

NCERT Solutions for Class 10th Mathematics: Chapter 5 Arithmetic Progressions

Class 10: Mathematics Chapter 5 solutions. Complete Class 10 Mathematics Chapter 5 Notes.
NCERT Solutions for Class 10th Mathematics: Chapter 5 Arithmetic Progressions

NCERT 10th Mathematics Chapter 5, class 10 Mathematics Chapter 5 solutions

ClndCareer

Exercise 5.1

1. In which of the following situations, does the list of numbers involved make as arithmetic progression and why?
(i) The taxi fare after each km when the fare is Rs $\mathbf{1 5}$ for the first $\mathbf{k m}$ and Rs $\mathbf{8}$ for each additional km.

Answer

It can be observed that
Taxi fare for 1 st $\mathrm{km}=15$

Taxi fare for first $2 \mathrm{~km}=15+8=23$
Taxi fare for first $3 \mathrm{~km}=23+8=31$
Taxi fare for first $4 \mathrm{~km}=31+8=39$
Clearly $15,23,31,39 \ldots$ forms an A.P. because every term is 8 more than the preceding term.
(ii) The amount of air present in a cylinder when a vacuum pump removes $1 / 4$ of the air remaining in the cylinder at a time.

Answer

Let the initial volume of air in a cylinder be V litres. In each stroke, the vacuum pump removes $1 / 4$ of air remaining in the cylinder at a time. In other words, after every stroke, only 1-1/4 = $3 / 4$ th part of air will remain.

Therefore, volumes will be $V, 3 V / 4,(3 V / 4)^{2},(3 V / 4)^{3} \ldots$
Clearly, it can be observed that the adjacent terms of this series do not have the same difference between them. Therefore, this is not an A.P.
(iii) The cost of digging a well after every metre of digging, when it costs Rs 150 for the first metre and rises by Rs 50 for each subsequent metre.

Answer

Cost of digging for first metre $=150$
Cost of digging for first 2 metres $=150+50=200$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClndCareer

Cost of digging for first 3 metres $=200+50=250$
Cost of digging for first 4 metres $=250+50=300$
Clearly, 150, 200, 250, $300 \ldots$ forms an A.P. because every term is 50 more than the preceding term.
(iv) The amount of money in the account every year, when Rs 10000 is deposited at compound interest at 8% per annum.

Answer

We know that if Rs P is deposited at $r \%$ compound interest per annum for n years, our money will be

$$
P\left(1+\frac{r}{100}\right)^{n}
$$

Therefore, after every year, our money will be

$$
10000\left(1+\frac{8}{100}\right), 10000\left(1+\frac{8}{100}\right)^{2}, 10000\left(1+\frac{8}{100}\right)^{3} \ldots
$$

Clearly, adjacent terms of this series do not have the same difference between them. Therefore, this is not an A.P.

NCERT 10th Mathematics Chapter 5
2. Write first four terms of the A.P. when the first term a and the common differenced are given as follows
(i) $a=10, d=10$
(ii) $a=-2, d=0$
(iii) $a=4, d=-3$
(iv) $a=-1 d=1 / 2$
(v) $a=-1.25, d=-0.25$

Answer

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClndCareer

(i) $a=10, d=10$

Let the series be $a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \ldots$
$a_{1}=a=10$
$a_{2}=a_{1}+d=10+10=20$
$a_{3}=a_{2}+d=20+10=30$
$a_{4}=a_{3}+d=30+10=40$
$a_{5}=a_{4}+d=40+10=50$
Therefore, the series will be $10,20,30,40,50 \ldots$
First four terms of this A.P. will be 10, 20, 30, and 40.
(ii) $a=-2, d=0$

Let the series be $a_{1}, a_{2}, a_{3}, a_{4} \ldots$
$a_{1}=a=-2$
$a_{2}=a_{1}+d=-2+0=-2$
$a_{3}=a_{2}+d=-2+0=-2$
$a_{4}=a_{3}+d=-2+0=-2$
Therefore, the series will be $-2,-2,-2,-2 \ldots$
First four terms of this A.P. will be $-2,-2,-2$ and -2 .
(iii) $a=4, d=-3$

Let the series be $a_{1}, a_{2}, a_{3}, a_{4} \ldots$
$a_{1}=a=4$
$a_{2}=a_{1}+d=4-3=1$
$a_{3}=a_{2}+d=1-3=-2$
$a_{4}=a_{3}+d=-2-3=-5$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

CIndCareer

Therefore, the series will be 4, 1, -2-5 \ldots
First four terms of this A.P. will be 4, 1, -2 and -5 .
(iv) $a=-1, d=1 / 2$

Let the series be $a_{1}, a_{2}, a_{3}, a_{4} \ldots a_{1}=a=-1$
$a_{2}=a_{1}+d=-1+1 / 2=-1 / 2$
$a_{3}=a_{2}+d=-1 / 2+1 / 2=0$
$a_{4}=a_{3}+d=0+1 / 2=1 / 2$
Clearly, the series will be- $1,-1 / 2,0,1 / 2$
First four terms of this A.P. will be $-1,-1 / 2,0$ and $1 / 2$.
(v) $a=-1.25, d=-0.25$

Let the series be $a_{1}, a_{2}, a_{3}, a_{4} \ldots$
$a_{1}=a=-1.25$
$a_{2}=a_{1}+d=-1.25-0.25=-1.50$
$a_{3}=a_{2}+d=-1.50-0.25=-1.75$
$a_{4}=a_{3}+d=-1.75-0.25=-2.00$
Clearly, the series will be $1.25,-1.50,-1.75,-2.00$ \qquad
First four terms of this A.P. will be $-1.25,-1.50,-1.75$ and -2.00 .
NCERT 10th Mathematics Chapter 5
3. For the following A.P.s, write the first term and the common difference.
(i) $3,1,-1,-3 \ldots$
(ii) $-5,-1,3,7 \ldots$
(iii) $1 / 3,5 / 3,9 / 3,13 / 3 \ldots$
(iv) $0.6,1.7,2.8,3.9 \ldots$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClndCareer

ClndCareer

Answer

(i) $3,1,-1,-3 \ldots$

Here, first term, $a=3$
Common difference, $d=$ Second term - First term
$=1-3=-2$
(ii) $-5,-1,3,7 \ldots$

Here, first term, $a=-5$
Common difference, $d=$ Second term - First term
$=(-1)-(-5)=-1+5=4$
(iii) $1 / 3,5 / 3,9 / 3,13 / 3 \ldots$.

Here, first term, $a=1 / 3$
Common difference, $d=$ Second term - First term
$=5 / 3-1 / 3=4 / 3$
(iv) $0.6,1.7,2.8,3.9 \ldots$

Here, first term, $a=0.6$
Common difference, $d=$ Second term - First term
$=1.7-0.6$
$=1.1$
NCERT 10th Mathematics Chapter 5
4. Which of the following are APs? If they form an A.P. find the common difference d and write three more terms.
(i) $2,4,8,16 \ldots$
(ii) $2,5 / 2,3,7 / 2 \ldots$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClindCareer

ClndCareer

(iii) -1.2, -3.2, -5.2, -7.2 ...
(iv) $-10,-6,-2,2 \ldots$
(v) $3,3+\sqrt{ } 2,3+2 \sqrt{ } 2,3+3 \sqrt{ } 2$
(vi) $0.2,0.22,0.222,0.2222 \ldots$
(vii) $0,-4,-8,-12 \ldots$
(viii) $-1 / 2,-1 / 2,-1 / 2,-1 / 2 \ldots$
(ix) 1, 3, 9, $27 \ldots$
(x) a, 2a, 3a, 4a...
(xi) $a, a^{2}, a^{3}, a^{4} \ldots$
(xii) $\sqrt{ } 2, \sqrt{ } 8, \sqrt{ } 18, \sqrt{ } 32 \ldots$
(xiii) $\sqrt{ } 3, \sqrt{ } 6, \sqrt{ } 9, \sqrt{ } 12 \ldots$
(xiv) $1^{2}, 3^{2}, 5^{2}, 7^{2} \ldots$
(xv) $1^{2}, 5^{2}, 7^{2}, 7^{3} \ldots$

Answer
(i) $2,4,8,16 \ldots$

Here,
$a_{2}-a_{1}=4-2=2$
$a_{3}-a_{2}=8-4=4$
$a_{4}-a_{3}=16-8=8$
$\Rightarrow a_{n+1}-a_{n}$ is not the same every time.
Therefore, the given numbers are forming an A.P.
(ii) $2,5 / 2,3,7 / 2 \ldots$

Here,
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClndCareer

ClndCareer

$a_{2}-a_{1}=5 / 2-2=1 / 2$
$a_{3}-a_{2}=3-5 / 2=1 / 2$
$a_{4}-a_{3}=7 / 2-3=1 / 2$
$\Rightarrow a_{n+1}-a_{n}$ is same every time.
Therefore, $d=1 / 2$ and the given numbers are in A.P.
Three more terms are
$a_{5}=7 / 2+1 / 2=4$
$a_{6}=4+1 / 2=9 / 2$
$a_{7}=9 / 2+1 / 2=5$
(iii) -1.2, - 3.2, -5.2, -7.2 ...

