

NCERT Solutions for 10th Class Maths: Chapter 10 - Circles

Class 10: Mathematics Chapter 10 solutions. Complete Class 10 Mathematics Chapter 10 Notes.

NCERT Solutions for 10th Class Maths: Chapter 10 Circles

NCERT 10th Mathematics Chapter 10, class 10 Mathematics Chapter 10 solutions

Page No: 209
Exercise: 10.1

1. How many tangents can a circle have?

Answer

A circle can have infinite tangents.

2. Fill in the blanks :

(i) A tangent to a circle intersects it in \qquad point(s).
(ii) A line intersecting a circle in two points is called a \qquad
(iii) A circle can have \qquad parallel tangents at the most.
(iv) The common point of a tangent to a circle and the circle is called
\qquad

Answer

(i) one
(ii) secant
(iii) two
(iv) point of contact

3. A tangent $P Q$ at a point P of a circle of radius 5 cm meets a line

 through the centre O at a point Q so that $O Q=12 \mathrm{~cm}$. Length $P Q$ is :(A) 12 cm
(B) 13 cm
(C) 8.5 cm
(D) $\sqrt{ } 119 \mathrm{~cm}$

Answer

https://www.indcareer.com/schools/ncert-solutions-for-chapter-10-circles/

The line drawn from the centre of the circle to the tangent is perpendicular to the tangent.
$\therefore O P \perp P Q$
By Pythagoras theorem in $\triangle O P Q$,
$O Q^{2}=O P^{2}+P Q^{2}$
$\Rightarrow(12)^{2}=5^{2}+\mathrm{PQ}^{2}$
$\Rightarrow P Q^{2}=144-25$
$\Rightarrow P Q^{2}=119$
$\Rightarrow P Q=\sqrt{ } 119 \mathrm{~cm}$
(D) is the correct option.
4. Draw a circle and two lines parallel to a given line such that one is a tangent and the
other, a secant to the circle.

Answer

$A B$ and $X Y$ are two parallel lines where $A B$ is the tangent to the circle at point C while XY is the secant to the circle.

Exercise: 10.2

In Q. 1 to 3, choose the correct option and give justification.

1. From a point Q, the length of the tangent to a circle is $\mathbf{2 4} \mathbf{c m}$ and the distance of Q from the centre is 25 cm . The radius of the circle is
(A) 7 cm
(B) 12 cm
(C) 15 cm
(D) 24.5 cm

Answer

The line drawn from the centre of the circle to the tangent is perpendicular to the tangent.

$\therefore O P \perp P Q$
also, $\triangle O P Q$ is right angled.
$O Q=25 \mathrm{~cm}$ and $P Q=24 \mathrm{~cm}$ (Given)
By Pythagoras theorem in $\triangle O P Q$,
$O Q^{2}=O P^{2}+P Q^{2}$
$\Rightarrow(25)^{2}=\mathrm{OP}^{2}+(24)^{2}$
$\Rightarrow \mathrm{OP}^{2}=625-576$
$\Rightarrow \mathrm{OP}^{2}=49$
$\Rightarrow \mathrm{OP}=7 \mathrm{~cm}$
The radius of the circle is option (A) 7 cm .
NCERT 10th Mathematics Chapter 10, class 10 Mathematics Chapter 10 solutions
2. In Fig. 10.11, if $T P$ and $T Q$ are the two tangents to a circle with centre O so that $\angle P O Q=110^{\circ}$, then $\angle P T Q$ is equal to
(A) 60°
(B) 70°
(C) 80°
https://www.indcareer.com/schools/ncert-solutions-for-chapter-10-circles/
(D) 90°

Answer

OP and OQ are radii of the circle to the tangents TP and TQ respectively.
$\therefore \mathrm{OP} \perp \mathrm{TP}$ and,
$\therefore \mathrm{OQ} \perp \mathrm{TQ}$
$\angle \mathrm{OPT}=\angle \mathrm{OQT}=90^{\circ}$
In quadrilateral POQT,
Sum of all interior angles $=360^{\circ}$
$\angle \mathrm{PTQ}+\angle \mathrm{OPT}+\angle \mathrm{POQ}+\angle \mathrm{OQT}=360^{\circ}$
$\Rightarrow \angle \mathrm{PTQ}+90^{\circ}+110^{\circ}+90^{\circ}=360^{\circ}$
$\Rightarrow \angle \mathrm{PTQ}=70^{\circ}$
$\angle \mathrm{PTQ}$ is equal to option (B) 70°.
3. If tangents $P A$ and $P B$ from a point P to a circle with centre O are inclined to each other at angle of 80°, then $\angle P O A$ is equal to
(A) 50°
(B) 60°
https://www.indcareer.com/schools/ncert-solutions-for-chapter-10-circles/
(C) 70°
(D) 80°

