Strictly Confidential: (For Internal and Restricted use only) Senior School Certificate Examination Compartment July 2019 Marking Scheme PHYSICS (SUBJECT CODE 042) ns: - (PAPER CODE – 55/1/2)

General Instructions: -

- You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. Evaluation is a 10-12 days mission for all of us. Hence, it is necessary that you put in your best efforts in this process.
- 2. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them.
- 3. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 4. Evaluators will mark($\sqrt{}$) wherever answer is correct. For wrong answer 'X" be marked. Evaluators will not put right kind of mark while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- 5. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- 6. If a question does not have any parts, marks must be awarded in the left hand margin and encircled. This may also be followed strictly
- 7. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
- 8. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- 9. A full scale of marks 0-70 has to be used. Please do not hesitate to award full marks if the answer deserves it.
- 10. Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 20 / 25 answer books per day.
- 11. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
 - Leaving answer or part thereof unassessed in an answer book.
 - Giving more marks for an answer than assigned to it.
 - Wrong transfer of marks from the inside pages of the answer book to the title page.
 - Wrong question wise totaling on the title page.
 - Wrong totaling of marks of the two columns on the title page.
 - Wrong grand total.
 - Marks in words and figures not tallying.
 - Wrong transfer of marks from the answer book to online award list.
 - Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
 - Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

- 12. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as (X) and awarded zero (0)Marks.
- 13. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
- 14. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
- 15. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
- 16. The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