Here,
$a_{2}-a_{1}=(-3.2)-(-1.2)=-2$
$a_{3}-a_{2}=(-5.2)-(-3.2)=-2$
$a_{4}-a_{3}=(-7.2)-(-5.2)=-2$
$\Rightarrow a_{n+1}-a_{n}$ is same every time.
Therefore, $d=-2$ and the given numbers are in A.P.
Three more terms are
$a_{5}=-7.2-2=-9.2$
$a_{6}=-9.2-2=-11.2$
$a_{7}=-11.2-2=-13.2$
(iv) $-10,-6,-2,2 \ldots$

Here,
$a_{2}-a_{1}=(-6)-(-10)=4$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClndCareer

ClndCareer

$a_{3}-a_{2}=(-2)-(-6)=4$
$a_{4}-a_{3}=(2)-(-2)=4$
$\Rightarrow a_{n+1}-a_{n}$ is same every time.
Therefore, $d=4$ and the given numbers are in A.P.
Three more terms are
$a_{5}=2+4=6$
$a_{6}=6+4=10$
$a_{7}=10+4=14$
(v) $3,3+\sqrt{ } 2,3+2 \sqrt{ } 2,3+3 \sqrt{ } 2$

Here,
$a_{2}-a_{1}=3+\sqrt{ } 2-3=\sqrt{ } 2$
$a_{3}-a_{2}=(3+2 \sqrt{ } 2)-(3+\sqrt{ } 2)=\sqrt{ } 2$
$a_{4}-a_{3}=(3+3 \sqrt{ } 2)-(3+2 \sqrt{ } 2)=\sqrt{ } 2$
$\Rightarrow a_{n+1}-a_{n}$ is same every time.
Therefore, $d=\sqrt{ } 2$ and the given numbers are in A.P.
Three more terms are
$a_{5}=(3+\sqrt{ } 2)+\sqrt{ } 2=3+4 \sqrt{ } 2$
$a_{6}=(3+4 \sqrt{ } 2)+\sqrt{ } 2=3+5 \sqrt{ } 2$
$a_{7}=(3+5 \sqrt{ } 2)+\sqrt{ } 2=3+6 \sqrt{ } 2$
(vi) $0.2,0.22,0.222,0.2222 \ldots$

Here,
$a_{2}-a_{1}=0.22-0.2=0.02$
$a_{3}-a_{2}=0.222-0.22=0.002$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClndCareer

$a_{4}-a_{3}=0.2222-0.222=0.0002$
$\Rightarrow a_{n+1}-a_{n}$ is not the same every time.
Therefore, the given numbers are forming an A.P.
(vii) $0,-4,-8,-12 \ldots$

Here,
$a_{2}-a_{1}=(-4)-0=-4$
$a_{3}-a_{2}=(-8)-(-4)=-4$
$a_{4}-a_{3}=(-12)-(-8)=-4$
$\Rightarrow a_{n+1}-a_{n}$ is same every time.
Therefore, $d=-4$ and the given numbers are in A.P.
Three more terms are
$a_{5}=-12-4=-16$
$a_{6}=-16-4=-20$
$a_{7}=-20-4=-24$
(viii) $-1 / 2,-1 / 2,-1 / 2,-1 / 2 \ldots$

Here,
$a_{2}-a_{1}=(-1 / 2)-(-1 / 2)=0$
$a_{3}-a_{2}=(-1 / 2)-(-1 / 2)=0$
$a_{4}-a_{3}=(-1 / 2)-(-1 / 2)=0$
$\Rightarrow a_{n+1}-a_{n}$ is same every time.
Therefore, $d=0$ and the given numbers are in A.P.
Three more terms are
$a_{5}=(-1 / 2)-0=-1 / 2$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClindCareer

ClndCareer

$a_{6}=(-1 / 2)-0=-1 / 2$
$a_{7}=(-1 / 2)-0=-1 / 2$
(ix) 1, 3, 9, $27 \ldots$

Here,
$a_{2}-a_{1}=3-1=2$
$a_{3}-a_{2}=9-3=6$
$a_{4}-a_{3}=27-9=18$
$\Rightarrow a_{n+1}-a_{n}$ is not the same every time.
Therefore, the given numbers are forming an A.P.
(x) $a, 2 a, 3 a, 4 a \ldots$

Here,
$a_{2}-a_{1}=2 a-a=a$
$a_{3}-a_{2}=3 a-2 a=a$
$a_{4}-a_{3}=4 a-3 a=a$
$\Rightarrow a_{n+1}-a_{n}$ is same every time.
Therefore, $d=a$ and the given numbers are in A.P.
Three more terms are
$a_{5}=4 a+a=5 a$
$a_{6}=5 a+a=6 a$
$a_{7}=6 a+a=7 a$
(xi) $a, a^{2}, a^{3}, a^{4} \ldots$

Here,
$a_{2}-a_{1}=a^{2}-a=(a-1)$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClndCareer

ClndCareer

$a_{3}-a_{2}=a^{3}-a^{2}=a^{2}(a-1)$
$a_{4}-a_{3}=a^{4}-a^{3}=a^{3}(a-1)$
$\Rightarrow a_{n+1}-a_{n}$ is not the same every time.
Therefore, the given numbers are forming an A.P.
(xii) $\sqrt{ } 2, \sqrt{ } 8, \sqrt{ } 18, \sqrt{ } 32 \ldots$

Here,
$a_{2}-a_{1}=\sqrt{ } 8-\sqrt{ } 2=2 \sqrt{ } 2-\sqrt{ } 2=\sqrt{ } 2$
$a_{3}-a_{2}=\sqrt{ } 18-\sqrt{ } 8=3 \sqrt{ } 2-2 \sqrt{ } 2=\sqrt{ } 2$
$a_{4}-a_{3}=4 \sqrt{ } 2-3 \sqrt{ } 2=\sqrt{ } 2$
$\Rightarrow a_{n+1}-a_{n}$ is same every time.
Therefore, $d=\sqrt{ } 2$ and the given numbers are in A.P.
Three more terms are
$a_{5}=\sqrt{ } 32+\sqrt{ } 2=4 \sqrt{ } 2+\sqrt{ } 2=5 \sqrt{ } 2=\sqrt{ } 50$
$a_{6}=5 \sqrt{ } 2+\sqrt{ } 2=6 \sqrt{ } 2=\sqrt{ } 72$
$a_{7}=6 \sqrt{ } 2+\sqrt{ } 2=7 \sqrt{ } 2=\sqrt{ } 98$
(xiii) $\sqrt{ } 3, \sqrt{ } 6, \sqrt{ } 9, \sqrt{ } 12 \ldots$

Here,
$a_{2}-a_{1}=\sqrt{ } 6-\sqrt{ } 3=\sqrt{ } 3 \times 2-\sqrt{ } 3=\sqrt{ } 3(\sqrt{ } 2-1)$
$a_{3}-a_{2}=\sqrt{ } 9-\sqrt{ } 6=3-\sqrt{ } 6=\sqrt{ } 3(\sqrt{ } 3-\sqrt{ } 2)$
$a_{4}-a_{3}=\sqrt{ } 12-\sqrt{ } 9=2 \sqrt{ } 3-\sqrt{ } 3 \times 3=\sqrt{ } 3(2-\sqrt{ } 3)$
$\Rightarrow a_{n+1}-a_{n}$ is not the same every time.
Therefore, the given numbers are forming an A.P.
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClindCareer

ClndCareer

(xiv) $1^{2}, 3^{2}, 5^{2}, 7^{2} \ldots$

Or, 1, 9, 25, 49
Here,
$a_{2}-a_{1}=9-1=8$
$a_{3}-a_{2}=25-9=16$
$a_{4}-a_{3}=49-25=24$
$\Rightarrow a_{n+1}-a_{n}$ is not the same every time.
Therefore, the given numbers are forming an A.P.
(xv) $1^{2}, 5^{2}, 7^{2}, 73 \ldots$

Or 1, 25, 49, 73 ...
Here,
$a_{2}-a_{1}=25-1=24$
$a_{3}-a_{2}=49-25=24$
$a_{4}-a_{3}=73-49=24$
i.e., $a_{k+1}-a_{k}$ is same every time.
$\Rightarrow a_{n+1}-a_{n}$ is same every time.
Therefore, $d=24$ and the given numbers are in A.P.
Three more terms are
$a_{5}=73+24=97$
$a_{6}=97+24=121$
$a_{7}=121+24=145$
NCERT 10th Mathematics Chapter 5
Page No: 105
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClndCareer

Exercise 5.2

1. Fill in the blanks in the following table, given that a is the first term, d the common difference and a_{n} the $n^{\text {th }}$ term of the A.P.

	a	d	n	a_{n}
(i)	7	3	8	$\ldots \ldots$
(ii)	-18	$\ldots .$.	10	0
(iii)	$\ldots .$.	-3	18	-5
(iv)	-18.9	2.5	$\ldots .$.	3.6
(v)	3.5	0	105	$\ldots .$.

Answer

(i) $a=7, d=3, n=8, a_{n}=$?

We know that,
For an A.P. $a_{n}=a+(n-1) d$
$=7+(8-1) 3$
$=7+(7) 3$
$=7+21=28$

Hence, $a_{n}=28$
(ii) Given that
$a=-18, n=10, a_{n}=0, d=?$
We know that,
$a_{n}=a+(n-1) d$
$0=-18+(10-1) d$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClndCareer
$18=9 d$
$d=18 / 9=2$
Hence, common difference, $d=2$
(iii) Given that
$d=-3, n=18, a_{n}=-5$
We know that,
$a_{n}=a+(n-1) d$
$-5=a+(18-1)(-3)$
$-5=a+(17)(-3)$
$-5=a-51$
$a=51-5=46$
Hence, $a=46$
(iv) $a=-18.9, d=2.5, a_{n}=3.6, n=$?

