

NCERT Solutions for 11th Class Maths: Chapter 5-**Complex Numbers and** National Council Of Educational Research Quadratic Equations And Training

NCERT Solutions for 11th Class Maths: Chapter 5-Complex Numbers and Quadratic Equations

Class 11: Maths Chapter 5 solutions. Complete Class 11 Maths Chapter 5 Notes.

NCERT Solutions for 11th Class Maths: Chapter 5-Complex Numbers and Quadratic Equations

NCERT 11th Maths Chapter 5, class 11 Maths Chapter 5 solutions

Exercise 5.1

Question 1:

Express the given complex number in the form $a + ib: (5i) \left(-\frac{3}{5}i\right)$

Ans:

$$(5i)\left(\frac{-3}{5}i\right) = -5 \times \frac{3}{5} \times i \times i$$

$$= -3i^{2}$$

$$= -3(-1)$$

$$= 3$$

$$\left[i^{2} = -1\right]$$

Question 2:

Express the given complex number in the form a + ib: $i^9 + i^{19}$

Ans:

$$i^{9} + i^{19} = i^{4 \times 2 + 1} + i^{4 \times 4 + 3}$$

$$= (i^{4})^{2} \cdot i + (i^{4})^{4} \cdot i^{3}$$

$$= 1 \times i + 1 \times (-i) \qquad [i^{4} = 1, i^{3} = -i]$$

$$= i + (-i)$$

$$= 0$$

Question 3:

Express the given complex number in the form a + ib: i-39

Ans:

$$i^{-39} = i^{-4 \times 9 - 3} = (i^4)^{-9} \cdot i^{-3}$$

$$= (1)^{-9} \cdot i^{-3} \qquad [i^4 = 1]$$

$$= \frac{1}{i^3} = \frac{1}{-i} \qquad [i^3 = -i]$$

$$= \frac{-1}{i} \times \frac{i}{i}$$

$$= \frac{-i}{i^2} = \frac{-i}{-1} = i \qquad [i^2 = -1]$$

Question 4:

Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)

Ans:

$$3(7+i7)+i(7+i7) = 21+21i+7i+7i^{2}$$

$$= 21+28i+7\times(-1)$$

$$= 14+28i$$

$$[\because i^{2} = -1]$$

Question 5:

Express the given complex number in the form a + ib: (1 - i) - (-1 + i6)

Ans:

$$(1-i)-(-1+i6)=1-i+1-6i$$

= 2-7i

Question 6:

Express the given complex number in the form $a + ib: \left(\frac{1}{5} + i\frac{2}{5}\right) - \left(4 + i\frac{5}{2}\right)$

Ans:

Question 7:

Express the given complex number in the form a +

$$ib: \left[\left(\frac{1}{3} + i\frac{7}{3} \right) + \left(4 + i\frac{1}{3} \right) \right] - \left(-\frac{4}{3} + i \right)$$

Ans:

$$\begin{split} & \left[\left(\frac{1}{3} + i\frac{7}{3} \right) + \left(4 + i\frac{1}{3} \right) \right] - \left(\frac{-4}{3} + i \right) \\ &= \frac{1}{3} + \frac{7}{3}i + 4 + \frac{1}{3}i + \frac{4}{3} - i \\ &= \left(\frac{1}{3} + 4 + \frac{4}{3} \right) + i \left(\frac{7}{3} + \frac{1}{3} - 1 \right) \\ &= \frac{17}{3} + i\frac{5}{3} \end{split}$$

Question 8:

Express the given complex number in the form a + ib: $(1 - i)^4$

Ans:

$$(1-i)^4 = \left[(1-i)^2 \right]^2$$

$$= \left[1^2 + i^2 - 2i \right]^2$$

$$= \left[1 - 1 - 2i \right]^2$$

$$= (-2i)^2$$

$$= (-2i) \times (-2i)$$

$$= 4i^2 = -4$$

$$\left[i^2 = -1 \right]$$

Question 9:

Express the given complex number in the form $a + ib: \left(\frac{1}{3} + 3i\right)^3$

