Strictly Confidential: (For Internal and Restricted use only) Senior School Certificate Examination July 2019

Marking Scheme - CHEMISTRY (SUBJECT CODE -043)

(PAPER CODE - 56/1/2)

General Instructions: -

- 1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. Evaluation is a 10-12 days mission for all of us. Hence, it is necessary that you put in your best efforts in this process.
- 2. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them.
- 3. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 4. Evaluators will mark($\sqrt{}$) wherever answer is correct. For wrong answer 'X"be marked. Evaluators will not put right kind of mark while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- 5. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- 6. If a question does not have any parts, marks must be awarded in the left hand margin and encircled. This may also be followed strictly
- 7. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
- 8. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- 9. A full scale of marks 0 70 has to be used. Please do not hesitate to award full marks if the answer deserves it.
- 10. Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 20 / 25 answer books per day.
- 11. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
 - Leaving answer or part thereof unassessed in an answer book.
 - Giving more marks for an answer than assigned to it.
 - Wrong transfer of marks from the inside pages of the answer book to the title page.
 - Wrong question wise totaling on the title page.
 - Wrong totaling of marks of the two columns on the title page.
 - Wrong grand total.
 - Marks in words and figures not tallying.
 - Wrong transfer of marks from the answer book to online award list.

- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
- Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
- 12. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as (X) and awarded zero (0)Marks.
- 13. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
- 14. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
- 15. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
- 16. The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

Marking scheme Compartment – 2019

CHEMISTRY (043)/ CLASS XII

56/1/2

Q.No	Value Points	Marks
	SECTION A	
1	Chemicals which prevent spoilage of food due to microbial growth . eg: sodium benzoate / table	1/2 , 1/2
	salt/ sugar/ any other correct example	
2	Homopolymer	1
3	Glucose and Fructose	1
4	N - NH-CO-NH2	1
	/ // Williams	
	OR	
4	CH ₃ -CH ₂ -CH ₃	1
5	No unpaired electron.	1
	OR	
5	$[Fe(C_2O_4)_3]^{3-}$; $C_2O_4^{2-}$ is a didentate / chelating ligand so it is more stable	1/2 , 1/2
	SECTION B	,
6	Since its a first order reaction,	
	a) Unit of rate constant is s ⁻¹ / time ⁻¹	1
	b) $t_{1/2} = \frac{0.693}{k}$	
	0.693	1/2,
	$=\frac{\overset{\sim}{0.693}}{5.5\times10^{-14}}$	
	= 1.26×10^{13} s (or any other unit of time)	1/2
7	a) Conductivity of a solution at any given concentration is the conductance of one unit volume of	1/2
	solution kept between two platinum electrodes with unit area of cross-section.	
	Molar conductivity is the conductivity of solution for 1M solution.	1/2
	b) Because number of ions per unit volume that carry the current in a solution decreases.	1
8	o o	1
	ОН НО	
	a)	
	b) Carbon dioxide is formed , $C + 2H_2SO_4(conc.) \rightarrow CO_2 + 2 SO_2 + 2 H_2O$	1/ 1/
	(Award full marks if only balanced equation is given)	1/2,1/2
9	a) Because Cr is more stable in +3 oxidation state due to t_2g^3 configuration whereas Mn is more	1
	stable In +2 oxidation state due to half filled $3d^5$ configuration.	-
	B) Because it undergoes disproportionation reaction	1
10.	For fcc,	_
	$r = \frac{a}{2\sqrt{2}}$	1/2
	$a = 2r \times \sqrt{2}$	
	$a = 21 \times \sqrt{2}$ = 2 × 125pm × 1.414	1/2
	= 353.5 pm	1
	OR	
10.	$d = \frac{zM}{}$	1/2
	$d = \frac{zM}{a^3 N_A}$	

$\begin{array}{c} a = \frac{4 \times 393 \mathrm{g} \mathrm{mol}}{3.04 \mathrm{g} \mathrm{cm}^{-3} \mathrm{X} 6.022 \mathrm{X} 10^{23} \mathrm{mol}^{-1}} \\ a^{3} = 21.6 \times 10^{-23} \mathrm{cm}^{3} $		1 23 4 V 00 5 m s 1 ⁻¹		