We know that,
$a_{n}=a+(n-1) d$
$3.6=-18.9+(n-1) 2.5$
$3.6+18.9=(n-1) 2.5$
$22.5=(n-1) 2.5$
$(n-1)=22.5 / 2.5$
$n-1=9$
$n=10$
Hence, $n=10$
(v) $a=3.5, d=0, n=105, a_{n}=$?
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClndCareer

We know that,
$a_{n}=a+(n-1) d$
$a_{n}=3.5+(105-1) 0$
$a_{n}=3.5+104 \times 0$
$a_{n}=3.5$
Hence, $a_{n}=3.5$
Choose the correct choice in the following and justify
(i) $30^{\text {th }}$ term of the A.P: $10,7,4, \ldots$, is
(A)97 (B)77 (C)-77 (D.)-87
(ii) $11^{\text {th }}$ term of the A.P. $-3,-1 / 2,2 \ldots$ is
(A) 28 (B) 22 (C) -38 (D)

Answer
(i) Given that
A.P. $10,7,4, \ldots$

First term, $a=10$
Common difference, $d=a_{2}-a_{1}=7-10=-3$
We know that, $a_{n}=a+(n-1) d$
$a_{30}=10+(30-1)(-3)$
$a_{30}=10+(29)(-3)$
$a_{30}=10-87=-77$
Hence, the correct answer is option C.
(ii) Given that A.P. is $-3,-1 / 2,, 2 \ldots$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClindCareer

ClindCareer

First term $a=-3$
Common difference, $d=a_{2}-a_{1}=(-1 / 2)-(-3)$
$=(-1 / 2)+3=5 / 2$
We know that, $a_{n}=a+(n-1) d$
$a_{11}=3+(11-1)(5 / 2)$
$a_{11}=3+(10)(5 / 2)$
$a_{11}=-3+25$
$a_{11}=22$
Hence, the answer is option B.
NCERT 10th Mathematics Chapter 5
3. In the following APs find the missing term in the boxes.
(i) $2, \square, 26$
(ii)
 13, \square 3
(iii) 5 ,

\square $9 \frac{1}{2}$
(iv) -4 ,

\square
\square6
(v) \square 38 , \square

\square , -22

Answer

(i) For this A.P.,
$a=2$
$a_{3}=26$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClindCareer

We know that, $a_{n}=a+(n-1) d$
$a_{3}=2+(3-1) d$
$26=2+2 d$
$24=2 d$
$d=12$
$a_{2}=2+(2-1) 12$
$=14$
Therefore, 14 is the missing term.
(ii) For this A.P.,
$a_{2}=13$ and
$a_{4}=3$
We know that, $a_{n}=a+(n-1) d$
$a_{2}=a+(2-1) d$
$13=a+d \ldots$ (i)
$a_{4}=a+(4-1) d$
$3=a+3 d \ldots$ (ii)
On subtracting (i) from (ii), we get
$-10=2 d$
$d=-5$
From equation (i), we get
$13=a+(-5)$
$a=18$
$a_{3}=18+(3-1)(-5)$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClndCareer

ClndCareer

$=18+2(-5)=18-10=8$
Therefore, the missing terms are 18 and 8 respectively.
(iii) For this A.P.,
$a=5$ and
$a_{4}=19 / 2$
We know that, $a_{n}=a+(n-1) d$
$a_{4}=a+(4-1) d$
$19 / 2=5+3 d$
$19 / 2-5=3 d 3 d=9 / 2$
$d=3 / 2$
$a_{2}=a+(2-1) d$
$a_{2}=5+3 / 2$
$a_{2}=13 / 2$
$a_{3}=a+(3-1) d$
$a_{3}=5+2 \times 3 / 2$
$a_{3}=8$
Therefore, the missing terms are $13 / 2$ and 8 respectively.
(iv) For this A.P.,
$a=-4$ and
$a_{6}=6$
We know that,
$a_{n}=a+(n-1) d$
$a_{6}=a+(6-1) d$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
$6=-4+5 d$
$10=5 d$
$d=2$
$a_{2}=a+d=-4+2=-2$
$a_{3}=a+2 d=-4+2(2)=0$
$a_{4}=a+3 d=-4+3(2)=2$
$a_{5}=a+4 d=-4+4(2)=4$
Therefore, the missing terms are $-2,0,2$, and 4 respectively.
(v)

For this A.P.,
$a_{2}=38$
$a_{6}=-22$
We know that
$a_{n}=a+(n-1) d$
$a_{2}=a+(2-1) d$
$38=a+d \ldots$ (i)
$a_{6}=a+(6-1) d$
$-22=a+5 d \ldots$ (ii)
On subtracting equation (i) from (ii), we get
$-22-38=4 d$
$-60=4 d$
$d=-15$
$a=a_{2}-d=38-(-15)=53$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClndCareer

ClndCareer

$a_{3}=a+2 d=53+2(-15)=23$
$a_{4}=a+3 d=53+3(-15)=8$
$a_{5}=a+4 d=53+4(-15)=-7$
Therefore, the missing terms are $53,23,8$, and -7 respectively.
NCERT 10th Mathematics Chapter 5
4. Which term of the A.P. $3,8,13,18, \ldots$ is $78 ?$

Answer
$3,8,13,18, \ldots$
For this A.P.,
$a=3$
$d=a_{2}-a_{1}=8-3=5$
Let $n^{\text {th }}$ term of this A.P. be 78 .
$a_{n}=a+(n-1) d$
$78=3+(n-1) 5$
$75=(n-1) 5$
$(n-1)=15$
$n=16$
Hence, $16^{\text {th }}$ term of this A.P. is 78.
NCERT 10th Mathematics Chapter 5
5. Find the number of terms in each of the following A.P.
(i) $7,13,19, \ldots, 205$
(ii) 18 ,
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClndCareer

$15 \frac{1}{2}$
, 13,...., -47

Answer

(i) For this A.P.,
$a=7$
$d=a_{2}-a_{1}=13-7=6$
Let there are n terms in this A.P.
$a_{n}=205$
We know that
$a_{n}=a+(n-1) d$
Therefore, $205=7+(n-1) 6$
$198=(n-1) 6$
$33=(n-1)$
$n=34$
Therefore, this given series has 34 terms in it.
(ii) For this A.P.,
$a=18$
$d=a_{2}-a_{1}=15 \frac{1}{2}-18$
$d=\frac{31-36}{2}=\frac{-5}{2}$
Let there are n terms in this A.P.
$a_{n}=205$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClndCareer

ClndCareer

$a_{n}=a+(n-1) d$
$-47=18+(n-1)(-5 / 2)$
$-47-18=(n-1)(-5 / 2)$
$-65=(n-1)(-5 / 2)$
$(n-1)=-130 /-5$
$(n-1)=26$
$n=27$

Therefore, this given A.P. has 27 terms in it.
NCERT 10th Mathematics Chapter 5
6. Check whether -150 is a term of the A.P. 11, 8, $5,2, \ldots$

Answer
For this A.P.,
$a=11$
$d=a_{2}-a_{1}=8-11=-3$
Let -150 be the $n^{\text {th }}$ term of this A.P.
We know that,
$a_{n}=a+(n-1) d$
$-150=11+(n-1)(-3)$
$-150=11-3 n+3$
$-164=-3 n$
$n=164 / 3$
Clearly, n is not an integer.
Therefore, -150 is not a term of this A.P.
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClndCareer

NCERT 10th Mathematics Chapter 5
7. Find the $31^{\text {st }}$ term of an A.P. whose $11^{\text {th }}$ term is $\mathbf{3 8}$ and the $\mathbf{1 6}^{\text {th }}$ term is $\mathbf{7 3 .}$

Answer
Given that,
$a_{11}=38$
$a_{16}=73$
We know that,
$a_{n}=a+(n-1) d$
$a_{11}=a+(11-1) d$
$38=a+10 d \ldots$ (i)
Similarly,
$a_{16}=a+(16-1) d$
$73=a+15 d \ldots$ (ii)
On subtracting (i) from (ii), we get
$35=5 d$
$d=7$

From equation (i),
$38=a+10 \times(7)$
$38-70=a$
$a=-32$
$a_{31}=a+(31-1) d$
$=-32+30(7)$
$=-32+210$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
$=178$

Hence, $31^{\text {st }}$ term is 178 .
NCERT 10th Mathematics Chapter 5
8. An A.P. consists of 50 terms of which $3^{\text {rd }}$ term is 12 and the last term is 106 . Find the $29^{\text {th }}$ term.

Answer

Given that,
$a_{3}=12$
$a_{50}=106$
We know that,
$a_{n}=a+(n-1) d$
$a_{3}=a+(3-1) d$
$12=a+2 d \ldots$ (i)
Similarly, $a_{50}=a+(50-1) d$
$106=a+49 d \ldots$ (ii)
On subtracting (i) from (ii), we get
$94=47 d$
$d=2$
From equation (i), we get
$12=a+2(2)$
$a=12-4=8$
$a_{29}=a+(29-1) d$
$a_{29}=8+(28) 2$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClndCareer
$a_{29}=8+56=64$
Therefore, $29^{\text {th }}$ term is 64 .
NCERT 10th Mathematics Chapter 5
9. If the $3^{\text {rd }}$ and the $9^{\text {th }}$ terms of an A.P. are 4 and -8 respectively. Which term of this A.P. is zero.