Ans:

$$\left(\frac{1}{3} + 3i\right)^{3} = \left(\frac{1}{3}\right)^{3} + \left(3i\right)^{3} + 3\left(\frac{1}{3}\right)\left(3i\right)\left(\frac{1}{3} + 3i\right)$$

$$= \frac{1}{27} + 27i^{3} + 3i\left(\frac{1}{3} + 3i\right)$$

$$= \frac{1}{27} + 27\left(-i\right) + i + 9i^{2} \qquad \left[i^{3} = -i\right]$$

$$= \frac{1}{27} - 27i + i - 9 \qquad \left[i^{2} = -1\right]$$

$$= \left(\frac{1}{27} - 9\right) + i\left(-27 + 1\right)$$

$$= \frac{-242}{27} - 26i$$

Question 10:

Express the given complex number in the form a + ib: $\left(-2 - \frac{1}{3}i\right)^3$

Ans:

$$\left(-2 - \frac{1}{3}i\right)^{3} = (-1)^{3} \left(2 + \frac{1}{3}i\right)^{3}$$

$$= -\left[2^{3} + \left(\frac{i}{3}\right)^{3} + 3(2)\left(\frac{i}{3}\right)\left(2 + \frac{i}{3}\right)\right]$$

$$= -\left[8 + \frac{i^{3}}{27} + 2i\left(2 + \frac{i}{3}\right)\right]$$

$$= -\left[8 - \frac{i}{27} + 4i + \frac{2i^{2}}{3}\right] \qquad [i^{3} = -i]$$

$$= -\left[8 - \frac{i}{27} + 4i - \frac{2}{3}\right] \qquad [i^{2} = -1]$$

$$= -\left[\frac{22}{3} + \frac{107i}{27}\right]$$

$$= -\frac{22}{3} - \frac{107}{27}i$$

Question 11:

Find the multiplicative inverse of the complex number 4 - 3i

Ans:

Let
$$z = 4 - 3i$$

Then,
$$\overline{z} = 4 + 3i$$
 and $|z|^2 = 4^2 + (-3)^2 = 16 + 9 = 25$

Therefore, the multiplicative inverse of 4-3i is given by

$$z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{4+3i}{25} = \frac{4}{25} + \frac{3}{25}i$$

Question 12:

Find the multiplicative inverse of the complex number $\sqrt{5} + 3i$

Ans:

Let
$$z = \sqrt{5} + 3i$$

Then,
$$\overline{z} = \sqrt{5} - 3i$$
 and $|z|^2 = (\sqrt{5})^2 + 3^2 = 5 + 9 = 14$

Therefore, the multiplicative inverse of $\sqrt{5} + 3i$ is given by

$$z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{\sqrt{5} - 3i}{14} = \frac{\sqrt{5}}{14} - \frac{3i}{14}$$

Question 13:

Find the multiplicative inverse of the complex number -i

Ans:

Let z = -i

Then,
$$\overline{z} = i$$
 and $|z|^2 = 1^2 = 1$

Therefore, the multiplicative inverse of -i is given by

$$z^{-1} = \frac{\overline{z}}{\left|z\right|^2} = \frac{i}{1} = i$$

Question 14:

Express the following expression in the form of a + ib.

$$\frac{\left(3+i\sqrt{5}\right)\left(3-i\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{2}i\right)-\left(\sqrt{3}-i\sqrt{2}\right)}$$

Ans:

$$\frac{(3+i\sqrt{5})(3-i\sqrt{5})}{(\sqrt{3}+\sqrt{2}i)-(\sqrt{3}-i\sqrt{2})}$$

$$=\frac{(3)^2-(i\sqrt{5})^2}{\sqrt{3}+\sqrt{2}i-\sqrt{3}+\sqrt{2}i}$$

$$=\frac{9-5i^2}{2\sqrt{2}i}$$

$$=\frac{9-5(-1)}{2\sqrt{2}i}$$

$$=\frac{9+5}{2\sqrt{2}i} \times \frac{i}{i}$$

$$=\frac{14i}{2\sqrt{2}i^2}$$

$$=\frac{14i}{2\sqrt{2}}$$

$$=\frac{-7i}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$$

$$=\frac{-7\sqrt{2}i}{2}$$

NCERT 11th Maths Chapter 5, class 11 Maths Chapter 5 solutions

Exercise 5.2

Question 1:

Find the modulus and the argument of the complex number $z=-1-i\sqrt{3}$

Ans:

$$z = -1 - i\sqrt{3}$$

Let
$$r\cos\theta = -1$$
 and $r\sin\theta = -\sqrt{3}$

On squaring and adding, we obtain

$$(r\cos\theta)^{2} + (r\sin\theta)^{2} = (-1)^{2} + (-\sqrt{3})^{2}$$

$$\Rightarrow r^{2} (\cos^{2}\theta + \sin^{2}\theta) = 1 + 3$$

$$\Rightarrow r^{2} = 4 \qquad \left[\cos^{2}\theta + \sin^{2}\theta = 1\right]$$

$$\Rightarrow r = \sqrt{4} = 2 \qquad \left[\text{Conventionally, } r > 0\right]$$

$$\therefore \text{ Modulus} = 2$$

$$\therefore 2\cos\theta = -1 \text{ and } 2\sin\theta = -\sqrt{3}$$

$$\Rightarrow \cos\theta = \frac{-1}{2} \text{ and } \sin\theta = \frac{-\sqrt{3}}{2}$$

Since both the values of $\sin \theta$ and $\cos \theta$ are negative and $\sin \theta$ and $\cos \theta$ are negative in III quadrant,

Argument =
$$-\left(\pi - \frac{\pi}{3}\right) = \frac{-2\pi}{3}$$

Thus, the modulus and argument of the complex number $-1-\sqrt{3}i$ are 2 and $\frac{-2\pi}{3}$ respectively.

Question 2:

Find the modulus and the argument of the complex number $z=-\sqrt{3}+i$

Ans:

$$z = -\sqrt{3} + i$$

Let $r \cos \theta = -\sqrt{3}$ and $r \sin \theta = 1$

On squaring and adding, we obtain

$$\Rightarrow \cos \theta = \frac{-\sqrt{3}}{2}$$
 and $\sin \theta = \frac{1}{2}$

$$\therefore \theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$$
 [As θ lies in the II quadrant]

Thus, the modulus and argument of the complex number $-\sqrt{3} + i$ are 2 and $\frac{5\pi}{6}$ respectively.

Question 3:

Convert the given complex number in polar form: 1 - i

Ans:

1-i

Let $r \cos \theta = 1$ and $r \sin \theta = -1$

On squaring and adding, we obtain

$$r^2 \cos^2 \theta + r^2 \sin^2 \theta = 1^2 + (-1)^2$$

$$\Rightarrow r^2 (\cos^2 \theta + \sin^2 \theta) = 1 + 1$$

$$\Rightarrow r^2 = 2$$

$$\Rightarrow r = \sqrt{2}$$

[Conventionally, r > 0]

$$\therefore \sqrt{2} \cos \theta = 1$$
 and $\sqrt{2} \sin \theta = -1$

$$\Rightarrow \cos \theta = \frac{1}{\sqrt{2}}$$
 and $\sin \theta = -\frac{1}{\sqrt{2}}$

$$\therefore \theta = -\frac{\pi}{4}$$

 $\therefore \theta = -\frac{\pi}{4}$ [As θ lies in the IV quadrant]

$$\therefore 1 - i = r\cos\theta + ir\sin\theta = \sqrt{2}\cos\left(-\frac{\pi}{4}\right) + i\sqrt{2}\sin\left(-\frac{\pi}{4}\right) = \sqrt{2}\left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right]$$

This is the required polar form.

Question 4:

Convert the given complex number in polar form: -1 + i

Ans:

-1 + i

Let $r \cos \theta = -1$ and $r \sin \theta = 1$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = (-1)^{2} + 1^{2}$$

$$\Rightarrow r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 1 + 1$$

$$\Rightarrow r^{2} = 2$$

$$\Rightarrow r^2 = 2$$

$$\Rightarrow r = \sqrt{2}$$

[Conventionally, r > 0]

$$\therefore \sqrt{2} \cos \theta = -1 \text{ and } \sqrt{2} \sin \theta = 1$$

$$\Rightarrow \cos \theta = -\frac{1}{\sqrt{2}}$$
 and $\sin \theta = \frac{1}{\sqrt{2}}$

$$\therefore \theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$$
 [As θ lies in the II quadrant]

It can be written,

$$\therefore -1 + i = r\cos\theta + ir\sin\theta = \sqrt{2}\cos\frac{3\pi}{4} + i\sqrt{2}\sin\frac{3\pi}{4} = \sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$$

This is the required polar form.

