2018 VI 08	1430	Seat No. :
Time : 2 ¹ / ₂ Hours		PHYSICS (Old Pattern)
	Subject Code	
	H 7 0 2	
Total No. of Questions : 5	(Printed Pages : 7) Maximum Marks : 55
$\begin{array}{llllllllllllllllllllllllllllllllllll$	I questions are compuls swers to the multiple cho- itten by choosing and wri- ere is no overall choice. en provided in two quest e question of three mark the of calculators is not per- k for mathematical tables ou may use the following nerever necessary : onstants : = 3×10^8 m/s = 1.6×10^{-19} C = 6.6×10^{-34} Js = 9.1×10^{-31} kg = $4\pi \times 10^{-7}$ TmA ⁻¹ $\frac{1}{\pi\epsilon_0} = 9 \times 10^9$ Nm ² C ⁻² = 3.14 = 8.85×10^{-12} C ² /Nm ² .	ory. bice questions should be iting the correct alternative. However internal choice has ations of four marks each and as. ermitted. However , you may walues of physical constants
1. A) Magnification at the microscope of focal	least distance of distinct length 5 cm is	vision of a simple [1]

- 3
 4
 5
 6

[2]

[3]

- B) When monochromatic light is incident on a surface separating two media, the reflected and refracted light both have the same frequency as the incident frequency. Why ?
- C) Which part of the electromagnetic spectrum is used in the following cases : [2]
 - i) Remote switches in household electronic systems.
 - ii) Treating unpurified water for germs.
- D) Obtain the expression for the torque acting on a rectangular coil carrying current when placed in a uniform magnetic field.
- E) Two circular coils X and Y, having the same number of turns but with radii 10 cm and 5 cm respectively are placed in the horizontal plane with their centre's coinciding with each other. Coil X has a current 3 A flowing through it in the clockwise sense. Calculate the current that has to flow in coil Y to make the total magnetic field at the common centre of the two coils, zero. [2]
- F) A carbon resistor has the following colour bands on it.

What is the value of the resistor ? What is its tolerance ? Why are carbon resistors preferred in most electronic circuits ?

 A) In a Meter Bridge experiment, null point for an unknown carbon resistance 'X' is measured. Now, the unknown resistance 'X' is put inside an enclosure maintained at a higher temperature. The null point can be obtained at the same point as before by

[1]

Decreasing the value of resistance R, since the resistance of X increases

- Descreasing the value of resistance R, since the resistance of X decreases. Increasing the value of resistance R, since the resistance of X increases Increasing the value of resistance R, since the resistance of X decreases. B) Why are sharp points used as electrodes in the Van de Graaff generator? [1] C) Write Einstein's photoelectric equation. How does it account for the existence of threshold frequency for a given material? [2] D) Show that the focal length is half the radius of curvature for a concave [2] mirror of small aperture. E) Derive the expression for the path difference between the two interfering waves in Young's double slit experiment. Hence obtain the expression for the fringe width. [2] F) The curve shown in the figure below represents the hysteresis curve for a
- F) The curve shown in the figure below represents the hysteresis curve for a ferromagnetic material. Explain the parts of the curve Oa, ab, bc, cd, de, on the basis of the domain theory.
 [3]

- 3. A) When the hydrogen atom is in its first excited level, its radius is
 - > Half its ground state radius
 - Twice its ground state radius
 - Three times its ground state radius
 - > Four times its ground state radius

[1]

- B) State two factors on which the specific electrical resistance of a conductor depends upon. [1]
 C) A difference of 3.3 eV separates two energy levels in a hydrogen like atom. Calculate the frequency of radiation emitted when the atom makes a transition from the upper level to the lower level ? [2]
 D) Explain by giving two reasons, why we choose not to transmit an audio signal by just directly converting it to an e.m. wave of the same frequency. [2]
- E) The input and output waveforms of a Gate are given in the figure below.Identify the Gate and write its truth table. [2]

F) Explain, with the help of a ray diagram, how the phenomenon of total internal reflection is used in

[3]

- 1) An optical fibre.
- 2) A prism that inverts the image without changing its size.
- A) A power transmission line feeds input power at 4.6 kV to an ideal step down transformer, with its primary winding having 6000 turns. In order to get 230 V output voltage the number of turns needed in the secondary are [1]
 - 200 turns
 - ➢ 300 turns
 - ➢ 400 turns
 - ➢ 500 turns

B) Two cells of e.m.f's 15 V and 10 V having internal resistance 2 Ω and 1 Ω are connected as shown in the figure below. What is their equivalent e.m.f. ?

C) A radioactive sample A having an activity of 5 μCi has twice the number of nuclei as another sample B which has an activity of 10 μCi. Calculate the half lives of A and B.
[2]

Figure shows a ideal series LCR circuit connected to a.c. mains of voltage ε ,

- a) When is the current maximum in the resistor ?
- b) Give the formula for the frequency of the circuit when the current in the resistor is maximum.
- c) What is the phase angle between the voltage in the capacitor and the inductor ?

[3]

[1]

The figure shows :

In situation 1, a light bulb 'B' and an ideal iron cored inductor are connected to a DC battery having a voltage sufficient to light up the bulb through a switch (S_1) . When switch (S_1) is closed the bulb lights up brightly.

a) What will one observe when switch (S_2) is closed ?

In situation 2, the DC battery is replaced by an ac source of r.m.s. voltage equal to the voltage of the DC battery. The switch (S_1) is closed and (S_2) is kept open.

- b) How will the glow of the bulb change when compared to situation 1 ?
- c) If the iron core is now slowly withdrawn, how will the glow of the bulb change ?
- E) Derive an expression for the electric field intensity at a point on the equatorial line of an electric dipole.

[4]

[1]

Why is the net force on an electric dipole placed in the uniform electric field zero ?

OR

E) Using Gauss theorem, derive an expression for the electric field intensity due to a uniformly charged spherical shell at a point outside its surface.

Why is the electric field inside a charged spherical shell zero ?

5. A) A loop ABCD kept in the plane of the paper (i.e. the plane of X-axis with \pm Y-axis) carries a current i₁. A long straight wire carrying current i₂ along the +Z axis is placed at its centre. An observer 'O' situated on the – X axis, looks at the loop along OX as shown in the figure.

Then the observer finds that the loop

- > Moves away from him due to the non-zero net force acting on the loop.
- > Moves towards him due to the non-zero net force acting on the loop.

- The arc will rotate clockwise as only a torque acts on the loop the arc will rotate anticlockwise as only a torque acts on the loop.
- B) Plane microwaves are incident normally on a single slit of width 4 cm and the first minimum is formed at 30°. What is the wavelength of the wave? [1]
- C) A horizontal straight wire of length 'l' extending from east to west is falling with speed 'v', at right angles to the horizontal component of the earth's magnetic field ' B_{H} ' [2]
 - a) What is the direction of the induced e.m.f?
 - b) Which end of the wire is at higher electrical potential ?
- D) Four capacitors $C_1 = 1\mu F$, $C_2 = 3\mu F$, $C_3 = 4\mu F$ and $C_4 = 5\mu F$ are connected to a dc supply having 10 V potential difference as shown in the circuit diagram. Calculate the charge on capacitor C_3 . [3]

E) With the help of a circuit diagram explain the working of a transistor as an amplifier in the C-E configuration. [4]

In which of these states viz. cut off, active and saturation, does a transistor have to work when it is used as a switch ?

OR

E) With the help of a circuit diagram explain the role of the two important processes involved in the formation of a p.n. junction. What is zener breakdown of a diode ?