Answer

Given that,
$a_{3}=4$
$a_{9}=-8$
We know that,
$a_{n}=a+(n-1) d$
$a_{3}=a+(3-1) d$
$4=a+2 d \ldots$ (i)
$a_{9}=a+(9-1) d$
$-8=a+8 d$.
On subtracting equation (i) from (ii), we get,
$-12=6 d$
$d=-2$
From equation (i), we get,
$4=a+2(-2)$
$4=a-4$
$a=8$
Let $n^{\text {th }}$ term of this A.P. be zero.
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
$a_{n}=a+(n-1) d$
$0=8+(n-1)(-2)$
$0=8-2 n+2$
$2 n=10$
$n=5$

Hence, $5^{\text {th }}$ term of this A.P. is 0 .
NCERT 10th Mathematics Chapter 5
10. If $17^{\text {th }}$ term of an A.P. exceeds its $10^{\text {th }}$ term by 7 . Find the common difference.

Answer
We know that,
For an A.P., $a_{n}=a+(n-1) d$
$a_{17}=a+(17-1) d$
$a_{17}=a+16 d$
Similarly, $a_{10}=a+9 d$
It is given that
$a_{17}-a_{10}=7$
$(a+16 d)-(a+9 d)=7$
$7 d=7$
$d=1$
Therefore, the common difference is 1 .
NCERT 10th Mathematics Chapter 5
11. Which term of the A.P. $3,15,27,39, \ldots$ will be 132 more than its $54^{\text {th }}$ term?

Answer
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClindCareer

Given A.P. is $3,15,27,39, \ldots$
$a=3$
$d=a_{2}-a_{1}=15-3=12$
$a_{54}=a+(54-1) d$
$=3+(53)(12)$
$=3+636=639$
$132+639=771$
We have to find the term of this A.P. which is 771.
Let $n^{\text {th }}$ term be 771 .
$a_{n}=a+(n-1) d$
$771=3+(n-1) 12$
$768=(n-1) 12$
$(n-1)=64$
$n=65$
Therefore, $65^{\text {th }}$ term was 132 more than $54^{\text {th }}$ term.
Or
Let $n^{\text {th }}$ term be 132 more than $54^{\text {th }}$ term.
$n=54+132 / 2$
$=54+11=65^{\text {th }}$ term
NCERT 10th Mathematics Chapter 5
12. Two APs have the same common difference. The difference between their $100^{\text {th }}$ term is 100 , what is the difference between their $1000^{\text {th }}$ terms?

Answer

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ElndCareer

Let the first term of these A.P.s be a_{1} and a_{2} respectively and the common difference of these A.P.s be d.

For first A.P.,
$a_{100}=a_{1}+(100-1) d$
$=a_{1}+99 \mathrm{~d}$
$a_{1000}=a_{1}+(1000-1) d$
$a_{1000}=a_{1}+999 d$
For second A.P.,
$a_{100}=a_{2}+(100-1) d$
$=a_{2}+99 d$
$a_{1000}=a_{2}+(1000-1) d$
$=a_{2}+999 d$
Given that, difference between
$100^{\text {th }}$ term of these A.P.s $=100$
Therefore, $\left(a_{1}+99 d\right)-\left(a_{2}+99 d\right)=100$
$a_{1}-a_{2}=100 \ldots$ (i)
Difference between $1000^{\text {th }}$ terms of these A.P.s
$\left(a_{1}+999 d\right)-\left(a_{2}+999 d\right)=a_{1}-a_{2}$
From equation (i),
This difference, $a_{1}-a_{2}=100$
Hence, the difference between $1000^{\text {th }}$ terms of these A.P. will be 100 .
NCERT 10th Mathematics Chapter 5

13. How many three digit numbers are divisible by 7 ?

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClndCareer

Answer

First three-digit number that is divisible by $7=105$
Next number $=105+7=112$
Therefore, 105, 112, 119, ...
All are three digit numbers which are divisible by 7 and thus, all these are terms of an A.P. having first term as 105 and common difference as 7 .

The maximum possible three-digit number is 999 . When we divide it by 7 , the remainder will be 5. Clearly, $999-5=994$ is the maximum possible three-digit number that is divisible by 7 .

The series is as follows.
$105,112,119, \ldots, 994$
Let 994 be the nth term of this A.P.
$a=105$
$d=7$
$a_{n}=994$
$n=?$
$a_{n}=a+(n-1) d$
$994=105+(n-1) 7$
$889=(n-1) 7$
$(n-1)=127$
$n=128$
Therefore, 128 three-digit numbers are divisible by 7 .
Or
Three digit numbers which are divisible by 7 are 105, 112, 119, ... 994 .
These numbers form an AP with $a=105$ and $d=7$. https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClindCareer

elndCareer

Let number of three-digit numbers divisible by 7 be $n, a_{n}=994$
$\Rightarrow a+(n-1) d=994$
$\Rightarrow 105+(n-1) \times 7=994$
$\Rightarrow 7(n-1)=889$
$\Rightarrow n-1=127$
$\Rightarrow n=128$
NCERT 10th Mathematics Chapter 5

14. How many multiples of 4 lie between 10 and 250 ?

Answer

First multiple of 4 that is greater than 10 is 12 . Next will be 16.
Therefore, $12,16,20,24, \ldots$
All these are divisible by 4 and thus, all these are terms of an A.P. with first term as 12 and common difference as 4 .

When we divide 250 by 4 , the remainder will be 2 . Therefore, $250-2=248$ is divisible by 4 .
The series is as follows.
$12,16,20,24, \ldots, 248$
Let 248 be the $n^{\text {th }}$ term of this A.P.
$a=12$
$d=4$
$a_{n}=248$
$a_{n}=a+(n-1) d$
$248=12+(n-1) \times 4$
$236 / 4=n-1$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClndCareer

$59=n-1$
$n=60$
Therefore, there are 60 multiples of 4 between 10 and 250 .
Or
Multiples of 4 lies between 10 and 250 are 12, 16, 20,, 248.
These numbers form an AP with $a=12$ and $d=4$.
Let number of three-digit numbers divisible by 4 be $n, a_{n}=248$
$\Rightarrow a+(n-1) d=248$
$\Rightarrow 12+(n-1) \times 4=248$
$\Rightarrow 4(n-1)=248$
$\Rightarrow n-1=59$
$\Rightarrow n=60$
NCERT 10th Mathematics Chapter 5
15. For what value of n, are the $n^{\text {th }}$ terms of two APs $63,65,67$, and $3,10,17, \ldots$ equal?

Answer

$63,65,67, \ldots$
$a=63$
$d=a_{2}-a_{1}=65-63=2$
$n^{\text {th }}$ term of this A.P. $=a_{n}=a+(n-1) d$
$a_{n}=63+(n-1) 2=63+2 n-2$
$a_{n}=61+2 n \ldots$ (i)
$3,10,17, \ldots$
$a=3$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClndCareer

$d=a_{2}-a_{1}=10-3=7$
$n^{\text {th }}$ term of this A.P. $=3+(n-1) 7$
$a_{n}=3+7 n-7$
$a_{n}=7 n-4$.
It is given that, $n^{\text {th }}$ term of these A.P.s are equal to each other.
Equating both these equations, we obtain
$61+2 n=7 n-4$
$61+4=5 n$
$5 n=65$
$n=13$
Therefore, $13^{\text {th }}$ terms of both these A.P.s are equal to each other.
16. Determine the A.P. whose third term is 16 and the $7^{\text {th }}$ term exceeds the $5^{\text {th }}$ term by 12 .
$a+(3-1) d=16$
$a+2 d=16 \ldots$ (i)
$a_{7}-a_{5}=12$
$[a+(7-1) d]-[a+(5-1) d]=12$
$(a+6 d)-(a+4 d)=12$
$2 d=12$
$d=6$
From equation (i), we get,
$a+2(6)=16$
$a+12=16$
$a=4$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClndCareer

ClndCareer

Therefore, A.P. will be
$4,10,16,22, \ldots$
NCERT 10th Mathematics Chapter 5
17. Find the $20^{\text {th }}$ term from the last term of the A.P. 3, 8, 13, $\ldots, 253$.

Answer

Given A.P. is
$3,8,13, \ldots, 253$
Common difference for this A.P. is 5 .
Therefore, this A.P. can be written in reverse order as
$253,248,243, \ldots, 13,8,5$
For this A.P.,
$a=253$
$d=248-253=-5$
$n=20$
$a_{20}=a+(20-1) d$
$a_{20}=253+(19)(-5)$
$a_{20}=253-95$
$a=158$
Therefore, $20^{\text {th }}$ term from the last term is 158 .
NCERT 10th Mathematics Chapter 5
18. The sum of $4^{\text {th }}$ and $8^{\text {th }}$ terms of an A.P. is 24 and the sum of the $6^{\text {th }}$ and $10^{\text {th }}$ terms is 44 . Find the first three terms of the A.P.

Answer

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClndCareer

We know that,
$a_{n}=a+(n-1) d$
$a_{4}=a+(4-1) d$
$a_{4}=a+3 d$
Similarly,
$a_{8}=a+7 d$
$a_{6}=a+5 d$
$a_{10}=a+9 d$
Given that, $a_{4}+a_{8}=24$
$a+3 d+a+7 d=24$
$2 a+10 d=24$
$a+5 d=12 \ldots$ (i)
$a_{6}+a_{10}=44$
$a+5 d+a+9 d=44$
$2 a+14 d=44$
$a+7 d=22$.
On subtracting equation (i) from (ii), we get,
$2 d=22-12$
$2 d=10$
$d=5$
From equation (i), we get
$a+5 d=12$
$a+5(5)=12$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClindCareer

ClndCareer

$a+25=12$
$a=-13$
$a_{2}=a+d=-13+5=-8$
$a_{3}=a_{2}+d=-8+5=-3$
Therefore, the first three terms of this A.P. are -13, -8 , and -3 .
NCERT 10th Mathematics Chapter 5
19. Subba Rao started work in 1995 at an annual salary of Rs 5000 and received an increment of Rs 200 each year. In which year did his income reach Rs 7000?