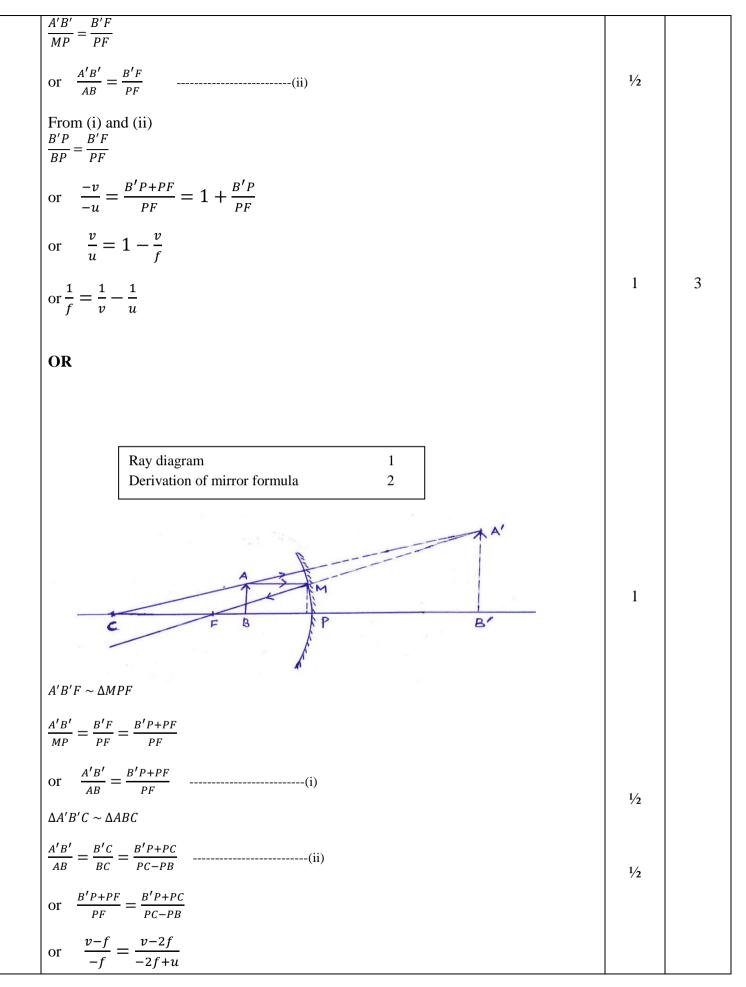
MARKING SCHEME (COMPARTMENT) 2019

SET: 55/1/2

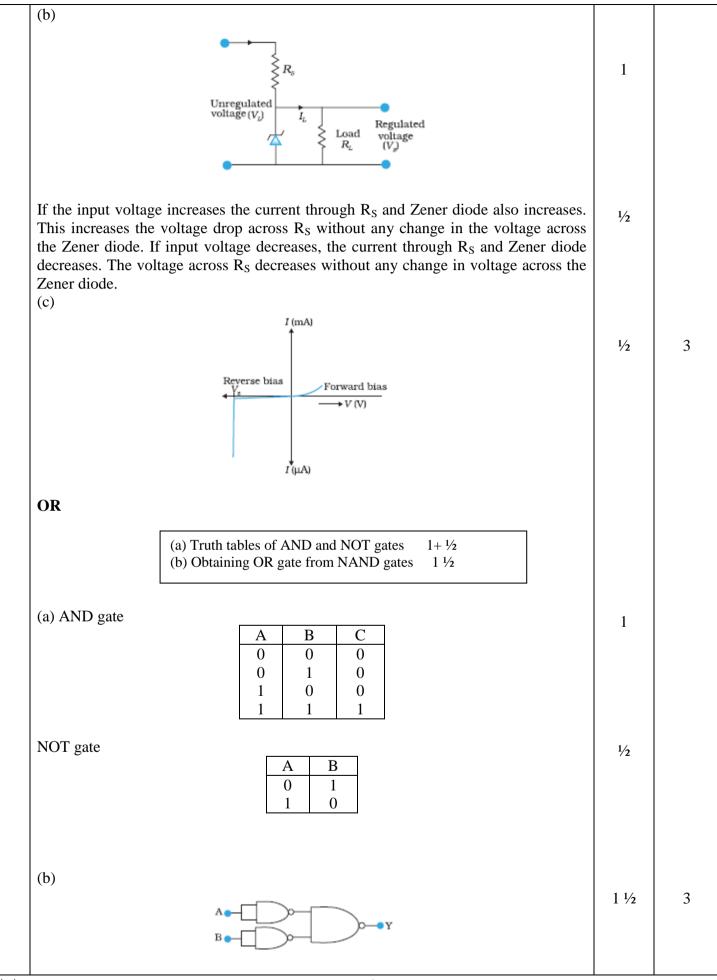
	SE1: 55/1/2		
Q. NO.	VALUE POINTS/ EXPECTED ANSWERS	MARKS	TOTAL
	SECTION - A		MARKS
1.	H=B _E CosΘ		
1.	II-DEC030		
	[Alternatively $\Theta = \cos^{-1}(H/B_E)$]		
	H= horizontal component of earth's magnetic field $(=B_E)$		
	Θ = angle of dip.	1	1
	[Note: Award this 1 mark even if the student just writes the relation between H, B_E		
	and Θ without explaining the meanings of the symbols]		
2.	Heavy nuclei contain a large number of protons which exert strong repulsive forces		
	on one another.		
	[Alternatively :		1
	Because of strong repulsive forces between the large number of protons in them]	1	1
3.	Frequency range of the spectrum occupied by the signal.		
	Alternatively		
	Difference between the maximum and minimum frequencies considered essential for	1	1
	a given message signal	1	1
	Alternatively		
	Band width= v_{max} - v_{min}		
4.	Long Radio waves ; In communication systems	$\frac{1}{2} + \frac{1}{2}$	
	OR 16 21		
	X-rays ; nearly 10^{16} Hz to 10^{21} Hz	$\frac{1}{2} + \frac{1}{2}$	1
5.	Frequency of photon $v=E/h$	1/2	
	$=\frac{2eV}{6.63 \times 10^{-34} Js}$		
	$=\frac{2\times1.6\times10^{-19}}{6.63\times10^{-34}}Hz$		
	$=\frac{1}{6.63 \times 10^{-34}}HZ$	1/2	1
	$= 4.8 \times 10^{14} \text{Hz}$		
	[Award the last $\frac{1}{2}$ mark even if the student just makes a correct substitution but does not calculate the value of v]		
	not calculate the value of vj		
	OR		
		1/	1
	(i) Yes	$\frac{1/2}{1/2}$	
	(ii) The photo electric current is dependent on the intensity of incident radiation	72	
	Because the change of intensity changes the number of photons incident per second		
	on the photosensitive surface. SECTION - B		
6.	SECTION - D		
	Diagram ¹ / ₂		
	Electric field due to point charges $\frac{1}{2}$		
	Net electric field 1		

$\begin{array}{c} & & & \\ & &$	1/2	
$E_{+q} = \frac{1}{4\pi\epsilon_0} \frac{q}{(r^2 + a^2)}$ $E_{-q} = \frac{1}{4\pi\epsilon_0} \frac{q}{(r^2 + a^2)}$ $E = E_{+q} \cos\theta + E_{-q} \cos\theta$	1/2	
$= 2E_{+q}\cos\theta$ $= \frac{2qa}{4\pi\epsilon_0(r^2 + a^2)^{3/2}}$	1/2 1/2	2
ORDiagram1/2Expression for torque1/2Expression for P.E.1/2Minimum value of P.E.1/2		
$ \begin{array}{c} $	1/2	
Torque $\tau = pEsin\theta$ $P.E. = W = \int_{\theta_0}^{\theta} pE sin\theta \ d\theta$	1/2	
$= -pE (\cos\theta - \cos\theta_0)$ $= -pE \cos\theta (\text{for } \theta_0 = \pi/2)$	1/2	
.:. Minimum value of P.E. = - p E [Note: Award the last $\frac{1}{2}$ mark even if the student quotes zero (0) as the minimum value of P.E. which corresponds to the choice $\theta_0 = 0$ (or writes that this cannot be precisely specified as it depends on the choice of θ_0)]		2