OA and OB are radii of the circle to the tangents PA and PB respectively.
$\therefore \mathrm{OA} \perp \mathrm{PA}$ and,
$\therefore \mathrm{OB} \perp \mathrm{PB}$
$\angle \mathrm{OBP}=\angle \mathrm{OAP}=90^{\circ}$
In quadrilateral AOBP,
Sum of all interior angles $=360^{\circ}$
$\angle \mathrm{AOB}+\angle \mathrm{OBP}+\angle \mathrm{OAP}+\angle \mathrm{APB}=360^{\circ}$
$\Rightarrow \angle \mathrm{AOB}+90^{\circ}+90^{\circ}+80^{\circ}=360^{\circ}$
$\Rightarrow \angle A O B=100^{\circ}$
Now,
In $\triangle \mathrm{OPB}$ and $\triangle \mathrm{OPA}$,
https://www.indcareer.com/schools/ncert-solutions-for-chapter-10-circles/
ClindCareer

CllndCareer

$\mathrm{AP}=\mathrm{BP}$ (Tangents from a point are equal)
$\mathrm{OA}=\mathrm{OB}$ (Radii of the circle)
$\mathrm{OP}=\mathrm{OP}$ (Common side)
$\therefore \triangle \mathrm{OPB} \cong \triangle \mathrm{OPA}$ (by SSS congruence condition)
Thus $\angle \mathrm{POB}=\angle \mathrm{POA}$
$\angle \mathrm{AOB}=\angle \mathrm{POB}+\angle \mathrm{POA}$
$\Rightarrow 2 \angle \mathrm{POA}=\angle \mathrm{AOB}$
$\Rightarrow \angle \mathrm{POA}=100^{\circ} / 2=50^{\circ}$
$\angle \mathrm{POA}$ is equal to option (A) 50°
NCERT 10th Mathematics Chapter 10, class 10 Mathematics Chapter 10 solutions
4. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Answer

Let $A B$ be a diameter of the circle. Two tangents $P Q$ and $R S$ are drawn at points A and B respectively.

Radii of the circle to the tangents will be perpendicular to it.
$\therefore \mathrm{OB} \perp \mathrm{RS}$ and,
$\therefore \mathrm{OA} \perp \mathrm{PQ}$
$\angle \mathrm{OBR}=\angle \mathrm{OBS}=\angle \mathrm{OAP}=\angle \mathrm{OAQ}=90^{\circ}$
From the figure,
$\angle \mathrm{OBR}=\angle \mathrm{OAQ}$ (Alternate interior angles)
$\angle \mathrm{OBS}=\angle \mathrm{OAP}$ (Alternate interior angles)
Since alternate interior angles are equal, lines $P Q$ and $R S$ will be parallel.
Hence Proved that the tangents drawn at the ends of a diameter of a circle are parallel.
5. Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

Answer

https://www.indcareer.com/schools/ncert-solutions-for-chapter-10-circles/

Let $A B$ be the tangent to the circle at point P with centre O.
We have to prove that PQ passes through the point O.
Suppose that PQ doesn't passes through point O. Join OP.
Through O, draw a straight line $C D$ parallel to the tangent $A B$.
$P Q$ intersect $C D$ at R and also intersect $A B$ at P.
$A S, C D / / A B P Q$ is the line of intersection,
$\angle \mathrm{ORP}=\angle \mathrm{RPA}$ (Alternate interior angles)
but also,
$\angle \mathrm{RPA}=90^{\circ}(\mathrm{PQ} \perp \mathrm{AB})$
$\Rightarrow \angle O R P=90^{\circ}$
$\angle \mathrm{ROP}+\angle \mathrm{OPA}=180^{\circ}$ (Co-interior angles)
$\Rightarrow \angle \mathrm{ROP}+90^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{ROP}=90^{\circ}$
Thus, the $\triangle \mathrm{ORP}$ has 2 right angles i.e. $\angle \mathrm{ORP}$ and $\angle R O P$ which is not possible.