Answer

It can be observed that the incomes that Subba Rao obtained in various years are in A.P. as every year, his salary is increased by Rs 200.

Therefore, the salaries of each year after 1995 are
$5000,5200,5400, \ldots$
Here, $a=5000$
$d=200$
Let after $n^{\text {th }}$ year, his salary be Rs 7000 .
Therefore, $a_{n}=a+(n-1) d$
$7000=5000+(n-1) 200$
$200(n-1)=2000$
$(n-1)=10$
$n=11$
Therefore, in 11th year, his salary will be Rs 7000 .
NCERT 10th Mathematics Chapter 5
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClindCareer

20. Ramkali saved Rs 5 in the first week of a year and then increased her weekly saving by Rs 1.75. If in the $\boldsymbol{n}^{\text {th }}$ week, her week, her weekly savings become Rs 20.75, find \boldsymbol{n}.

Answer
Given that,
$a=5$
$d=1.75$
$a_{n}=20.75$
$n=?$
$a_{n}=a+(n-1) d$
$20.75=5+(n-1) \times 1.75$
$15.75=(n-1) \times 1.75$
$(n-1)=15.75 / 1.75=1575 / 175$
$=63 / 7=9$
$n-1=9$
$n=10$
Hence, n is 10 .

1. Find the sum of the following APs.
(i) $2,7,12, \ldots$, to 10 terms.
(ii) $-37,-33,-29, \ldots$, to 12 terms
(iii) $0.6,1.7,2.8, \ldots \ldots .$. , to 100 terms
(iv) $1 / 15,1 / 12,1 / 10, \ldots \ldots$, to 11 terms

Answer
(i) $2,7,12, \ldots$, to 10 terms
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClndCareer

For this A.P.,
$a=2$
$d=a_{2}-a_{1}=7-2=5$
$n=10$
We know that,
$S_{n}=n / 2[2 \mathrm{a}+(n-1) d]$
$S_{10}=10 / 2[2(2)+(10-1) \times 5]$
$=5[4+(9) \times(5)]$
$=5 \times 49=245$
(ii) $-37,-33,-29, \ldots$, to 12 terms

For this A.P.,
$a=-37$
$d=a_{2}-a_{1}=(-33)-(-37)$
$=-33+37=4$
$n=12$
We know that,
$S_{n}=n / 2[2 a+(n-1) d]$
$S_{12}=12 / 2[2(-37)+(12-1) \times 4]$
$=6[-74+11 \times 4]$
$=6[-74+44]$
$=6(-30)=-180$
(iii) $0.6,1.7,2.8, \ldots$, to 100 terms

For this A.P.,
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClndCareer
$a=0.6$
$d=a_{2}-a_{1}=1.7-0.6=1.1$
$n=100$
We know that,
$S_{n}=n / 2[2 \mathrm{a}+(n-1) d]$
$S_{12}=50 / 2[1.2+(99) \times 1.1]$
$=50[1.2+108.9]$
$=50[110.1]$
$=5505$
(iv) $1 / 15,1 / 12,1 / 10, \ldots \ldots$. , to 11 terms

For this A.P.,

$$
\begin{aligned}
& a=\frac{1}{5} \\
& n=11 \\
& d=a_{2}-a_{1}=\frac{1}{12}-\frac{1}{15} \\
& =\frac{5-4}{60}=\frac{1}{60}
\end{aligned}
$$

We know that,

$$
\begin{aligned}
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& S_{n}=\frac{11}{2}\left[2\left(\frac{1}{15}\right)+(11-1) \frac{1}{60}\right] \\
& =\frac{11}{2}\left[\frac{2}{15}+\frac{10}{60}\right] \\
& =\frac{11}{2}\left[\frac{2}{15}+\frac{1}{6}\right]=\frac{11}{2}\left[\frac{4+5}{30}\right] \\
& =\left(\frac{11}{2}\right)\left(\frac{9}{30}\right)=\frac{33}{20}
\end{aligned}
$$

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClndCareer

NCERT 10th Mathematics Chapter 5

2. Find the sums given below

(i) $7++14+$ \qquad +84
(ii) $+14+$ \qquad $+84$
(ii) $34+32+30+$ \qquad $+10$
(iii) $-5+(-8)+(-11)+$. \qquad $+(-230)$

Answer
(i) For this A.P.,
$a=7$
$I=84$
$d=a_{2}-a_{1}=$
$10 \frac{1}{2}$
$-7=21 / 2-7=7 / 2$
Let 84 be the $n^{\text {th }}$ term of this A.P.
$I=a(n-1) d$
$84=7+(n-1) \times 7 / 2$
$77=(n-1) \times 7 / 2$
$22=n-1$
$n=23$

We know that,
$S_{n}=n / 2(a+l)$
$S_{n}=23 / 2(7+84)$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClindCareer

$=(23 \times 91 / 2)=2093 / 2$
$=1046 \frac{1}{2}$
(ii) $34+32+30+$ \qquad $+10$

For this A.P.,
$a=34$
$d=a_{2}-a_{1}=32-34=-2$
$I=10$
Let 10 be the $n^{\text {th }}$ term of this A.P.
$I=a+(n-1) d$
$10=34+(n-1)(-2)$
$-24=(n-1)(-2)$
$12=n-1$
$n=13$
$S_{n}=n / 2(a+I)$
$=13 / 2(34+10)$
$=(13 \times 44 / 2)=13 \times 22$
$=286$
(iii) $(-5)+(-8)+(-11)+\ldots \ldots \ldots \ldots+(-230)$ For this A.P.,
$a=-5$
$I=-230$
$d=a_{2}-a_{1}=(-8)-(-5)$
$=-8+5=-3$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClindCareer

Let -230 be the $n^{\text {th }}$ term of this A.P.
$I=a+(n-1) d$
$-230=-5+(n-1)(-3)$
$-225=(n-1)(-3)$
$(n-1)=75$
$n=76$
And,
$S_{n}=n / 2(a+l)$
$=76 / 2[(-5)+(-230)]$
$=38(-235)$
$=-8930$

3. In an AP

(i) Given $a=5, d=3, a_{n}=50$, find n and S_{n}.
(ii) Given $a=7, a_{13}=35$, find d and S_{13}.
(iii) Given $a_{12}=37, d=3$, find a and S_{12}.
(iv) Given $a_{3}=15, S_{10}=125$, find d and a_{10}.
(v) Given $d=5, S_{9}=75$, find a and a_{9}.
(vi) Given $a=2, d=8, S_{n}=90$, find n and a_{n}.
(vii) Given $a=8, a_{n}=62, S_{n}=210$, find n and d.
(viii) Given $a_{n}=4, d=2, S_{n}=-14$, find n and a.
(ix) Given $a=3, n=8, S=192$, find d.
(x) Given $I=28, S=144$ and there are total 9 terms. Find a.

Answer

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ElndCareer

(i) Given that, $a=5, d=3, a_{n}=50$

As $a_{n}=a+(n-1) d$,
$\Rightarrow 50=5+(n-1) \times 3$
$\Rightarrow 3(n-1)=45$
$\Rightarrow n-1=15$
$\Rightarrow n=16$
Now, $S_{n}=n / 2\left(a+a_{n}\right)$
$S_{n}=16 / 2(5+50)=440$
(ii) Given that, $a=7, a_{13}=35$

As $a_{n}=a+(n-1) d, \Rightarrow 35=7+(13-1) d$
$\Rightarrow 12 d=28$
$\Rightarrow d=28 / 12=2.33$
Now, $S_{n}=n / 2\left(a+a_{n}\right)$
$S_{13}=13 / 2(7+35)=273$
(iii) Given that, $a_{12}=37, d=3$ As $a_{n}=a+(n-1) d$,
$\Rightarrow a_{12}=a+(12-1) 3$
$\Rightarrow 37=a+33$
$\Rightarrow a=4$
$S_{n}=n / 2\left(a+a_{n}\right)$
$S_{n}=12 / 2(4+37)$
$=246$
(iv) Given that, $a_{3}=15, S_{10}=125$

As $a_{n}=a+(n-1) d$,
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
$a_{3}=a+(3-1) d$
$15=a+2 d \ldots$ (i)
$S_{n}=n / 2[2 a+(n-1) d]$
$S_{10}=10 / 2[2 a+(10-1) d]$
$125=5(2 a+9 d)$
$25=2 a+9 d \ldots$ (ii)
On multiplying equation (i) by (ii), we get
$30=2 a+4 d \ldots$
On subtracting equation (iii) from (ii), we get
$-5=5 d$
$d=-1$
From equation (i),
$15=a+2(-1)$
$15=a-2$
$a=17$
$a_{10}=a+(10-1) d$
$a_{10}=17+(9)(-1)$
$a_{10}=17-9=8$
(v) Given that, $d=5, S_{9}=75$

As $S_{n}=n / 2[2 a+(n-1) d]$
$S_{9}=9 / 2[2 a+(9-1) 5]$
$25=3(a+20)$
$25=3 a+60$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClindCareer

$$
\begin{aligned}
& 3 a=25-60 \\
& a=-35 / 3 \\
& a_{n}=a+(n-1) d \\
& a_{9}=a+(9-1)(5) \\
& =-35 / 3+8(5) \\
& =-35 / 3+40 \\
& =(35+120 / 3)=85 / 3
\end{aligned}
$$