$a^3 = 21.6 \times 10^{-23} \text{cm}^3 \text{(Deduct half marks if correct unit is not given)} \qquad 1$ $CH_3 - C = CH_3 \qquad OR \qquad 1$ $-\frac{1}{C} - \frac{1}{C} + \frac{1}{H_2O} \qquad -\frac{1}{C} - \frac{1}{C} - \frac{1}{C} - \frac{1}{C} + \frac{1}{H_3O} \qquad 1$ $a) \qquad -\frac{1}{C} - \frac{1}{C} + \frac{1}{H_2O} \qquad -\frac{1}{C} - \frac{1}{C} - \frac{1}{C} - \frac{1}{C} + \frac{1}{H_3O} \qquad 1$ $b) 2.6-\text{dimethylphenol} \qquad 1$ $12 \qquad a) A_3 B_3 \qquad 1$ $b) 1 \text{ frenkel defect, due to small size of } 2n^{2\alpha} \text{ ion.} \qquad 1$ $10g \frac{k2}{k1} = \frac{E_R}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right] \qquad 5ECTION C$ $13 \qquad \log \frac{6 \times 10^{-2}}{2 \times 10^{-2}} = \frac{E_R}{2.3033 \times 3.314 / K^{-1} \text{ mol}^{-1}} \left[\frac{1}{300} - \frac{1}{320} \right] K^4 \qquad 1$ $\log 3 = \frac{E_R}{19.157 \text{mol}^{-1}} \left[\frac{320 - 300}{300 \times 320} \right] \qquad 5E_{300 \times 320} \qquad 1$ $E = 43855 \text{J mol}^{-1} \text{ or } 43.855 \text{J J mol}^{-1} \text{(Deduct half marks if correct unit is not given)} \qquad 1$ $14 \qquad 2n^{2^2+} + 2e \rightarrow 2n(s) \qquad 1$ $E_{2n2+72n} = \frac{E_0}{2.23 \times 72n} \log \frac{1}{2} \qquad \log \frac{1}{12n2 + 1} \qquad 1$ $E_{2n2+72n} = 0.0.76 - \frac{0.059}{2} \log \frac{1}{1001} \qquad 1$ $= -0.76 - \frac{0.059}{2} \log 10^2 \qquad 1$ $= 0.76 - \frac{0.059}{2} \log 10^2 \qquad 1$ $= $		$a^3 = 4 \times 99 \text{ g mol}^{-1}$	1	1/
11 CH ₃ -C=CH ₃ (21.6 × 10 ²³ cm ³ (Deduct half marks if correct unit is not given) CH ₃ -C=CH ₃ (21.6 × 10 ²³ cm ³ (Deduct half marks if correct unit is not given) OR 11 H H H H H H H H H H H H H H H H H H		3.04 g cm 3 X 6.022 X 10 ²³	mol ⁺	/2
11 CH ₃ -C=CH ₃ (21.6 × 10 ²³ cm ³ (Deduct half marks if correct unit is not given) CH ₃ -C=CH ₃ (21.6 × 10 ²³ cm ³ (Deduct half marks if correct unit is not given) OR 11 H H H H H H H H H H H H H H H H H H				1
CH ₃ ; 2-Methylpropene OR 11		$a^3 = 21.6 \times 10^{-23} \text{ cm}^3$ (Deduc	t half marks if correct unit is not given)	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	CH ₃ -C=CH ₂		1,1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		LH.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$; 2Methylpropene		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		С)R	
a) b) 2,6-dimethylphenol 1 12 a) A_2B_3 b) Frenkel defect , due to small size of Zn^{2+} ion. SECTION C 13 $log \frac{k^2}{k^2} = \frac{Ea}{2.303R} \left[\frac{1}{T1} - \frac{1}{T2} \right]$ $log \frac{6 \times 10^{-2}}{2 \times 10^{-2}} = \frac{Ea}{2.303 \times 8.314 \ K^{-1}mol^{-1}} \left[\frac{1}{300} - \frac{1}{320} \right] \ K^1$ $log 3 = \frac{Ea}{19.15 \ mol^{-1}} \left[\frac{320 - 300}{300 \times 320} \right]$ $0.4771 = \frac{Ea}{19.15 \ mol^{-1}} \left[\frac{320 - 300}{300 \times 320} \right]$ $Ea = 43855 \ mol^{-1} \ or 43.855 \ kl \ mol^{-1} \ (Deduct half marks if correct unit is not given) 1$ $14 Zn^{2+} + 2e \rightarrow Zn(s)$ $E_{2n^2+/Zn} = E^0 \frac{0.059}{2n^2 4/Zn} \frac{0.059}{2} \ log \frac{1}{[Zn^2+]}$ $E_{2n^2+/Zn} = 0.76 - \frac{0.059}{2} \ log \frac{1}{[0.01]}$ $= -0.76 - \frac{0.059}{2} \ log \ 10^2$ $= -0.76 - 0.059 \ E_{2n^2+/Zn} - 0.819 \ (Deduct half marks if correct unit is not given) 1$ $15 a) \ Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is ZnCO3 while malachite is CuCO3.Cu(OH)2 b) Zn is more reactive than Cu , so reduction will be faster in case of Zn. c) Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture. OR 15 a) \[Cast iron \text{Pig iron} \text{1.lt contains high percentage of carbon and other impurities} \text{1.lt contains high percentage of carbon and other impurities}} \text{1.lt contains high percentage of carbon and other impurities} \text{1.lt contains high percentage of carbon and other impurities}} \text{1.lt contains high percentage of carbon and other impurities} \text{1.lt contains high percentage of carbon and other impurities}} \qua$	11	Н Н	H	1
a) b) 2,6-dimethylphenol 1 12 a) A_2B_3 b) Frenkel defect , due to small size of Zn^{2+} ion. SECTION C 13 $log \frac{k^2}{k^2} = \frac{Ea}{2.303R} \left[\frac{1}{T1} - \frac{1}{T2} \right]$ $log \frac{6 \times 10^{-2}}{2 \times 10^{-2}} = \frac{Ea}{2.303 \times 8.314 \ K^{-1}mol^{-1}} \left[\frac{1}{300} - \frac{1}{320} \right] \ K^1$ $log 3 = \frac{Ea}{19.15 \ mol^{-1}} \left[\frac{320 - 300}{300 \times 320} \right]$ $0.4771 = \frac{Ea}{19.15 \ mol^{-1}} \left[\frac{320 - 300}{300 \times 320} \right]$ $Ea = 43855 \ mol^{-1} \ or 43.855 \ kl \ mol^{-1} \ (Deduct half marks if correct unit is not given) 1$ $14 Zn^{2+} + 2e \rightarrow Zn(s)$ $E_{2n^2+/Zn} = E^0 \frac{0.059}{2n^2 4/Zn} \frac{0.059}{2} \ log \frac{1}{[Zn^2+]}$ $E_{2n^2+/Zn} = 0.76 - \frac{0.059}{2} \ log \frac{1}{[0.01]}$ $= -0.76 - \frac{0.059}{2} \ log \ 10^2$ $= -0.76 - 0.059 \ E_{2n^2+/Zn} - 0.819 \ (Deduct half marks if correct unit is not given) 1$ $15 a) \ Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is ZnCO3 while malachite is CuCO3.Cu(OH)2 b) Zn is more reactive than Cu , so reduction will be faster in case of Zn. c) Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture. OR 15 a) \[Cast iron \text{Pig iron} \text{1.lt contains high percentage of carbon and other impurities} \text{1.lt contains high percentage of carbon and other impurities}} \text{1.lt contains high percentage of carbon and other impurities} \text{1.lt contains high percentage of carbon and other impurities}} \text{1.lt contains high percentage of carbon and other impurities} \text{1.lt contains high percentage of carbon and other impurities}} \qua$			0 0+ H	