Question 5:

Convert the given complex number in polar form: - 1 - i

Ans:

$$-1 - i$$

Let $r \cos \theta = -1$ and $r \sin \theta = -1$

On squaring and adding, we obtain

$$r^2 \cos^2 \theta + r^2 \sin^2 \theta = (-1)^2 + (-1)^2$$

$$\Rightarrow r^2 (\cos^2 \theta + \sin^2 \theta) = 1 + 1$$

$$\Rightarrow r^2 = 2$$

$$\Rightarrow r = \sqrt{2}$$

[Conventionally, r > 0]

$$\therefore \sqrt{2} \cos \theta = -1$$
 and $\sqrt{2} \sin \theta = -1$

$$\Rightarrow \cos \theta = -\frac{1}{\sqrt{2}}$$
 and $\sin \theta = -\frac{1}{\sqrt{2}}$

$$\therefore \theta = -\left(\pi - \frac{\pi}{4}\right) = -\frac{3\pi}{4}$$
 [As θ lies in the III quadrant]

$$\therefore -1 - i = r \cos \theta + i r \sin \theta = \sqrt{2} \cos \frac{-3\pi}{4} + i \sqrt{2} \sin \frac{-3\pi}{4} = \sqrt{2} \left(\cos \frac{-3\pi}{4} + i \sin \frac{-3\pi}{4} \right)$$

This is the required polar form.

Question 6:

Convert the given complex number in polar form: -3

Ans:

-3

Let $r \cos \theta = -3$ and $r \sin \theta = 0$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = (-3)^{2}$$
$$\Rightarrow r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 9$$
$$\Rightarrow r^{2} = 9$$

$$\Rightarrow r = \sqrt{9} = 3$$
 [Conventionally, $r > 0$]

$$\therefore 3\cos\theta = -3$$
 and $3\sin\theta = 0$

$$\Rightarrow \cos \theta = -1 \text{ and } \sin \theta = 0$$

$$\therefore \theta = \pi$$

$$\therefore -3 = r\cos\theta + ir\sin\theta = 3\cos\pi + \beta\sin\pi = 3(\cos\pi + i\sin\pi)$$

This is the required polar form.

Question 7:

Convert the given complex number in polar form: $\sqrt{3}+i$

Ans:

$$\sqrt{3} + i$$

Let $r \cos \theta = \sqrt{3}$ and $r \sin \theta = 1$

On squaring and adding, we obtain

$$r^2\cos^2\theta + r^2\sin^2\theta = \left(\sqrt{3}\right)^2 + 1^2$$

$$\Rightarrow r^2 (\cos^2 \theta + \sin^2 \theta) = 3 + 1$$

$$\Rightarrow r^2 = 4$$

$$\Rightarrow r = \sqrt{4} = 2$$

 $\Rightarrow r = \sqrt{4} = 2$ [Conventionally, r > 0]

 $\therefore 2\cos\theta = \sqrt{3}$ and $2\sin\theta = 1$

$$\Rightarrow \cos \theta = \frac{\sqrt{3}}{2}$$
 and $\sin \theta = \frac{1}{2}$

$$\therefore \theta = \frac{\pi}{6}$$

[As θ lies in the I quadrant]

$$\therefore \sqrt{3} + i = r\cos\theta + ir\sin\theta = 2\cos\frac{\pi}{6} + i2\sin\frac{\pi}{6} = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

This is the required polar form.

Question 8:

Convert the given complex number in polar form: i

Ans:

i

Let
$$r \cos \theta = 0$$
 and $r \sin \theta = 1$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = 0^{2} + 1^{2}$$

$$\Rightarrow r^{2} \left(\cos^{2} \theta + \sin^{2} \theta\right) = 1$$

$$\Rightarrow r^{2} = 1$$

$$\Rightarrow r = \sqrt{1} = 1 \qquad \text{[Conventionally, } r > 0\text{]}$$

$$\therefore \cos \theta = 0 \text{ and } \sin \theta = 1$$

$$\therefore \theta = \frac{\pi}{2}$$

$$\therefore i = r \cos \theta + i r \sin \theta = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$$

This is the required polar form.