Hence, our supposition is wrong.
$\therefore \mathrm{PQ}$ passes through the point O .
https://www.indcareer.com/schools/ncert-solutions-for-chapter-10-circles/
6. The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm . Find the radius of the circle.

Answer

$A B$ is a tangent drawn on this circle from point A.

$\therefore \mathrm{OB} \perp \mathrm{AB}$
$O A=5 \mathrm{~cm}$ and $A B=4 \mathrm{~cm}$ (Given)
In $\triangle \mathrm{ABO}$,
By Pythagoras theorem in $\triangle \mathrm{ABO}$,

$$
\begin{aligned}
& \mathrm{OA}^{2}=\mathrm{AB}^{2}+\mathrm{BO}^{2} \\
& \Rightarrow 5^{2}=4^{2}+\mathrm{BO}^{2} \\
& \Rightarrow \mathrm{BO}^{2}=25-16 \\
& \Rightarrow \mathrm{BO}^{2}=9 \\
& \Rightarrow \mathrm{BO}=3
\end{aligned}
$$

\therefore The radius of the circle is 3 cm .
7. Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord of the larger circle which touches the smaller circle.

Answer

https://www.indcareer.com/schools/ncert-solutions-for-chapter-10-circles/

Let the two concentric circles with centre O .
$A B$ be the chord of the larger circle which touches the smaller circle at point P.
$\therefore A B$ is tangent to the smaller circle to the point P.
$\Rightarrow \mathrm{OP} \perp \mathrm{AB}$
By Pythagoras theorem in \triangle OPA,
$O A^{2}=\mathrm{AP}^{2}+\mathrm{OP}^{2}$
$\Rightarrow 5^{2}=\mathrm{AP}^{2}+3^{2}$
$\Rightarrow A P^{2}=25-9$
$\Rightarrow \mathrm{AP}=4$
In \triangle OPB,
Since $O P \perp A B$,
$\mathrm{AP}=\mathrm{PB}$ (Perpendicular from the center of the circle bisects the chord)
https://www.indcareer.com/schools/ncert-solutions-for-chapter-10-circles/

Clnd Career

$\mathrm{AB}=2 \mathrm{AP}=2 \times 4=8 \mathrm{~cm}$
\therefore The length of the chord of the larger circle is 8 cm .
NCERT 10th Mathematics Chapter 10, class 10 Mathematics Chapter 10 solutions

8. A quadrilateral $A B C D$ is drawn to circumscribe a circle (see Fig.

10.12). Prove that $A B+C D=A D+B C$

Answer

From the figure we observe that,
$\mathrm{DR}=\mathrm{DS}$ (Tangents on the circle from point D) ... (i)
AP $=A S$ (Tangents on the circle from point A) ... (ii)
$B P=B Q$ (Tangents on the circle from point B) \ldots (iii)
$C R=C Q$ (Tangents on the circle from point C) ... (iv)
Adding all these equations,
$D R+A P+B P+C R=D S+A S+B Q+C Q$
$\Rightarrow(B P+A P)+(D R+C R)=(D S+A S)+(C Q+B Q)$
https://www.indcareer.com/schools/ncert-solutions-for-chapter-10-circles/
$\Rightarrow C D+A B=A D+B C$
9. In Fig. 10.13, $X Y$ and $X^{\prime} Y^{\prime}$ are two parallel tangents to a circle with centre O and another tangent $A B$ with point of contact C intersecting $X Y$ at A and $X^{\prime} Y^{\prime}$ at B. Prove that $\angle A O B=90^{\circ}$.

Answer

We joined O and C

A/q,
In \triangle OPA and $\triangle O C A$,
$\mathrm{OP}=\mathrm{OC}$ (Radii of the same circle)
AP = AC (Tangents from point A)
$\mathrm{AO}=\mathrm{AO}$ (Common side)
$\therefore \triangle \mathrm{OPA} \cong \triangle \mathrm{OCA}$ (SSS congruence criterion)
$\Rightarrow \angle \mathrm{POA}=\angle \mathrm{COA} \ldots$
Similarly,
$\triangle \mathrm{OQB} \cong \triangle \mathrm{OCB}$
$\angle \mathrm{QOB}=\angle \mathrm{COB} \ldots$ (ii)
https://www.indcareer.com/schools/ncert-solutions-for-chapter-10-circles/