a) b) 2,6-dimethylphenol 1 12 a) A_2B_3 b) Frenkel defect , due to small size of Zn^{2+} ion. SECTION C 13 $log \frac{k^2}{k^2} = \frac{Ea}{2.303R} \left[\frac{1}{T1} - \frac{1}{T2} \right]$ $log \frac{6 \times 10^{-2}}{2 \times 10^{-2}} = \frac{Ea}{2.303 \times 8.314 \ K^{-1}mol^{-1}} \left[\frac{1}{300} - \frac{1}{320} \right] \ K^1$ $log 3 = \frac{Ea}{19.15 \ mol^{-1}} \left[\frac{320 - 300}{300 \times 320} \right]$ $0.4771 = \frac{Ea}{19.15 \ mol^{-1}} \left[\frac{320 - 300}{300 \times 320} \right]$ $Ea = 43855 \ mol^{-1} \ or 43.855 \ kl \ mol^{-1} \ (Deduct half marks if correct unit is not given) 1$ $14 Zn^{2+} + 2e \rightarrow Zn(s)$ $E_{2n^2+/Zn} = E^0 \frac{0.059}{2n^2 4/Zn} \frac{0.059}{2} \ log \frac{1}{[Zn^2+]}$ $E_{2n^2+/Zn} = 0.76 - \frac{0.059}{2} \ log \frac{1}{[0.01]}$ $= -0.76 - \frac{0.059}{2} \ log \ 10^2$ $= -0.76 - 0.059 \ E_{2n^2+/Zn} - 0.819 \ (Deduct half marks if correct unit is not given) 1$ $15 a) \ Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is ZnCO3 while malachite is CuCO3.Cu(OH)2 b) Zn is more reactive than Cu , so reduction will be faster in case of Zn. c) Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture. OR 15 a) \[Cast iron \text{Pig iron} \text{1.lt contains high percentage of carbon and other impurities} \text{1.lt contains high percentage of carbon and other impurities}} \text{1.lt contains high percentage of carbon and other impurities} \text{1.lt contains high percentage of carbon and other impurities}} \text{1.lt contains high percentage of carbon and other impurities} \text{1.lt contains high percentage of carbon and other impurities}} \qua$		-C C + H₂O ← -C-	C-0-H	
12 a) A_2B_3 b) Frenkel defect , due to small size of Zn^{2*} ion. SECTION C 13 $\log \frac{k^2}{k^2} = \frac{Ea}{2.303R} \left[\frac{1}{11} - \frac{1}{12} \right]$ $\log \frac{6 \times 10^{-2}}{2 \times 10^{-2}} = \frac{Ea}{2.303 \times 8.314 J K^{-1} mol^{-1}} \left[\frac{1}{300} - \frac{1}{320} \right] K^1$ $\log 3 = \frac{Ea}{19.15 J mol^{-1}} \left[\frac{320 - 300}{300 \times 320} \right]$ $0.4771 = \frac{Ea}{19.15 J mol^{-1}} \left[\frac{20}{300 \times 320} \right]$ $Ea = 43855 \text{ J mol}^{-1} \text{ or } 43.855 \text{ kJ mol}^{-1} \text{ (Deduct half marks if correct unit is not given)}$ 14 $Zn^{2*} + 2e \rightarrow Zn(s)$ $E_{2n2*/Zn} = E^0 _{2n2*/Zn} - \frac{0.059}{2} \log \frac{1}{ Zn ^2+ }$ $E_{2n2*/Zn} = -0.76 - \frac{0.059}{2} \log \frac{1}{ Zn ^2+ }$ 15 $a) Cast iron$ 16 a) (Deduct half marks if correct unit is not given) 17 a) Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is ZnCO ₃ while malachite is CuCO ₃ .Cu(OH) ₂ b) Zn is more reactive than Cu , so reduction will be faster in case of Zn. c) Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture. OR 18 a) (Cast iron Pig iron 1.1t contains low percentage of carbon and other impurities)		a)		
b) Frenkel defect , due to small size of Zn^{3*} ion. SECTION C				
	12			
$ \log \frac{k2}{k1} = \frac{Ea}{2.303R} \left[\frac{1}{71} - \frac{1}{72} \right] $			10110	1/2,1/2
$\log \frac{6 \times 10^{-2}}{2 \times 10^{-2}} = \frac{Ea}{2.303 \times 8.314 / K^{-1} mol^{-1}} \left[\frac{1}{300} - \frac{1}{320} \right] K^{1}$ $\log 3 = \frac{Ea}{19.15 / mol^{-1}} \left[\frac{320 - 300}{300 \times 320} \right]$ $0.4771 = \frac{Ea}{19.15 / mol^{-1}} \left[\frac{20}{300 \times 320} \right]$ $Ea = 43855 \text{ J mol}^{-1} \text{ or } 43.855 \text{ kJ mol}^{-1} \text{ (Deduct half marks if correct unit is not given)} $ 1 $2n^{2^{+}} + 2e \rightarrow 2n(s)$ $E_{2n^{2}+/2n} = E^{0} \sum_{2n^{2}+/2n} - \frac{0.059}{2} \log \frac{1}{[2n^{2}+]}$ $E_{2n^{2}+/2n} = -0.76 - \frac{0.059}{2} \log \frac{10}{[0.01]}$ $= -0.76 - \frac{0.059}{2} \log 10^{2}$ $= -0.76 - 0.059 \text{ V}$ $E_{2n^{2}+/2n} = -0.819 \text{ V} \text{ (Deduct half marks if correct unit is not given)} $ 1 $15 \text{a) Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is ZnCO3 while malachite is CuCO3.Cu(OH)2 b) Zn is more reactive than Cu , so reduction will be faster in case of Zn. c) Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture. OR 15 \text{a)} \frac{\text{Cast iron}}{\text{I.lt contains low percentage of carbon and}} \frac{\text{Pig iron}}{\text{I.lt contains high percentage of carbon and}} 1+1$	4.0		ION C	1/