NCERT 11th Maths Chapter 5, class 11 Maths Chapter 5 solutions

Exercise 5.3

Question 1:

Solve the equation $x^2 + 3 = 0$

Ans:

The given quadratic equation is $x^2 + 3 = 0$

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

$$a = 1$$
, $b = 0$, and $c = 3$

Therefore, the discriminant of the given equation is

$$D = b^2 - 4ac = 0^2 - 4 \times 1 \times 3 = -12$$

Therefore, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{\pm \sqrt{-12}}{2 \times 1} = \frac{\pm \sqrt{12}i}{2}$$

$$= \frac{\pm 2\sqrt{3}i}{2} = \pm \sqrt{3}i$$

$$\left[\sqrt{-1} = i\right]$$

Question 2:

Solve the equation $2x^2 + x + 1 = 0$

Ans:

The given quadratic equation is $2x^2 + x + 1 = 0$

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

$$a = 2$$
, $b = 1$, and $c = 1$

Therefore, the discriminant of the given equation is

$$D = b^2 - 4ac = 1^2 - 4 \times 2 \times 1 = 1 - 8 = -7$$

Therefore, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{-7}}{2 \times 2} = \frac{-1 \pm \sqrt{7} i}{4} \qquad \left[\sqrt{-1} = i\right]$$

$$\left[\sqrt{-1}=i\right]$$

Question 3:

Solve the equation $x^2 + 3x + 9 = 0$

Ans:

The given quadratic equation is $x^2 + 3x + 9 = 0$

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

$$a = 1, b = 3, and c = 9$$

Therefore, the discriminant of the given equation is

$$D = b^2 - 4ac = 3^2 - 4 \times 1 \times 9 = 9 - 36 = -27$$

Therefore, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-3 \pm \sqrt{-27}}{2(1)} = \frac{-3 \pm 3\sqrt{-3}}{2} = \frac{-3 \pm 3\sqrt{3}i}{2} \qquad \left[\sqrt{-1} = i\right]$$

Question 4:

Solve the equation $-x^2 + x - 2 = 0$

Ans:

The given quadratic equation is $-x^2 + x - 2 = 0$

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

$$a = -1$$
, $b = 1$, and $c = -2$

Therefore, the discriminant of the given equation is

$$D = b^2 - 4ac = 1^2 - 4 \times (-1) \times (-2) = 1 - 8 = -7$$

Therefore, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{-7}}{2 \times (-1)} = \frac{-1 \pm \sqrt{7}i}{-2} \qquad \left[\sqrt{-1} = i\right]$$

$$\left[\sqrt{-1} = i\right]$$

Question 5:

Solve the equation $x^2 + 3x + 5 = 0$

Ans:

The given quadratic equation is $x^2 + 3x + 5 = 0$

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

$$a = 1$$
, $b = 3$, and $c = 5$

Therefore, the discriminant of the given equation is

$$D = b^2 - 4ac = 3^2 - 4 \times 1 \times 5 = 9 - 20 = -11$$

Therefore, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-3 \pm \sqrt{-11}}{2 \times 1} = \frac{-3 \pm \sqrt{11}i}{2} \qquad \left[\sqrt{-1} = i\right]$$

$$\sqrt{-1} = i$$

Question 6:

Solve the equation $x^2 - x + 2 = 0$

Ans:

The given quadratic equation is $x^2 - x + 2 = 0$

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

$$a = 1$$
, $b = -1$, and $c = 2$

Therefore, the discriminant of the given equation is

$$D = b^2 - 4ac = (-1)^2 - 4 \times 1 \times 2 = 1 - 8 = -7$$

Therefore, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-(-1) \pm \sqrt{-7}}{2 \times 1} = \frac{1 \pm \sqrt{7}i}{2} \qquad \left[\sqrt{-1} = i\right]$$

Question 7:

Solve the equation $\sqrt{2}x^2 + x + \sqrt{2} = 0$

Ans:

The given quadratic equation is $\sqrt{2}x^2 + x + \sqrt{2} = 0$

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

$$a = \sqrt{2}$$
, $b = 1$, and $c = \sqrt{2}$

Therefore, the discriminant of the given equation is

$$D = b^2 - 4ac = 1^2 - 4 \times \sqrt{2} \times \sqrt{2} = 1 - 8 = -7$$

Therefore, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{-7}}{2 \times \sqrt{2}} = \frac{-1 \pm \sqrt{7}i}{2\sqrt{2}} \qquad \left[\sqrt{-1} = i\right]$$