(vi) Given that, $a=2, d=8, S_{n}=90$

As $S_{n}=n / 2[2 a+(n-1) d]$
$90=n / 2[2 a+(n-1) d]$
$\Rightarrow 180=n(4+8 n-8)=n(8 n-4)=8 n^{2}-4 n$
$\Rightarrow 8 n^{2}-4 n-180=0$
$\Rightarrow 2 n^{2}-n-45=0$
$\Rightarrow 2 n^{2}-10 n+9 n-45=0$
$\Rightarrow 2 n(n-5)+9(n-5)=0$
$\Rightarrow(2 n-9)(2 n+9)=0$
So, $n=5$ (as it is positive integer)
$\therefore a_{5}=8+5 \times 4=34$
(vii) Given that, $a=8, a_{n}=62, S_{n}=210$

As $S_{n}=n / 2\left(a+a_{n}\right)$
$210=n / 2(8+62)$
$\Rightarrow 35 n=210$
$\Rightarrow n=210 / 35=6$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClndCareer

Now, $62=8+5 d$
$\Rightarrow 5 d=62-8=54$
$\Rightarrow d=54 / 5=10.8$
(viii) Given that, $a_{n}=4, d=2, S_{n}=-14$
$a_{n}=a+(n-1) d$
$4=a+(n-1) 2$
$4=a+2 n-2$
$a+2 n=6$
$a=6-2 n \ldots$ (i)
$S_{n}=n / 2\left(a+a_{n}\right)$
$-14=n / 2(a+4)$
$-28=n(a+4)$
$-28=n(6-2 n+4)\{$ From equation (i) $\}$
$-28=n(-2 n+10)$
$-28=-2 n^{2}+10 n$
$2 n^{2}-10 n-28=0$
$n^{2}-5 n-14=0$
$n^{2}-7 n+2 n-14=0$
$n(n-7)+2(n-7)=0$
$(n-7)(n+2)=0$
Either $n-7=0$ or $n+2=0$
$n=7$ or $n=-2$
However, n can neither be negative nor fractional.
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClndCareer

Therefore, $n=7$
From equation (i), we get
$a=6-2 n$
$a=6-2(7)$
$=6-14$
$=-8$
(ix) Given that, $a=3, n=8, S=192$

As $S_{n}=n / 2[2 a+(n-1) d]$
$192=8 / 2[2 \times 3+(8-1) d]$
$192=4[6+7 d]$
$48=6+7 d$
$42=7 d$
$d=6$
(x) Given that, $I=28, S=144$ and there are total of 9 terms.
$S_{n}=n / 2(a+l)$
$144=9 / 2(a+28)$
$(16) \times(2)=a+28$
$32=a+28$
$a=4$
NCERT 10th Mathematics Chapter 5
4. How many terms of the AP. $9,17,25 \ldots$ must be taken to give a sum of $636 ?$

Answer

Let there be n terms of this A.P.
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClndCareer

ClndCareer

For this A.P., $a=9$
$d=a_{2}-a_{1}=17-9=8$
As $S_{n}=n / 2[2 a+(n-1) d]$
$636=n / 2[2 \times a+(8-1) \times 8]$
$636=n / 2[18+(n-1) \times 8]$
$636=n[9+4 n-4]$
$636=n(4 n+5)$
$4 n^{2}+5 n-636=0$
$4 n^{2}+53 n-48 n-636=0$
$n(4 n+53)-12(4 n+53)=0$
$(4 n+53)(n-12)=0$
Either $4 n+53=0$ or $n-12=0$
$n=(-53 / 4)$ or $n=12$
n cannot be (-53/4). As the number of terms can neither be negative nor fractional, therefore, n $=12$ only.

NCERT 10th Mathematics Chapter 5
5. The first term of an AP is 5 , the last term is 45 and the sum is 400 . Find the number of terms and the common difference.

Answer

Given that,
$a=5$
$I=45$
$S_{n}=400$
$S_{n}=n / 2(a+l)$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
$400=n / 2(5+45)$
$400=n / 2(50)$
$n=16$
$I=a+(n-1) d$
$45=5+(16-1) d$
$40=15 d$
$d=40 / 15=8 / 3$
6. The first and the last term of an AP are 17 and 350 respectively. If the common difference is 9 , how many terms are there and what is their sum?

Answer

Given that,
$a=17$
$I=350$
$d=9$
Let there be n terms in the A.P.
$I=a+(n-1) d$
$350=17+(n-1) 9$
$333=(n-1) 9$
$(n-1)=37$
$n=38$
$S_{n}=n / 2(a+l)$
$S_{38}=13 / 2(17+350)$
$=19 \times 367$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClndCareer

$=6973$
Thus, this A.P. contains 38 terms and the sum of the terms of this A.P. is 6973.
NCERT 10th Mathematics Chapter 5
7. Find the sum of first 22 terms of an AP in which $d=7$ and $22^{\text {nd }}$ term is 149.
Answer
$d=7$
$a_{22}=149$
$S_{22}=?$
$a_{n}=a+(n-1) d$
$a_{22}=a+(22-1) d$
$149=a+21 \times 7$
$149=a+147$
$a=2$
$S_{n}=n / 2\left(a+a_{n}\right)$
$=22 / 2(2+149)$
$=11 \times 151$
$=1661$

NCERT 10th Mathematics Chapter 5
8. Find the sum of first 51 terms of an AP whose second and third terms are 14 and 18 respectively.

Answer

Given that,
$a_{2}=14$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
$a_{3}=18$
$d=a_{3}-a_{2}=18-14=4$
$a_{2}=a+d$
$14=a+4$
$a=10$
$S_{n}=n / 2[2 a+(n-1) d]$
$S_{51}=51 / 2[2 \times 10+(51-1) \times 4]$
$=51 / 2[2+(20) \times 4]$
$=51 \times 220 / 2$
$=51 \times 110$
$=5610$
9. If the sum of first 7 terms of an AP is 49 and that of 17 terms is 289 , find the sum of first \boldsymbol{n} terms.

Answer

Given that,
$S_{7}=49$
$S_{17}=289$
$S_{7}=7 / 2[2 a+(n-1) d]$
$S_{7}=7 / 2[2 a+(7-1) d]$
$49=7 / 2[2 a+16 d]$
$7=(a+3 d)$
$a+3 d=7$... (i)
Similarly,
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClndCareer

$S_{17}=17 / 2[2 a+(17-1) d]$
$289=17 / 2(2 a+16 d)$
$17=(a+8 d)$
$a+8 d=17$.
Subtracting equation (i) from equation (ii),
$5 d=10$
$d=2$
From equation (i),
$a+3(2)=7$
$a+6=7$
$a=1$
$S_{n}=n / 2[2 a+(n-1) d]$
$=n / 2[2(1)+(n-1) \times 2]$
$=n / 2(2+2 n-2)$
$=n / 2(2 n)$
$=n^{2}$
10. Show that $a_{1}, a_{2} \ldots, a_{n}, \ldots$ form an AP where a_{n} is defined as below
(i) $a_{n}=3+4 n$
(ii) $a_{n}=9-5 n$

Also find the sum of the first 15 terms in each case.

Answer

(i) $a_{n}=3+4 n$
$a_{1}=3+4(1)=7$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
$a_{2}=3+4(2)=3+8=11$
$a_{3}=3+4(3)=3+12=15$
$a_{4}=3+4(4)=3+16=19$
It can be observed that
$a_{2}-a_{1}=11-7=4$
$a_{3}-a_{2}=15-11=4$
$a_{4}-a_{3}=19-15=4$
i.e., $a_{k+1}-a_{k}$ is same every time. Therefore, this is an AP with common difference as 4 and first term as 7 .
$S_{n}=n / 2[2 a+(n-1) d]$
$S_{15}=15 / 2[2(7)+(15-1) \times 4]$
$=15 / 2[(14)+56]$
$=15 / 2(70)$
$=15 \times 35$
$=525$
(ii) $a_{n}=9-5 n$
$a_{1}=9-5 \times 1=9-5=4$
$a_{2}=9-5 \times 2=9-10=-1$
$a_{3}=9-5 \times 3=9-15=-6$
$a_{4}=9-5 \times 4=9-20=-11$
It can be observed that
$a_{2}-a_{1}=-1-4=-5$
$a_{3}-a_{2}=-6-(-1)=-5$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClindCareer

ClindCareer

$a_{4}-a_{3}=-11-(-6)=-5$
i.e., $a_{k+1}-a_{k}$ is same every time. Therefore, this is an A.P. with common difference as -5 and first term as 4 .
$S_{n}=n / 2[2 a+(n-1) d]$
$S_{15}=15 / 2[2(4)+(15-1)(-5)]$
$=15 / 2[8+14(-5)]$
$=15 / 2(8-70)$
$=15 / 2(-62)$
$=15(-31)$
$=-465$
11. If the sum of the first n terms of an AP is $\mathbf{4 n - n ^ { 2 }}$, what is the first term (that is S_{1})? What is the sum of first two terms? What is the second term? Similarly find the $3^{\text {rd }}$, the $10^{\text {th }}$ and the $n^{\text {th }}$ terms.

Answer

Given that,
$S_{n}=4 n-n^{2}$
First term, $a=S_{1}=4(1)-(1)^{2}=4-1=3$
Sum of first two terms $=S_{2}$
$=4(2)-(2)^{2}=8-4=4$
Second term, $a_{2}=S_{2}-S_{1}=4-3=1$
$d=a_{2}-a=1-3=-2$
$a_{n}=a+(n-1) d$
$=3+(n-1)(-2)$
$=3-2 n+2$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClndCareer

$=5-2 n$

Therefore, $a_{3}=5-2(3)=5-6=-1$
$a_{10}=5-2(10)=5-20=-15$
Hence, the sum of first two terms is 4 . The second term is $1.3^{\text {rd }}, 10^{\text {th }}$, and $n^{\text {th }}$ terms are $-1,-15$, and $5-2 n$ respectively.