$\log \frac{6 \times 10^{-2}}{2 \times 10^{-2}} = \frac{Ea}{2.303 \times 8.314 / K^{-1} mol^{-1}} \left[\frac{1}{300} - \frac{1}{320} \right] K^{1}$ $\log 3 = \frac{Ea}{19.15 / mol^{-1}} \left[\frac{320 - 300}{300 \times 320} \right]$ $0.4771 = \frac{Ea}{19.15 / mol^{-1}} \left[\frac{20}{300 \times 320} \right]$ $Ea = 43855 \text{ J mol}^{-1} \text{ or } 43.855 \text{ kJ mol}^{-1} \text{ (Deduct half marks if correct unit is not given)} $ 1 $2n^{2^{+}} + 2e \rightarrow 2n(s)$ $E_{2n^{2}+/2n} = E^{0} \sum_{2n^{2}+/2n} - \frac{0.059}{2} \log \frac{1}{[2n^{2}+]}$ $E_{2n^{2}+/2n} = -0.76 - \frac{0.059}{2} \log \frac{10}{[0.01]}$ $= -0.76 - \frac{0.059}{2} \log 10^{2}$ $= -0.76 - 0.059 \text{ V}$ $E_{2n^{2}+/2n} = -0.819 \text{ V} \text{ (Deduct half marks if correct unit is not given)} $ 1 $15 \text{a) Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is ZnCO3 while malachite is CuCO3.Cu(OH)2 b) Zn is more reactive than Cu , so reduction will be faster in case of Zn. c) Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture. OR 15 \text{a)} \frac{\text{Cast iron}}{\text{I.lt contains low percentage of carbon and}} \frac{\text{Pig iron}}{\text{I.lt contains high percentage of carbon and}} 1+1$	13	$\log \frac{\kappa L}{k_1} = \frac{Lu}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$		1/2
$\log 3 = \frac{Ea}{19.15 \int mal^{-1}} \left[\frac{320 - 300}{300 \times 320} \right]$ $0.4771 = \frac{Ea}{19.15 \int mal^{-1}} \left[\frac{20}{300 \times 320} \right]$ $Ea = 43855 \int mol^{-1} \text{ or } 43.855 \text{ kJ mol}^{-1} \text{ (Deduct half marks if correct unit is not given)} $ 1 $14 \qquad Zn^{2+} + 2e \Rightarrow Zn(s)$ $E_{Zn2+/Zn} = E^0 \frac{0.059}{2n_2+/Zn} - \frac{0.059}{2} \log \frac{1}{[Zn_2+]}$ 1 $E_{Zn2+/Zn} = -0.76 - \frac{0.059}{2} \log \frac{10}{[0.01]}$ $= -0.76 - \frac{0.059}{2} \log 10^2$ $= -0.76 - 0.059 \text{ V}$ $E_{Zn2+/Zn} = -0.819 \text{ V} \text{ (Deduct half marks if correct unit is not given)} $ $15 \qquad a) Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is ZnCO3 while malachite is one of copper. / Calamine is ZnCO3 while malachite is one of Copper. / Calamine is ZnCO3 while malachite is one of Copper. / Calamine is ZnCO3 while malachite is one of Copper. / Calamine is ZnCO3 while malachite is one of Copper. / Calamine is ZnCO3 while malachite is one of Copper. / Calamine is ZnCO3 while malachite is one of Copper. / Calamine is ZnCO3 while malachite is one of Copper. / Calamine is ZnCO3 while malachite is one of Copper. / Calamine is ZnCO3 while malachite is one of Copper. / Calamine is ZnCO3 while malachite is one of Copper. / Calamine is ZnCO3 while malachite is curve of Copper. / Calamine is ZnCO3 while malachite is curve of Copper. / Calamine is ZnCO3 while malachite is curve of Zn. / Copper. / Calamine is ZnCO3 while malachite is curve of Zn. / Copper. / Calamine is ZnCO3 while malachite is znco3 curve of Zn. / Copper. / Calamine is ZnCO3 while malachite is znco3 curve of Zn. / Copper. / Calamine is ZnCO3 while malachite is znco3 curve of Zn. / Copper. / Calamine is ZnCO3 while malachite is znco3 curve of Zn. / Copper. / Calamine is ZnCO3 while malachite is znco3 curve of Znco$				
$\log 3 = \frac{Ea}{19.15 \int mal^{-1}} \left[\frac{320 - 300}{300 \times 320} \right]$ $0.4771 = \frac{Ea}{19.15 \int mal^{-1}} \left[\frac{20}{300 \times 320} \right]$ $Ea = 43855 \int mol^{-1} \text{ or } 43.855 \text{ kJ mol}^{-1} \text{ (Deduct half marks if correct unit is not given)} $ 1 $14 \qquad Zn^{2+} + 2e \Rightarrow Zn(s)$ $E_{Zn2+/Zn} = E^0 \frac{0.059}{2n_2+/Zn} - \frac{0.059}{2} \log \frac{1}{[Zn_2+]}$ 1 $E_{Zn2+/Zn} = -0.76 - \frac{0.059}{2} \log \frac{10}{[0.01]}$ $= -0.76 - \frac{0.059}{2} \log 10^2$ $= -0.76 - 0.059 \text{ V}$ $E_{Zn2+/Zn} = -0.819 \text{ V} \text{ (Deduct half marks if correct unit is not given)} $ $15 \qquad a) Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is ZnCO3 while malachite is one of copper. / Calamine is ZnCO3 while malachite is one of Copper. / Calamine is ZnCO3 while malachite is one of Copper. / Calamine is ZnCO3 while malachite is one of Copper. / Calamine is ZnCO3 while malachite is one of Copper. / Calamine is ZnCO3 while malachite is one of Copper. / Calamine is ZnCO3 while malachite is one of Copper. / Calamine is ZnCO3 while malachite is one of Copper. / Calamine is ZnCO3 while malachite is one of Copper. / Calamine is ZnCO3 while malachite is one of Copper. / Calamine is ZnCO3 while malachite is one of Copper. / Calamine is ZnCO3 while malachite is curve of Copper. / Calamine is ZnCO3 while malachite is curve of Copper. / Calamine is ZnCO3 while malachite is curve of Zn. / Copper. / Calamine is ZnCO3 while malachite is curve of Zn. / Copper. / Calamine is ZnCO3 while malachite is znco3 curve of Zn. / Copper. / Calamine is ZnCO3 while malachite is znco3 curve of Zn. / Copper. / Calamine is ZnCO3 while malachite is znco3 curve of Zn. / Copper. / Calamine is ZnCO3 while malachite is znco3 curve of Zn. / Copper. / Calamine is ZnCO3 while malachite is znco3 curve of Znco$		$\log \frac{6 \times 10^{-2}}{100} = \frac{Ea}{100}$	$\frac{1}{1}$ 1 K^{-1}	4