ClindCareer

Since POQ is a diameter of the circle, it is a straight line.
$\therefore \angle \mathrm{POA}+\angle \mathrm{COA}+\angle \mathrm{COB}+\angle \mathrm{QOB}=180^{\circ}$
From equations (i) and (ii),
$2 \angle \mathrm{COA}+2 \angle \mathrm{COB}=180^{\circ}$
$\Rightarrow \angle C O A+\angle C O B=90^{\circ}$
$\Rightarrow \angle \mathrm{AOB}=90^{\circ}$
10. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

Answer

Consider a circle with centre O. Let P be an external point from which two tangents PA and PB are drawn to the circle which are touching the circle at point A and B respectively and $A B$ is the line segment, joining point of contacts A and B together such that it subtends $\angle A O B$ at center O of the circle.

It can be observed that
$\mathrm{OA} \perp \mathrm{PA}$
$\therefore \angle \mathrm{OAP}=90^{\circ}$
Similarly, $O B \perp P B$
$\therefore \angle \mathrm{OBP}=90^{\circ}$
In quadrilateral OAPB,
Sum of all interior angles $=360^{\circ}$
$\angle \mathrm{OAP}+\angle \mathrm{APB}+\angle \mathrm{PBO}+\angle \mathrm{BOA}=360^{\circ}$
$\Rightarrow 90^{\circ}+\angle \mathrm{APB}+90^{\circ}+\angle \mathrm{BOA}=360^{\circ}$
$\Rightarrow \angle \mathrm{APB}+\angle \mathrm{BOA}=180^{\circ}$
\therefore The angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

NCERT 10th Mathematics Chapter 10, class 10 Mathematics Chapter 10 solutions
11. Prove that the parallelogram circumscribing a circle is a rhombus.

Answer

$A B C D$ is a parallelogram,
$\therefore \mathrm{AB}=\mathrm{CD} \ldots$ (i)
$\therefore B C=A D \ldots$ (ii)
From the figure, we observe that,
DR = DS (Tangents to the circle at D)
$C R=C Q$ (Tangents to the circle at C)
$B P=B Q($ Tangents to the circle at $B)$
AP $=A S$ (Tangents to the circle at A)
Adding all these,
$D R+C R+B P+A P=D S+C Q+B Q+A S$
$\Rightarrow(D R+C R)+(B P+A P)=(D S+A S)+(C Q+B Q)$
https://www.indcareer.com/schools/ncert-solutions-for-chapter-10-circles/
$\Rightarrow C D+A B=A D+B C$
Putting the value of (i) and (ii) in equation (iii) we get,
$2 A B=2 B C$
$\Rightarrow A B=B C$
By Comparing equations (i), (ii), and (iv) we get,
$A B=B C=C D=D A$
$\therefore A B C D$ is a rhombus.
12. A triangle $A B C$ is drawn to circumscribe a circle of radius 4 cm such that the segments $B D$ and $D C$ into which $B C$ is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see Fig. 10.14). Find the sides $A B$ and $A C$.

Answer

In $\triangle A B C$,
Length of two tangents drawn from the same point to the circle are equal,
$\therefore C F=C D=6 \mathrm{~cm}$
https://www.indcareer.com/schools/ncert-solutions-for-chapter-10-circles/

ClndCareer

$\therefore B E=B D=8 \mathrm{~cm}$
$\therefore \mathrm{AE}=\mathrm{AF}=x$
We observed that,
$\mathrm{AB}=\mathrm{AE}+\mathrm{EB}=x+8$
$B C=B D+D C=8+6=14$
$C A=C F+F A=6+x$
Now semi perimeter of triangle (s) is,
$\Rightarrow 2 \mathrm{~s}=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$
$=x+8+14+6+x$
$=28+2 x$
$\Rightarrow \mathrm{s}=14+x$
Area of $\triangle A B C=\sqrt{ }(s-a)(s-b)(s-c)$
$=\sqrt{ }(14+x)(14+x-14)(14+x-x-6)(14+x-x-8)$
$=\sqrt{ }(14+x)(x)(8)(6)$
$=\sqrt{ }(14+x) 48 x \ldots$ (i)
also, Area of $\triangle A B C=2 \times$ area of $(\triangle A O F+\triangle C O D+\triangle D O B)$
$=2 \times[(1 / 2 \times O F \times A F)+(1 / 2 \times C D \times O D)+(1 / 2 \times D B \times O D)]$
$=2 \times 1 / 2(4 x+24+32)=56+4 x \ldots$ (i)
Equating equation (i) and (ii) we get,
$\sqrt{ }(14+x) 48 x=56+4 x$