Question 8:

Solve the equation $\sqrt{3}x^2 - \sqrt{2}x + 3\sqrt{3} = 0$

Ans:

The given quadratic equation is $\sqrt{3}x^2 - \sqrt{2}x + 3\sqrt{3} = 0$

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

$$a = \sqrt{3}$$
, $b = -\sqrt{2}$, and $c = 3\sqrt{3}$

Therefore, the discriminant of the given equation is

$$D = b^2 - 4ac = \left(-\sqrt{2}\right)^2 - 4\left(\sqrt{3}\right)\left(3\sqrt{3}\right) = 2 - 36 = -34$$

Therefore, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-\left(-\sqrt{2}\right) \pm \sqrt{-34}}{2 \times \sqrt{3}} = \frac{\sqrt{2} \pm \sqrt{34}i}{2\sqrt{3}} \qquad \left[\sqrt{-1} = i\right]$$

Question 9:

Solve the equation
$$x^2 + x + \frac{1}{\sqrt{2}} = 0$$

Ans:

The given quadratic equation is $x^2 + x + \frac{1}{\sqrt{2}} = 0$

This equation can also be written as $\sqrt{2}x^2 + \sqrt{2}x + 1 = 0$

On comparing this equation with $ax^2 + bx + c = 0$, we obtain

$$a=\sqrt{2}$$
, $b=\sqrt{2}$, and $c=1$

$$\therefore \text{ Discrimin ant } \left(D\right) = b^2 - 4ac = \left(\sqrt{2}\right)^2 - 4 \times \left(\sqrt{2}\right) \times 1 = 2 - 4\sqrt{2}$$

Therefore, the required solutions are

Question 10:

Solve the equation
$$x^2 + \frac{x}{\sqrt{2}} + 1 = 0$$

Ans:

The given quadratic equation is $x^2 + \frac{x}{\sqrt{2}} + 1 = 0$

This equation can also be written as $\sqrt{2}x^2 + x + \sqrt{2} = 0$

On comparing this equation with $ax^2 + bx + c = 0$, we obtain

$$a = \sqrt{2}$$
, $b = 1$, and $c = \sqrt{2}$

:. Discriminant (D) =
$$b^2 - 4ac = 1^2 - 4 \times \sqrt{2} \times \sqrt{2} = 1 - 8 = -7$$

Therefore, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{-7}}{2\sqrt{2}} = \frac{-1 \pm \sqrt{7}i}{2\sqrt{2}} \qquad \left[\sqrt{-1} = i\right]$$

$$\sqrt{-1} = i$$

Chapterwise NCERT Solutions for Class 11 Maths:

- Chapter 1-Sets
- Chapter 2-Relations and Functions
- <u>Chapter 3-Trigonometric Functions</u>
- Chapter 4-Principle of Mathematical Induction
- Chapter 5-Complex Numbers and Quadratic Equations
- Chapter 6-Linear Inequalities
- Chapter 7-Permutation and Combinations
- <u>Chapter 8-Binomial Theorem</u>
- Chapter 9-Sequences and Series
- Chapter 10-Straight Lines
- Chapter 11-Conic Sections
- Chapter 12-Introduction to three Dimensional Geometry
- Chapter 13-Limits and Derivatives
- Chapter 14-Mathematical Reasoning
- Chapter 15-Statistics
- Chapter 16-Probability

About NCERT

The National Council of Educational Research and Training is an autonomous organization of the Government of India which was established in 1961 as a literary, scientific, and charitable Society under the Societies Registration Act. The major objectives of NCERT and its constituent units are to: undertake, promote and coordinate research in areas related to school education; prepare and publish model textbooks, supplementary material, newsletters, journals and develop educational kits, multimedia digital materials, etc.

Organise pre-service and in-service training of teachers; develop and disseminate innovative educational techniques and practices; collaborate and network with state educational departments, universities, NGOs and other educational institutions; act as a clearing house for ideas and information in matters related to school education; and act as a nodal agency for achieving the goals of Universalisation of Elementary Education. In addition to research, development, training, extension, publication and dissemination activities, NCERT is an implementation agency for bilateral cultural exchange programmes with other countries in the field of school education. Its headquarters are located at Sri Aurobindo Marg in New Delhi. Visit the Official NCERT website to learn more.