$0.4771 = \frac{Ea}{19.15 \int mol^{-1}} \left[\frac{20}{300 \times 320} \right]$ $Ea = 43855 \int mol^{-1} \text{ or } 43.855 \text{ kJ mol}^{-1} \text{ (Deduct half marks if correct unit is not given)} $ 1 $14 \qquad Zn^{2+} + 2e \Rightarrow Zn(s)$ $E_{Zn^{2+}/Zn} = E^{\circ}_{Zn^{2+}/Zn} - \frac{0.059}{2} \log \frac{1}{[Zn^{2+}]}$ $E_{Zn^{2+}/Zn} = -0.76 - \frac{0.059}{2} \log \frac{1}{[0.01]}$ $= -0.76 - \frac{0.059}{2} \log 10^{2}$ $= -0.76 - 0.059 \text{ V}$ $E_{Zn^{2+}/Zn} = -0.819 \text{ V} \text{ (Deduct half marks if correct unit is not given)} $ 1 $15 \qquad a) Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is ZnCO_3 while malachite is CuCO_3. Cu(OH)_2 b) Zn is more reactive than Zn, so reduction will be faster in case of Zn. c) Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture. OR 15 \qquad a) \qquad OR 15 \qquad a) \qquad Cast iron \qquad Pig iron \\ 1. It contains low percentage of carbon and other impurities \qquad 1+1$		2×10^{-2} 2.303 ×8.314 J K ⁻¹ mol ⁻¹ 1300	320 1 1	1
$0.4771 = \frac{Ea}{19.15 \int mol^{-1}} \left[\frac{20}{300 \times 320} \right]$ $Ea = 43855 \int mol^{-1} \text{ or } 43.855 \text{ kJ mol}^{-1} \text{ (Deduct half marks if correct unit is not given)} $ 1 $14 \qquad Zn^{2+} + 2e \Rightarrow Zn(s)$ $E_{Zn^{2+}/Zn} = E^{\circ}_{Zn^{2+}/Zn} - \frac{0.059}{2} \log \frac{1}{[Zn^{2+}]}$ $E_{Zn^{2+}/Zn} = -0.76 - \frac{0.059}{2} \log \frac{1}{[0.01]}$ $= -0.76 - \frac{0.059}{2} \log 10^{2}$ $= -0.76 - 0.059 \text{ V}$ $E_{Zn^{2+}/Zn} = -0.819 \text{ V} \text{ (Deduct half marks if correct unit is not given)} $ 1 $15 \qquad a) Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is ZnCO_3 while malachite is CuCO_3. Cu(OH)_2 b) Zn is more reactive than Zn, so reduction will be faster in case of Zn. c) Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture. OR 15 \qquad a) \qquad OR 15 \qquad a) \qquad Cast iron \qquad Pig iron \\ 1. It contains low percentage of carbon and other impurities \qquad 1+1$		Ea , 320-300		
$Ea = 43855 \text{ J mol}^{-1} \text{ or } 43.855 \text{ kJ mol}^{-1} \text{ (Deduct half marks if correct unit is not given)}} 1$ $E_{Zn^{2+} + 2e \rightarrow Zn(s)$ $E_{Zn^{2+}/Zn} = E^{0}_{Zn^{2+}/Zn} - \frac{0.059}{2} \log \frac{1}{[Zn^{2+}]} \qquad 1$ $E_{Zn^{2+}/Zn} = -0.76 - \frac{0.059}{2} \log 10^{2}$ $= -0.76 - 0.059 \text{ V}$ $E_{Zn^{2+}/Zn} = -0.819 \text{ V} \text{ (Deduct half marks if correct unit is not given)}} 1$ 1 $a) \text{ Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is ZnCO3 while malachite is CuCO3.Cu(OH)2 b) \text{ Zn is more reactive than Cu , so reduction will be faster in case of Zn.} 1 c) \text{ Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture.} OR 15 a) Cast iron Cast ir$		$\log 3 = \frac{19.15 J mol^{-1}}{19.15 J mol^{-1}} \left[\frac{300 \times 320}{300 \times 320} \right]$		
$Ea = 43855 \text{ J mol}^{-1} \text{ or } 43.855 \text{ kJ mol}^{-1} \text{ (Deduct half marks if correct unit is not given)}} 1$ $E_{Zn^{2+} + 2e \rightarrow Zn(s)$ $E_{Zn^{2+}/Zn} = E^{0}_{Zn^{2+}/Zn} - \frac{0.059}{2} \log \frac{1}{[Zn^{2+}]} \qquad 1$ $E_{Zn^{2+}/Zn} = -0.76 - \frac{0.059}{2} \log 10^{2}$ $= -0.76 - 0.059 \text{ V}$ $E_{Zn^{2+}/Zn} = -0.819 \text{ V} \text{ (Deduct half marks if correct unit is not given)}} 1$ 1 $a) \text{ Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is ZnCO3 while malachite is CuCO3.Cu(OH)2 b) \text{ Zn is more reactive than Cu , so reduction will be faster in case of Zn.} 1 c) \text{ Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture.} OR 15 a) Cast iron Cast ir$				
$Ea = 43855 \text{ J mol}^{-1} \text{ or } 43.855 \text{ kJ mol}^{-1} \text{ (Deduct half marks if correct unit is not given)}} 1$ $E_{Zn^{2+} + 2e \rightarrow Zn(s)$ $E_{Zn^{2+}/Zn} = E^{0}_{Zn^{2+}/Zn} - \frac{0.059}{2} \log \frac{1}{[Zn^{2+}]} \qquad 1$ $E_{Zn^{2+}/Zn} = -0.76 - \frac{0.059}{2} \log 10^{2}$ $= -0.76 - 0.059 \text{ V}$ $E_{Zn^{2+}/Zn} = -0.819 \text{ V} \text{ (Deduct half marks if correct unit is not given)}} 1$ 1 $a) \text{ Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is ZnCO3 while malachite is CuCO3.Cu(OH)2 b) \text{ Zn is more reactive than Cu , so reduction will be faster in case of Zn.} 1 c) \text{ Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture.} OR 15 a) Cast iron Cast ir$		$0.4771 = \frac{Ea}{10.15 \text{ J} \cdot \text{mod} - 1} \left[\frac{20}{200.0320} \right]$		1/2
