rightarrow DM² = MC ND

(ii) In Δ DNM and Δ NAD,

 \angle NDM = \angle AND (Each equal to 90°)

 \angle DNM = \angle NAD

Let \angle NAD = \angle 2

Then, $\angle NDA = 90^{\circ} - \angle 2$

 \therefore ∠NDA + ∠DAN + ∠DNA = 180°

 $\therefore \angle ODN = 90^{\circ} - (90^{\circ} - \angle 2) = \angle 2$

 \therefore \angle DNO = \angle 2

∴ ∆DNM ~ ∆NAD (AA similarity criterion)

... DN/NA = DM/ND

⇒ DN/AN = DM/DN

 \Rightarrow DN² = DM×AN

3. In Fig. 6.58, ABC is a triangle in which \angle ABC > 90° and AD \perp CB produced. Prove that AC² = AB² + BC² + 2 BC.BD.

Answer

Given that, in figure, ABC is a triangle in which \angle ABC> 90° and AD \perp CB produced.

Proof:

In right ADC,

$$\angle D = 90^{\circ}$$

 $AC^2 = AD^2 + DC^2$ (By Pythagoras theorem)

$$= AD^2 + (BD + BC)^2$$
 [::DC = DB + BC]

=
$$(AD^2 + DB^2) + BC^2 + 2BD.BC$$
 [: $(a + b)^2 = a^2 + b^2 + 2ab$]

$$=AB^2 + BC^2 + 2BC.BD$$

[: In right ADB with $\angle D = 90^{\circ}$, AB² = AD² + DB²] (By Pythagoras theorem)

4. In Fig. 6.59, ABC is a triangle in which \angle ABC < 90° and AD \perp BC. Prove that AC² = AB² + BC² – 2BC.BD.

Answer

Given that, in figure, ABC is a triangle in which \angle ABC < 90° and AD \perp BC.

Proof:

In right \triangle ADC,

$$\angle D = 90^{\circ}$$

 $AC^2 = AD^2 + DC^2$ (By Pythagoras theorem)

$$= AD^2 + (BC - BD)^2$$
 [::BC = BD + DC]

$$= AD^2 + (BC - BD)^2$$
 (BC = BD + DC)

=
$$AD^2 + BC^2 + BD^2 - 2BC.BD$$
 [: (a + b)² = $a^2 + b^2 + 2ab$]

$$= (AD^2 + BD^2) + BC^2 - 2BC \cdot BD$$

$$= AB^2 + BC^2 - 2BC \cdot BD$$

{In right \triangle ADB with \angle D = 90°, AB² = AD² + BD²} (By Pythagoras theorem)

Answer

Given that, in figure, AD is a median of a \triangle ABC and AM \perp BC.

Proof:

(i) In right $\triangle AMC$,

6. Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.

Answer

Given that, ABCD is a parallelogram whose diagonals are AC and BD.

Now, draw AM \perp DC and BN \perp D (produced).

Proof:

In right \triangle AMD and \triangle BNC,

AD = BC (Opposite sides of a parallelogram)

AM = BN (Both are altitudes of the same parallelogram to the same base),

 \triangle AMD $\stackrel{.}{\cong} \triangle$ BNC (RHS congruence criterion)

MD = NC (CPCT) ---(i)

In right △BND,

 $\angle N = 90^{\circ}$

 $BD^2 = BN^2 + DN^2$ (By Pythagoras theorem)

= $BN^2 + (DC + CN)^2$ (:. DN = DC + CN)

= $BN^2 + DC^2 + CN^2 + 2DC.CN$ [: (a + b)² = a² + b² + 2ab]

 $= (BN^2 + CN^2) + DC^2 + 2DC.CN$

= BC² + DC² + 2DC.CN --- (ii) (: In right \triangle BNC with \angle N = 90°)

 $BN^2 + CN^2 = BC^2$ (By Pythagoras theorem)

In right △AMC,

 $\angle M = 90^{\circ}$

 $AC^2 = AM^2 + MC^2$ (". MC = DC - DM)

=
$$AM^2 + (DC - DM)^2$$
 [: (a + b)² = $a^2 + b^2 + 2ab$]

$$= AM^2 + DC^2 + DM^2 - 2DC.DM$$

$$(AM^2 + DM^2) + DC^2 - 2DC.DM$$

$$= AD^2 + DC^2 - 2DC.DM$$

[: In right triangle AMD with \angle M = 90°, AD² = AM² + DM² (By Pythagoras theorem)]

$$= AD^2 + AB^2 = 2DC.CN$$
 --- (iii)

[: DC = AB, opposite sides of parallelogram and BM = CN from eq (i)]

Now, on adding Eqs. (iii) and (ii), we get

$$AC^2 + BD^2 = (AD^2 + AB^2) + (BC^2 + DC^2)$$

$$= AB^2 + BC^2 + CD^2 + DA^2$$

7. In Fig. 6.61, two chords AB and CD intersect each other at the point P. Prove that :

- (i) \triangle APC \sim \triangle DPB
- (ii) AP . PB = CP . DP

Answer

Given that, in figure, two chords AB and CD intersects each other at the point P. Proof:

(i) $\triangle APC$ and $\triangle DPB$

 \angle APC = \angle DPB (Vertically opposite angles)

 $\angle CAP = \angle BDP$ (Angles in the same segment)

∴ ∆APC ~ ∆DPB (AA similarity criterion)

(ii) $\triangle APC \sim \triangle DPB$ [Proved in (i)]

- ∴ AP/DP = CP/BP
- (: Corresponding sides of two similar triangles are proportional)
- ⇒ AP.BP = CP.DP
- ⇒ AP.PB = CP.DP

NCERT 10th Mathematics Chapter 6, class 10 Mathematics Chapter 6 solutions

- 8. In Fig. 6.62, two chords AB and CD of a circle intersect each other at the point P (when produced) outside the circle. Prove that
- (i) \triangle PAC \sim \triangle PDB
- (ii) PA.PB = PC.PD

Answer

Given that, in figure, two chords AB and CD of a circle intersect each other at the point P (when produced) out the circle.

(i) We know that, in a cyclic quadrilaterals, the exterior angle is equal to the interior opposite angle.

Therefore, $\angle PAC = \angle PDB ...(i)$

and $\angle PCA = \angle PBD ...(ii)$

In view of Eqs. (i) and (ii), we get

 $\triangle PAC \sim \triangle PDB$ (: AA similarity criterion)

- (ii) $\triangle PAC \sim \triangle PDB$ [Proved in (i)]
- ∴ PA/PD = PC/PB
- (: Corresponding sides of the similar triangles are proportional)

⇒ PA.PB = PC.PD

9. In Fig. 6.63, D is a point on side BC of \triangle ABC such that BD/CD = AB/AC. Prove that AD is the bisector of \angle BAC.

Answer

Given that,D is a point on side BC of \triangle ABC such that BD/CD = AB/AC

Now, from BA produce cut off AE = A. Join CE.

10. Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, how much string does she have out (see Fig. 6.64)? If she pulls in the string at the rate of 5 cm per second, what will be the horizontal distance of the fly from her after 12 seconds?

Answer

Length of the string that she has out

=
$$\sqrt{(1.8)^2 + (2.4)^2}$$
 (Using Pythagoras theorem)
= $\sqrt{3.24 + 5.76} = 3 \text{ m}$

Hence, she has 3 m string out.

Length of the string pulled in $12 \text{ s} = 5 \times 12 = 60 \text{ cm} = 0.6 \text{ m}$

∴ Length of remaining string left out = 3.0 - 0.6 = 2.4m

$$BD^2 = AD^2 - AB^2$$
 (By Pythagoras theorem)
= $(2.4)^2 - (1.8)^2 = 5.76 - 3.24 = 2.52$
 $BD = \sqrt{2.52} = 1.59 \,\text{m}$ (Approx.)

 \Rightarrow

Hence, the horizontal distance of the fly from Nazima after 12 s

$$= 1.2 + 1.59 = 2.79 \,\mathrm{m}$$
 (Approx.)

NCERT 10th Mathematics Chapter 6, class 10 Mathematics Chapter 6 solutions

Chapterwise NCERT Solutions for Class 10 Maths:

- <u>Chapter 1 Real Numbers</u>
- <u>Chapter 2 Polynomials</u>
- Chapter 3 Pair of Linear Equations in Two Variables
- Chapter 4 Quadratic Equations
- <u>Chapter 5 Arithmetic Progressions</u>
- Chapter 6 Triangles
- Chapter 7 Coordinate Geometry
- Chapter 8 Introduction to Trigonometry
- Chapter 9 Applications of Trigonometry
- Chapter 10 Circle
- Chapter 11 Constructions
- Chapter 12 Areas related to Circles
- Chapter 13 Surface Areas and Volumes
- Chapter 14 Statistics
- Chapter 15 Probability

About NCERT

The National Council of Educational Research and Training is an autonomous organization of the Government of India which was established in 1961 as a literary, scientific, and charitable Society under the Societies Registration Act. The major objectives of NCERT and its constituent units are to: undertake, promote and coordinate research in areas related to school education; prepare and publish model textbooks, supplementary material, newsletters, journals and develop educational kits, multimedia digital materials, etc.

Organise pre-service and in-service training of teachers; develop and disseminate innovative educational techniques and practices; collaborate and network with state educational departments, universities, NGOs and other educational institutions; act as a clearing house for ideas and information in matters related to school education; and act as a nodal agency for achieving the goals of Universalisation of Elementary Education. In addition to research, development, training, extension, publication and dissemination activities, NCERT is an implementation agency for bilateral cultural exchange programmes with other countries in the field of school education. Its headquarters are located at Sri Aurobindo Marg in New Delhi. Visit the Official NCERT website to learn more.