12. Find the sum of first 40 positive integers divisible by 6.

Answer

The positive integers that are divisible by 6 are
$6,12,18,24 \ldots$
It can be observed that these are making an A.P. whose first term is 6 and common difference is 6.
$a=6$
$d=6$
$S_{40}=$?
$S_{n}=n / 2[2 a+(n-1) d]$
$S_{40}=40 / 2[2(6)+(40-1) 6]$
$=20[12+(39)(6)]$
$=20(12+234)$
$=20 \times 246$
$=4920$

13. Find the sum of first 15 multiples of 8 .

Answer

The multiples of 8 are
$8,16,24,32 \ldots$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

elndCareer

These are in an A.P., having first term as 8 and common difference as 8 .
Therefore, $a=8$
$d=8$
$S_{15}=$?
$S_{n}=n / 2[2 a+(n-1) d]$
$S_{15}=15 / 2[2(8)+(15-1) 8]$
$=15 / 2[6+(14)(8)]$
$=15 / 2[16+112]$
$=15(128) / 2$
$=15 \times 64$
$=960$

14. Find the sum of the odd numbers between 0 and 50 .

Answer

The odd numbers between 0 and 50 are
$1,3,5,7,9 \ldots 49$
Therefore, it can be observed that these odd numbers are in an A.P.
$a=1$
$d=2$
$I=49$
$l=a+(n-1) d$
$49=1+(n-1) 2$
$48=2(n-1)$
$n-1=24$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClndCareer
$n=25$
$S_{n}=n / 2(a+l)$
$S_{25}=25 / 2(1+49)$
$=25(50) / 2$
$=(25)(25)$
$=625$
15. A contract on construction job specifies a penalty for delay of completion beyond a certain dateas follows: Rs. 200 for the first day, Rs. 250 for the second day, Rs. 300 for the third day, etc., the penalty for each succeeding day being Rs. 50 more than for the preceding day. How much money the contractor has to pay as penalty, if he has delayed the work by 30 days.

Answer

It can be observed that these penalties are in an A.P. having first term as 200 and common difference as 50.
$a=200$
$d=50$
Penalty that has to be paid if he has delayed the work by 30 days $=S_{30}$
$=30 / 2[2(200)+(30-1) 50]$
$=15[400+1450]$
$=15$ (1850)
$=27750$
Therefore, the contractor has to pay Rs 27750 as penalty.
16. A sum of Rs 700 is to be used to give seven cash prizes to students of a school for their overall academic performance. If each prize is Rs $\mathbf{2 0}$ less than its preceding prize, find the value of each of the prizes.
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClindCareer

Answer

Let the cost of $1^{\text {st }}$ prize be P.
Cost of $2^{\text {nd }}$ prize $=P-20$
And cost of $3^{\text {rd }}$ prize $=P-40$
It can be observed that the cost of these prizes are in an A.P. having common difference as -20 and first term as P.
$a=P$
$d=-20$

Given that, $S_{7}=700$
$7 / 2[2 a+(7-1) d]=700$
$\frac{[2 a+(6)(-20)]}{2}=100$
$a+3(-20)=100$
$a-60=100$
$a=160$
Therefore, the value of each of the prizes was Rs 160, Rs 140 , Rs 120 , Rs 100 , Rs 80 , Rs 60 , and Rs 40.
17. In a school, students thought of planting trees in and around the school to reduce air pollution. It was decided that the number of trees, that each section of each class will plant, will be the same as the class, in which they are studying, e.g., a section of class I will plant 1 tree, a section of class II will plant 2 trees and so on till class XII. There are three sections of each class. How many trees will be planted by the students?

Answer

It can be observed that the number of trees planted by the students is in an AP.
$1,2,3,4,5 \ldots \ldots \ldots \ldots \ldots \ldots . .12$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClndCareer

First term, $a=1$
Common difference, $d=2-1=1$
$S_{n}=n / 2[2 a+(n-1) d]$
$S_{12}=12 / 2[2(1)+(12-1)(1)]$
$=6(2+11)$
$=6$ (13)
$=78$
Therefore, number of trees planted by 1 section of the classes $=78$
Number of trees planted by 3 sections of the classes $=3 \times 78=234$
Therefore, 234 trees will be planted by the students.
18. A spiral is made up of successive semicircles, with centres alternately at A and B, starting with centre at A of radii $0.5,1.0 \mathrm{~cm}, 1.5 \mathrm{~cm}, 2.0 \mathrm{~cm}$, as shown in figure. What is the total length of such a spiral made up of thirteen consecutive semicircles? (Take $\boldsymbol{\pi}=22 / 7$)

Fig. 5.4

Answer

perimeter of semi-circle $=\pi r$
$P_{1}=\pi(0.5)=\pi / 2 \mathrm{~cm}$
$P_{2}=\pi(1)=\pi c m$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClndCareer

$P_{3}=\pi(1.5)=3 \pi / 2 \mathrm{~cm}$
${ }_{P 1}, P_{2}, P_{3}$ are the lengths of the semi-circles
$\pi / 2, \pi, 3 \pi / 2,2 \pi, \ldots$.
$P 1=\pi / 2 \mathrm{~cm}$
$p_{2}=\pi \mathrm{cm}$
$d=P 2-P 1=\pi-\pi / 2=\pi / 2$
First term $=P 1=a=\pi / 2 \mathrm{~cm}$
$S_{n}=n / 2[2 a+(n-1) d]$
Therefor, Sum of the length of 13 consecutive circles
$S_{13}=13 / 2[2(\pi / 2)+(13-1) \pi / 2]$
$=13 / 2[\pi+6 \pi]$
$=13 / 2(7 \pi)=13 / 2 \times 7 \times 22 / 7$
$=143 \mathrm{~cm}$
19. 200 logs are stacked in the following manner: 20 logs in the bottom row, 19 in the next row, 18 in the row next to it and so on. In how many rows are the $\mathbf{2 0 0}$ logs placed and how many logs are in the top row?

Fig. 5.5
Answer
It can be observed that the numbers of logs in rows are in an A.P.
20, 19, 18...
For this A.P.,
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
$a=20$
$d=a_{2}-a_{1}=19-20=-1$
Let a total of 200 logs be placed in n rows.
$S_{n}=200$
$S_{n}=n / 2[2 a+(n-1) d]$
$S_{12}=12 / 2[2(20)+(n-1)(-1)]$
$400=n(40-n+1)$
$400=n(41-n)$
$400=41 n-n^{2}$
$n^{2}-41 n+400=0$
$n^{2}-16 n-25 n+400=0$
$n(n-16)-25(n-16)=0$
$(n-16)(n-25)=0$
Either $(n-16)=0$ or $n-25=0$
$n=16$ or $n=25$
$a_{n}=a+(n-1) d$
$a_{16}=20+(16-1)(-1)$
$a_{16}=20-15$
$a_{16}=5$
Similarly,
$a_{25}=20+(25-1)(-1)$
$a_{25}=20-24$
$=-4$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClindCareer

ClindCareer

Clearly, the number of logs in $16^{\text {th }}$ row is 5 . However, the number of logs in $25^{\text {th }}$ row is negative, which is not possible.

Therefore, 200 logs can be placed in 16 rows and the number of logs in the $16^{\text {th }}$ row is 5 .
20. In a potato race, a bucket is placed at the starting point, which is 5 m from the first potato and other potatoes are placed 3 m apart in a straight line. There are ten potatoes in the line.

Fig. 5.6

A competitor starts from the bucket, picks up the nearest potato, runs back with it, drops it in the bucket, runs back to pick up the next potato, runs to the bucket to drop it in, and she continues in the same way until all the potatoes are in the bucket. What is the total distance the competitor has to run?
[Hint: to pick up the first potato and the second potato, the total distance (in metres) run by a competitor is $2 \times 5+2 \times(5+3)$]

Answer

The distances of potatoes from the bucket are $5,8,11,14 \ldots$
Distance run by the competitor for collecting these potatoes are two times of the distance at which the potatoes have been kept because first she has to first pick the potato and again return back to the same place in order to start picking the second potato.. Therefore, distances to be run are
$10,16,22,28,34, \ldots \ldots \ldots$.
$a=10$
$d=16-10=6$
$S_{10}=$?
$S_{10}=10 / 2[2(20)+(n-1)(-1)]$
$=5[20+54]$
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
$=5(74)$
$=370$
Therefore, the competitor will run a total distance of 370 m .
NCERT 10th Mathematics Chapter 5, class 10 Mathematics Chapter 5 solutions

Exercise 5.4 (Optional)

1. Which term of the AP : 121, 117, 113, ..., is its first negative term?
[Hint : Find n for $\mathrm{a}_{\mathrm{n}}<0$]

Answer

We have the A.P. having $\mathrm{a}=121$ and $\mathrm{d}=117-121=-4$
$\therefore a n=a+(n-1) d$
$=121+(n-1) \times(-4)$
$=121-4 n+4$
$=125-4 n$

For the first negative term, we have
an <0
$\Rightarrow(125-4 n)<0$
$\Rightarrow 125<4 \mathrm{n}$
$\Rightarrow 125 / 4<n$
$\Rightarrow n>31$ /4
Thus, the first negative term is 32 nd term.
2. The sum of the third and the seventh terms of an AP is 6 and their product is 8 . Find the sum of first sixteen terms of the AP.