		19.15 <i>j moi</i> 1 - 300 ×320 -		/2
		Fa- 43855 I mol ⁻¹ or 43 855 kI mol ⁻¹ (Ded	luct half marks if correct unit is not given)	1
$E_{Zn2+/Zn} = E^{\circ}_{Zn2+/Zn} - \frac{0.059}{2} \log \frac{1}{[Zn2+]} $ $E_{Zn2+/Zn} = -0.76 - \frac{0.059}{2} \log \frac{1}{[0.01]} $ $= -0.76 - \frac{0.059}{2} \log 10^2 $ $= -0.76 - 0.059 \text{ V} $ $E_{Zn2+/Zn} = -0.819 \text{ V} $ (Deduct half marks if correct unit is not given) 1 a) Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is $ZnCO_3$ while malachite is $CuCO_3$. $Cu(OH)_2$ b) Zn is more reactive than Cu , so reduction will be faster in case of Zn . c) Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture. OR 15 a) Cast iron 1.It contains low percentage of carbon and other impurities 1+1		[Dea	det han marks ir correct and is not given,	
$E_{Zn2+/Zn} = E^{\circ}_{Zn2+/Zn} - \frac{0.059}{2} \log \frac{1}{[Zn2+]} $ $E_{Zn2+/Zn} = -0.76 - \frac{0.059}{2} \log \frac{1}{[0.01]} $ $= -0.76 - \frac{0.059}{2} \log 10^2 $ $= -0.76 - 0.059 \text{ V} $ $E_{Zn2+/Zn} = -0.819 \text{ V} $ (Deduct half marks if correct unit is not given) 1 a) Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is $ZnCO_3$ while malachite is $CuCO_3$. $Cu(OH)_2$ b) Zn is more reactive than Cu , so reduction will be faster in case of Zn . c) Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture. OR 15 a) Cast iron 1.It contains low percentage of carbon and other impurities 1+1	14	$7n^{2+} + 2e \rightarrow 7n(s)$		
$E_{Zn2+/Zn} = -0.76 - \frac{0.059}{2} \log \frac{1}{[0.01]}$ $= -0.76 - \frac{0.059}{2} \log 10^{2}$ $= -0.76 - 0.059 \text{ V}$ $E_{Zn2+/Zn} = -0.819 \text{ V} \qquad \text{(Deduct half marks if correct unit is not given)} \qquad 1$ 15 a) Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is ZnCO ₃ while malachite is CuCO ₃ .Cu(OH) ₂ b) Zn is more reactive than Cu , so reduction will be faster in case of Zn. c) Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture. OR 15 a) Cast iron 1.lt contains low percentage of carbon and other impurities 1+1		0.059 1 1		1
$E_{Zn2+/Zn} = -0.76 - \frac{0.059}{2} \log \frac{1}{[0.01]}$ $= -0.76 - \frac{0.059}{2} \log 10^{2}$ $= -0.76 - 0.059 \text{ V}$ $E_{Zn2+/Zn} = -0.819 \text{ V} \qquad \text{(Deduct half marks if correct unit is not given)} \qquad 1$ 15 a) Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is ZnCO ₃ while malachite is CuCO ₃ .Cu(OH) ₂ b) Zn is more reactive than Cu , so reduction will be faster in case of Zn. c) Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture. OR 15 a) Cast iron 1.lt contains low percentage of carbon and other impurities 1+1		$E_{Zn2+/Zn} = E^{-}_{Zn2+/Zn} - \frac{10g_{[Zn2+]}}{2}$		
= -0.76 - \frac{0.059}{2} \log 10^2 \\ = -0.76 - 0.059 \text{ V} \\ \text{E}_{Zn2+/Zn} = -0.819 \text{ V} \text{ (Deduct half marks if correct unit is not given)} \\ 15 a) \text{Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is ZnCO3 while malachite is CuCO3.Cu(OH)2 \\ b) \text{Zn is more reactive than Cu, so reduction will be faster in case of Zn. c) Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture. \text{ OR} \\ 15 a) \\ \text{Cast iron} \text{Pig iron} \\ \text{1.It contains low percentage of carbon and other impurities} \text{1.It contains high percentage of carbon and other impurities} \text{1+1} \\ \text{1-1}				
= -0.76 - \frac{0.059}{2} \log 10^2 \\ = -0.76 - 0.059 \text{ V} \\ \text{E}_{Zn2+/Zn} = -0.819 \text{ V} \text{ (Deduct half marks if correct unit is not given)} \\ 15 a) \text{Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is ZnCO3 while malachite is CuCO3.Cu(OH)2 \\ b) \text{Zn is more reactive than Cu, so reduction will be faster in case of Zn. c) Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture. \text{ OR} \\ 15 a) \\ \text{Cast iron} \text{Pig iron} \\ \text{1.It contains low percentage of carbon and other impurities} \text{1.It contains high percentage of carbon and other impurities} \text{1+1} \\ \text{1-1}		$F_{7021/70} = -0.76 - \frac{0.059}{100} \log \frac{1}{100}$		
= -0.76 - 0.059 V E _{Zn2+/Zn} = -0.819 V (Deduct half marks if correct unit is not given) 1 a) Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is ZnCO ₃ while malachite is CuCO ₃ .Cu(OH) ₂ b) Zn is more reactive than Cu , so reduction will be faster in case of Zn. c) Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture. OR 15 a) Cast iron Pig iron 1.It contains low percentage of carbon and other impurities 1+1		F 1		1