https://www.indcareer.com/schools/ncert-solutions-for-chapter-10-circles/

Squaring both sides,
$48 x(14+x)=(56+4 x)^{2}$
$\Rightarrow 48 x=[4(14+x)]^{2} /(14+x)$
$\Rightarrow 48 x=16(14+x)$
$\Rightarrow 48 x=224+16 x$
$\Rightarrow 32 x=224$
$\Rightarrow x=7 \mathrm{~cm}$
Hence, $\mathrm{AB}=x+8=7+8=15 \mathrm{~cm}$
$C A=6+x=6+7=13 \mathrm{~cm}$
NCERT 10th Mathematics Chapter 10, class 10 Mathematics Chapter 10 solutions
13. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Answer

Let $A B C D$ be a quadrilateral circumscribing a circle with O such that it touches the circle at point P, Q, R, S. Join the vertices of the quadrilateral $A B C D$ to the center of the circle.

In \triangle OAP and $\triangle \mathrm{OAS}$,
$A P=A S$ (Tangents from the same point)
OP = OS (Radii of the circle)
$\mathrm{OA}=\mathrm{OA}$ (Common side)
$\Delta \mathrm{OAP} \cong \triangle \mathrm{OAS}$ (SSS congruence condition)
$\therefore \angle \mathrm{POA}=\angle \mathrm{AOS}$
$\Rightarrow \angle 1=\angle 8$
Similarly we get,
$\angle 2=\angle 3$
https://www.indcareer.com/schools/ncert-solutions-for-chapter-10-circles/
ClndCareer

ClndCareer

$\angle 4=\angle 5$
$\angle 6=\angle 7$
Adding all these angles,

$$
\begin{aligned}
& \angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=360^{\circ} \\
& \Rightarrow(\angle 1+\angle 8)+(\angle 2+\angle 3)+(\angle 4+\angle 5)+(\angle 6+\angle 7)=360^{\circ} \\
& \Rightarrow 2 \angle 1+2 \angle 2+2 \angle 5+2 \angle 6=360^{\circ} \\
& \Rightarrow 2(\angle 1+\angle 2)+2(\angle 5+\angle 6)=360^{\circ} \\
& \Rightarrow(\angle 1+\angle 2)+(\angle 5+\angle 6)=180^{\circ} \\
& \Rightarrow \angle A O B+\angle C O D=180^{\circ}
\end{aligned}
$$

Similarly, we can prove that $\angle \mathrm{BOC}+\angle \mathrm{DOA}=180^{\circ}$
Hence, opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

NCERT 10th Maths Chapter 10

ClindCareer

Chapterwise NCERT Solutions for Class 10 Maths:

- Chapter 1 Real Numbers
- Chapter 2 Polynomials
- Chapter 3 Pair of Linear Equations in Two Variables
- Chapter 4 Quadratic Equations
- Chapter 5 Arithmetic Progressions
- Chapter 6 Triangles
- Chapter 7 Coordinate Geometry
- Chapter 8 Introduction to Trigonometry
- Chapter 9 Applications of Trigonometry
- Chapter 10 Circle
- Chapter 11 Constructions
- Chapter 12 Areas related to Circles
- Chapter 13 Surface Areas and Volumes
- Chapter 14 Statistics
- Chapter 15 Probability

ClndCareer

About NCERT

The National Council of Educational Research and Training is an autonomous organization of the Government of India which was established in 1961 as a literary, scientific, and charitable Society under the Societies Registration Act. The major objectives of NCERT and its constituent units are to: undertake, promote and coordinate research in areas related to school education; prepare and publish model textbooks, supplementary material, newsletters, journals and develop educational kits, multimedia digital materials, etc.
Organise pre-service and in-service training of teachers; develop and disseminate innovative educational techniques and practices;collaborate and network with state educational departments, universities, NGOs and other educational institutions; act as a clearing house for ideas and information in matters related to school education; and act as a nodal agency for achieving the goals of Universalisation of Elementary Education. In addition to research, development, training, extension, publication and dissemination activities, NCERT is an implementation agency for bilateral cultural exchange programmes with other countries in the field of school education.Its headquarters are located at Sri Aurobindo Marg in New Delhi. Visit the Official NCERT website to learn more.

[^0]
[^0]: https://www.indcareer.com/schools/ncert-solutions-for-chapter-10-circles/