Answer

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClndCareer

```
Here, \(T_{3}+T_{7}=6\) and \(T_{3} \times T_{7}=8\)
Let the first term \(=\mathrm{a}\) and the common difference \(=\mathrm{d}\)
\(\therefore \mathrm{T}_{3}=\mathrm{a}+2 \mathrm{~d}\) and \(\mathrm{T}_{7}=\mathrm{a}+6 \mathrm{~d}\)
\(\because \mathrm{T}_{3}+\mathrm{T}_{7}=6\)
\(\therefore(a+2 d)+(a+6 d)=6\)
\(\Rightarrow 2 a+8 d=6\)
\(\Rightarrow a+4 d=3 \ldots(1)\)
Again \(T_{3} \times T_{7}=8\)
\(\therefore(a+2 d) \times(a+6 d)=8\)
\(\Rightarrow(a+4 d-2 d) \times(a+4 d+2 d)=8\)
\(\Rightarrow[(\mathrm{a}+4 \mathrm{~d})-2 \mathrm{~d}] \times[(\mathrm{a}+4 \mathrm{~d})+2 \mathrm{~d}]=8\)
\(\Rightarrow[(3)-2 d] \times[(3)+2 d]=8[\) From \((1)]\)
\(\Rightarrow 3^{2}-(2 \mathrm{~d})^{2}=8\)
\(\Rightarrow 9 \cdot 4 d^{2}=8\)
\(\Rightarrow-4 d^{2}=8-9=-1\)
\(\Rightarrow d^{2}=\frac{-1}{-4}=\frac{1}{4}\)
\(\Rightarrow d= \pm \frac{1}{4}\)
When \(\mathrm{d}=1 / 2\).
From (1), we have;
\(a+4\left(\frac{1}{2}\right)=3\)
\(\Rightarrow \mathrm{a}+2=3\) or \(\mathrm{a}=3-2=1\)
Now, Using \(\mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 a+(n-1) d]\), we get
\(S_{16}=\frac{16}{2}\left[2(1)+(16-1) \times \frac{1}{2}\right]\)
\(=8\left[2+\frac{15}{2}\right]\)
\(=16+60=76\)
i.e., the sum of first 16 terms \(=76\)
When \(d=-\frac{1}{2}\).
From (1), we have:
\(a+4\left(-\frac{1}{2}\right)=3\)
\(\Rightarrow a-2=3 \Rightarrow a=5\)
Again, the sum of first sixteen terms
\(S_{16}=\frac{16}{2}\left[2(5)+(16-1) \times\left(-\frac{1}{2}\right)\right]\)
\(-8\left[10+\left(\frac{-15}{2}\right)\right]\)
- \(50-60=20\)
i.e., the sum of first 16 terms \(=20\)
```

3. A ladder has rungs 25 cm apart. (see Fig. 5.7). The rungs decrease uniformly in length from 45 cm at the bottom to 25 cm at the top. If the top and the bottom rungs are $21 / 2 \mathrm{~m}$ apart, what is the length of the wood required for the rungs?
[Hint : Number of rungs $=250 / 25+1$]
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClndCareer

Fig. 5.7

Answer

Total length of rungs
$=2 \frac{1}{2} \mathrm{~m}=\frac{5}{2} \mathrm{~m}=\left(\frac{5}{2} \times 100\right) \mathrm{cm}=250 \mathrm{~cm}$
Length of each rung $=25 \mathrm{~cm}$
\therefore Number of rungs $=\frac{\text { Total length of rungs }}{\text { Length of each rung }}$

$$
=\frac{250}{25}=10
$$

Length of first rung $=45 \mathrm{~cm}$
Here, $a=45, l=25, n=10$
Length of the wood for rungs $=S_{10}$

$$
\begin{aligned}
& =\frac{n}{2}[a+l]=\frac{10}{2}[45+25] \\
& =5(70)=350
\end{aligned}
$$

Hence, length of the wood for rungs required is 350 cm .
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/
ClndCareer

ClndCareer

4. The houses of a row are numbered consecutively from 1 to 49. Show that there is a value of x such that the sum of the numbers of the houses preceding the house numbered x is equal to the sum of the numbers of the houses following it. Find this value of \mathbf{x}.
[Hint : $\mathrm{S}_{\mathrm{x}-1}=\mathrm{S}_{49}-\mathrm{S}_{\mathrm{x}}$]

Answer

Let x denotes the number of any house.
Here, $a=\mathrm{T}_{1}=1, d=1$
According to question,

$$
\begin{aligned}
& S_{x-1}=S_{49}-S_{x} \\
& \frac{x-1}{2}[2(1)+(x-1-1)(1)] \\
& =\frac{49}{2}[1+49]-\frac{x}{2}[2(1)+(x-1)(1)] \\
& {\left[\text { Using } \mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d] \text { and } \mathrm{S}_{n}=\frac{n}{2}(a+1)\right]} \\
& \text { or } \frac{x-1}{2}[2+x-2]=\frac{49}{2}(50)-\frac{x}{2}[2+x-1] \\
& \text { or } \quad \frac{x(x-1)}{2}=49(25)-\frac{x(x+1)}{2} \\
& \text { or } \quad \frac{x}{2}[x-1+x+1]=1225 \\
& \frac{x}{2} \times 2 x=1225 \\
& x^{2}=1225 \\
& x=35 \text {. }
\end{aligned}
$$

5. A small terrace at a football ground comprises of 15 steps each of which is 50 m long and built of solid concrete. Each step has a rise of $1 / 4 \mathrm{~m}$ and a tread of $1 / 2 \mathrm{~m}$. (see Fig. 5.8). Calculate the total volume of concrete required to build the terrace.
[Hint : Volume of concrete required to build the first step $=1 / 4 \times 1 / 2 \times 50 \mathrm{~m}^{3}$]

Answer

https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

ClndCareer

Volume of concrete required to build the first step

$$
=\left(\frac{1}{4} \times \frac{1}{2} \times 50\right) \mathrm{m}^{3}=\left(\frac{25}{4}\right) \mathrm{m}^{3}
$$

Volume of concrete required to build the second step

$$
=\left(\frac{2}{4} \times \frac{1}{2} \times 50\right) \mathrm{m}^{3}=\left(\frac{25}{2}\right) \mathrm{m}^{3}
$$

Volume of concrete required to build the third step

$$
=\left(\frac{3}{4} \times \frac{1}{2} \times 50\right) \mathrm{m}^{3}=\left(\frac{75}{4}\right) \mathrm{m}^{3}
$$

and so on upto 15 steps.
Here, $a=\mathrm{T}_{1}=\frac{25}{4}$

$$
\begin{aligned}
& \mathrm{T}_{2}=\frac{25}{2} \\
& \mathrm{~T}_{3}=\frac{75}{4} \\
& \text { and } \quad n=15 \\
& d=\mathrm{T}_{2}-\mathrm{T}_{1}=\frac{25}{2}-\frac{25}{4} \\
& =\frac{50-25}{4}=\frac{25}{4}
\end{aligned}
$$

Total volume of concrete required to build the terrace $=\mathrm{S}_{15}$

$$
\begin{aligned}
& =\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{15}{2}\left[2\left(\frac{25}{4}\right)+(15-1) \frac{25}{4}\right] \\
& =\frac{15}{2}\left[\frac{25}{2}+\frac{14 \times 25}{4}\right] \\
& =\frac{15}{2}\left[\frac{25}{2}+\frac{175}{2}\right] \\
& =\frac{15}{2} \times \frac{200}{2}=750 .
\end{aligned}
$$

Hence, total volume of concrete required to build the terrace is $750 \mathrm{~m}^{3}$.

NCERT 10th Mathematics Chapter 5, class 10 Mathematics Chapter 5 solutions

ClindCareer

Chapterwise NCERT Solutions for Class 10 Maths:

- Chapter 1 Real Numbers
- Chapter 2 Polynomials
- Chapter 3 Pair of Linear Equations in Two Variables
- Chapter 4 Quadratic Equations
- Chapter 5 Arithmetic Progressions
- Chapter 6 Triangles
- Chapter 7 Coordinate Geometry
- Chapter 8 Introduction to Trigonometry
- Chapter 9 Applications of Trigonometry
- Chapter 10 Circle
- Chapter 11 Constructions
- Chapter 12 Areas related to Circles
- Chapter 13 Surface Areas and Volumes
- Chapter 14 Statistics
- Chapter 15 Probability

ClndCareer

About NCERT

The National Council of Educational Research and Training is an autonomous organization of the Government of India which was established in 1961 as a literary, scientific, and charitable Society under the Societies Registration Act. The major objectives of NCERT and its constituent units are to: undertake, promote and coordinate research in areas related to school education; prepare and publish model textbooks, supplementary material, newsletters, journals and develop educational kits, multimedia digital materials, etc.
Organise pre-service and in-service training of teachers; develop and disseminate innovative educational techniques and practices;collaborate and network with state educational departments, universities, NGOs and other educational institutions; act as a clearing house for ideas and information in matters related to school education; and act as a nodal agency for achieving the goals of Universalisation of Elementary Education. In addition to research, development, training, extension, publication and dissemination activities, NCERT is an implementation agency for bilateral cultural exchange programmes with other countries in the field of school education.Its headquarters are located at Sri Aurobindo Marg in New Delhi. Visit the Official NCERT website to learn more.
https://www.indcareer.com/schools/ncert-solutions-for-class-10th-mathematics-chapter-5-arithm etic-progressions/