= -0.76 - 0.059 V E _{Zn2+/Zn} = -0.819 V (Deduct half marks if correct unit is not given) 1 a) Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is ZnCO ₃ while malachite is CuCO ₃ .Cu(OH) ₂ b) Zn is more reactive than Cu , so reduction will be faster in case of Zn. c) Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture. OR 15 a) Cast iron Pig iron 1.It contains low percentage of carbon and other impurities 1+1		$= -0.76 - \frac{0.059}{2} \log 10^2$		
E _{Zn2+/Zn} = -0.819 V (Deduct half marks if correct unit is not given) 15 a) Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is ZnCO ₃ while malachite is CuCO ₃ .Cu(OH) ₂ b) Zn is more reactive than Cu, so reduction will be faster in case of Zn. c) Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture. OR 15 a) Cast iron Pig iron 1.It contains low percentage of carbon and other impurities 1+1		_		
a) Calamine is an ore of Zn while malachite is an ore of copper. / Calamine is ZnCO ₃ while malachite is CuCO ₃ .Cu(OH) ₂ b) Zn is more reactive than Cu , so reduction will be faster in case of Zn. c) Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture. OR 15 a) Cast iron Pig iron 1.It contains low percentage of carbon and other impurities Pig iron 1.It contains high percentage of carbon and other impurities			duct half marks if correct unit is not given)	1
malachite is CuCO ₃ .Cu(OH) ₂ b) Zn is more reactive than Cu , so reduction will be faster in case of Zn. c) Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture. OR 15 a) Cast iron Pig iron 1.It contains low percentage of carbon and other impurities Pig iron 1.It contains high percentage of carbon and other impurities 1+1	15	,	<u> </u>	1
b) Zn is more reactive than Cu , so reduction will be faster in case of Zn. c) Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture. OR 15 a) Cast iron Pig iron 1.It contains low percentage of carbon and other impurities Pig iron 1.It contains high percentage of carbon and other impurities Pig iron 1.It contains high percentage of carbon and other impurities		·		-
c) Cryolite makes alumina a good conductor of electricity and lowers melting point of the mixture. OR 15 a) Cast iron 1.It contains low percentage of carbon and other impurities Pig iron 1.It contains high percentage of carbon and other impurities 1 + 1			l be faster in case of Zn.	1
mixture. OR 15 a) Cast iron 1.It contains low percentage of carbon and other impurities Pig iron 1.It contains high percentage of carbon and other impurities 1+1				
15 a) Cast iron Pig iron 1.It contains low percentage of carbon and other impurities 1.It contains high percentage of carbon and other impurities 1.It contains high percentage of carbon and other impurities				
Cast iron Pig iron 1.It contains low percentage of carbon and other impurities Pig iron 1.It contains high percentage of carbon and other impurities 1+ 1			OR	
1.It contains low percentage of carbon and other impurities 1.It contains high percentage of carbon and other impurities 1.1t contains high percentage of carbon and other impurities	15	a)		
1.It contains low percentage of carbon and other impurities 1.It contains high percentage of carbon and other impurities 1.1t contains high percentage of carbon and other impurities		Cast iron	Pig iron	
other impurities other impurities		1.It contains low percentage of carbon and		1+ 1
		· -	1	
		·	·	
				<u> </u>

	3. It is less brittle 3. It is more brittle	
	(Any two)	
1.0	b)Zone refining – impurities are more soluble in the melt than the solid state of the metal.	1
16	a) Because acid formed in the reaction provides H ⁺ which acts as a catalyst in hydrolysis.	1
	b) The solution becomes colourless because the molecules of methylene blue/ dye get adsorbed on the surface of charcoal.	1
	c) Milk / Vanishing cream (or any other suitable example)	1
	OR	
16	a) Colloids which acts as electrolytes at low concentration and show colloidal behaviour at high concentrationb) The movement of colloidal particles towards a particular electrode under the	1
	influence of an electric field. c) The potential difference between fixed layer and the diffused layer of opposite	1
	charges.	1
17	a) i) $5NO_2^- + 2MnO_4^- + 6H^+ \longrightarrow 2Mn^{2+} + 5NO_3^- + 3H_2O$	1
	$3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$	1
	b) Cerium / Ce	1
18	a) i) Propene	1
	ii) NH ₂ NH ₃ NH ₃	1
	b)Phenyl isocyanides /	1
19		1,1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		1
19	OR a) Ligand that can ligate through two different atoms.	1
13	b) Ligands can be arranged in a series in the order of increasing field strength. / An experimentally determined series based on absorption of light by complexes with different ligands.	1
1	c)Complexes in which a metal is bound to more than one kind of ligands / donor groups	1

20.	ÓН	1
	$\begin{vmatrix} & & & \\ & & & \\ a) & i \end{vmatrix} + Zn \longrightarrow \bigcirc$	
	i)B2H6	
	$CH_3-CH=CH_2 \xrightarrow{1/B_2H_0} CH_3CH_2CH_2OH$	
	ii) NaOH, H2O2	1
	ii)	
	(or any other suitable method) b) Because –NO ₂ is an electron withdrawing group and stabilises the conjugate base.	1
21	$\frac{NH_2}{Br}$	
		1+ 1
	a) A = / Aniline , B = Br / 2,4,6-Tribromoaniline	
	b) Because of hydrogen bonding in ethylamine whereas it is hindered by the bulky phenyl group in aniline.	1
22	a) Antiseptics – chemicals applied on living tissues to prevent the growth of	1/2 + 1/2
	microorganisms while disinfectants are applied on non-living tissues. Example: Antispetic-	1/2 + 1/2
	Dettol, Disinfectants- 1% phenol (or any other suitable example) b) It is needed by diabetic persons as it is excreated from the body in urine unchanged.	1
	Reduces calories intake	
22	OR	1
22	i) Chemical compounds used for the treatment of stress and mental diseases.ii) Chemical compounds which stop overproduction of acid in stomach.	1
	iii) Chemical compounds which reduce or abolish pain without disturbing nervous system.	1
23	C1	1/2,1/2
	CH ₂ =C-CH=CH ₂	
	Chloroprene	1/ 1/
	a) b) C ₆ H ₅ OH + HCHO , phenol and formaldehyde	½,½ ½,½
	c) CH ₂ =CH-Cl , vinyl chloride	, ,
24	a) i) CHO	
	$(CHOH)_4$ $\xrightarrow{HI, \Delta}$ $CH_3-CH_2-CH_2-CH_2-CH_3$	1
	CH-OH	
	or n-Hexane is formed ii)	
	СНО СООН	
	$(CHOH)_4 \longrightarrow (CHOH)_4$	
	CH ₂ OH COOH	1
	or Saccharic acid is formed	
	b) Starch is a polymer of α -glucose while cellulose is a polymer of β -glucose.	1
25	SECTION D	1
25	a) Compound = Benzaldehyde or C ₆ H ₅ CHO	1

	Reaction	
	Reaction with 2,4-DNP	
	H $C = O + H_2 + NNH$ NO_2	<i>Y</i> ₂
	With Tollens reagent	
	RCHO + $2[Ag(NH_3)_2]^+$ + $3 \text{ OH} \longrightarrow RCOO + 2Ag + 2H_2O + 4NH_3$ (Where R= -C ₆ H ₅)	1/2
	2 CHO + Conc. NaOH \longrightarrow CH ₂ OH + COONa	1
	b) i)Add neutral FeCl ₃ to both the compounds, phenol will give violet colour]	1
	ii) Add NaHCO ₃ to both the compounds, benzoic acid acid will give brisk effervescence of CO ₂	1
	OR	
25	a) A= CH ₃ COOH	1
	B= CH ₃ COCl	1
	C= CH ₃ CONH ₂	1
	D= CH ₃ NH ₂	1
26	b) HCOOH < CICH ₂ COOH < CCI ₃ COOH < CF ₃ COOH	1
20	a) $\Delta T_f = T_f^{\circ} - T_f = 273.15 - 271 \text{ K} = 2.15 \text{ K}$	
	AT - 1/ m	1/2
	$\Delta T_f = K_f m$ $w_b \times 1000$	
	$\Delta T_{f} = K_{f} \times \frac{w_b \times 1000}{M_B \times w_A}$	
	0.45% 0.40 1=1 05	
	$K_{f} = \frac{2.15K \times 342 \ g \ mol^{-1} \times 95 \ g}{5g \times 1000 \ g \ Kg^{-1}}$	1/2
	$= 13.97 \text{ K kg mol}^{-1}$	
	10.57 K Kg 11101	1/2
	For 5% glucose in water,	
	$\Delta T_f = K_f m$	
	$\Delta T_{\rm f} = K_{\rm f} \times \frac{w_b \times 1000}{M_B \times w_A}$	
	$M_B \times W_A$	
	13.97 K Kg mol $^{-1}$ ×5g ×1000 g K $^{-1}$	1
	$= \frac{13.97 \ K \ Kg \ mol^{-1} \times 5g \times 1000 \ g \ K^{-1}}{180 \ g \ mol^{-1} \times 95 \ g}$	
	= 4.08K	
	$T_f = T_f^o - \Delta T_f = 273.15 - 4.08 \text{ K} = 269.07 \text{ K}$	1/2
	b) It is due to the fact that KCl dissociates to give K ⁺ and Cl ⁻ ions whereas urea does not dissociate	

	into ions	1
	c) Liquids having similar nature and polarities / which obey Raoults' law	1
	OR	
26		
	$\Delta T_f = K_f m$	
	$\Delta T_{f} = K_{f} \times \frac{w_{b} \times 1000}{M_{B} \times w_{A}}$	1
	$M_B \times W_A$	
	$M = K \times \frac{w_b \times 1000}{}$	
	$M_b = K_f \times \frac{w_b \times 1000}{\Delta T_f \times w_A}$	1
	$= 5.12 \times \frac{1 \times 1000}{0.40 \times 50}$	
	0.40×50	
	= 256 g mol ⁻¹	1
	b) Higher the value of K _H , lower will be the solubility of a gas in the liquid.	1
	c) Low level of oxygen in the blood and tissues of people at high altitudes leads to	1
	the condition of anoxia.	
27	A= S ₈ / Sulphur	1
	$S_8 + 8 O_2 \rightarrow 8SO_2 / S + O_2 \rightarrow SO_2$	1/2
	B= SO ₂	1
	$Ca(OH)_2 (aq) + SO_2 (g) \rightarrow CaSO_3 (s) + H_2O$	1/2
	(milky) Decolourises KMnO ₄	
	$2KMnO_4 + 5SO_2 + 2H_2O \rightarrow 2H_2SO_4 + 2MnSO_4 + K_2SO_4 / 2MnO_4^- + 5SO_2 + 2H_2O \rightarrow 4H^+ +$	1
	$2Mn^{2+} + 5SO_4^{2-}$	
	Reduces Fe ³⁺ to Fe ²⁺	
	$2Fe^{3+} + SO_2 + 2 H_2O \rightarrow 2 Fe^{2+} + SO_4^{2-} + 4H^+$	1
	OR NATIONAL DESCRIPTION OF THE PROPERTY OF THE	
27	a) H ₂ Te > H ₂ Se > H ₂ S > H ₂ O	1 // 1/
	b) PCl ₄ ⁻ , as phosphorous has 10 e ⁻ which cannot be accommodated in sp ³ orbitals. c) Rhombic sulphur	½,½ 1
	d) H ₃ PO ₄	1
	e) PCl ₃ hydrolyses in presence of moisture to give fumes of HCl / PCl ₃ + $3H_2O \rightarrow H_3PO_3 + 3HCl$	1