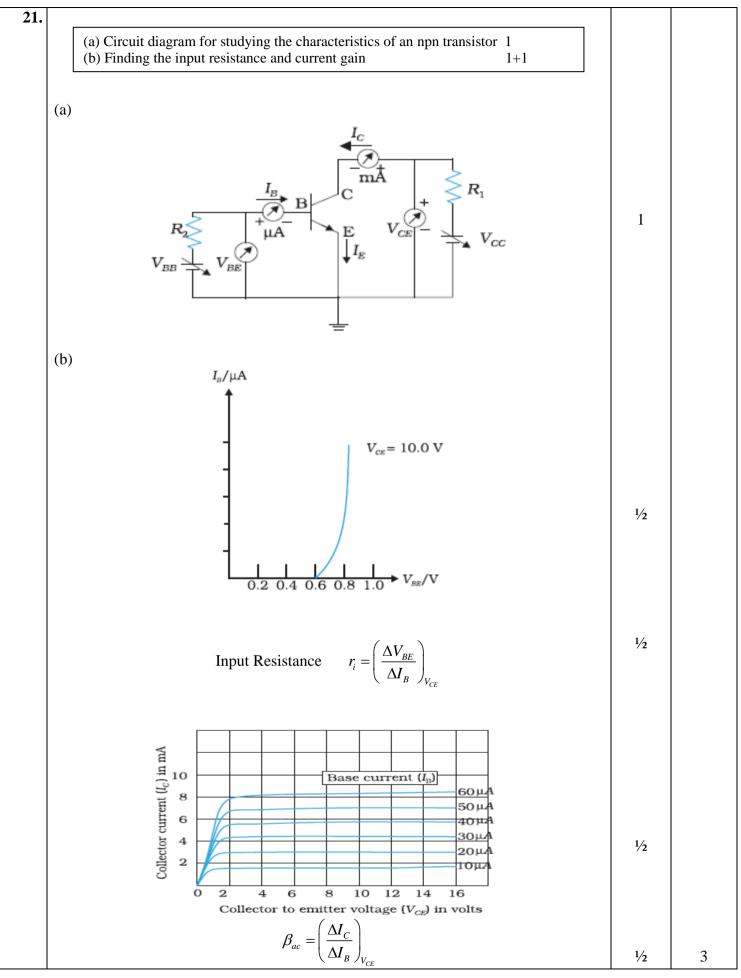

_			
7.	Diagram ½ Formula for flux ½ Calculation of Net outward flux 1	1/2	
	$x = -i5 cm$ $x = +45 cm$ Flux = $\int \vec{E} \cdot \vec{ds}$	1⁄2	
	[Alternatively Net outward flux = $[200 \times \pi \times (\frac{5}{100})^2 + 200 \times \pi \times (\frac{5}{100})^2]$ = $\pi \operatorname{Nm}^2 \operatorname{C}^{-1} (\cong 3.142 \operatorname{Nm}^2 \operatorname{C}^{-1})$	1/2 1/2	2
	[Note: Award full 2 marks even if the students does a direct (correct) calculation of the net outward flux without drawing the diagram or writing the formula for flux. In such a case, award 1 mark for correct substitutions and 1 mark for correct calculations. (Deduct ¹ / ₂ mark if the units for flux are not written)]		
8.	Estimation of wavelength in terms of radius of orbit1Ratio of wavelengths in the two orbits1 $2\pi r_n = n\lambda_n$ and $r_n = a_0 n^2$ \therefore $\lambda_n = 2\pi a_0 n$ and $\frac{\lambda_2}{\lambda_3} = \frac{2}{3}$	1/2 1/2 1/2 1/2	2
9.	Explaining (any) two reasons $1+1$ The message signal needs to be modulated (using a high frequency carrier wave) before transmission in a communication system because of the following reasons:(i)We need an antenna of size of the order of $\lambda/4$; λ is very large for the usual low frequency message signals.[AlternativelyThe size of the transmission antenna would be unmanageably large for the (usual) low frequency message signals](ii)The power radiated from a linear antenna of length l is proportional to $(l'_{\lambda})^2$; it is therefore quite low for the (usual) large values of λ for message signals.(iii)It is very difficult to avoid mixing up of signals from different transmitters if transmission is done at the (usual) low values of frequencies of ordinary message signals.(Any two reasons)	1+1	2


10.			
	(a) Effect + Reason $\frac{1}{2} + \frac{1}{2}$		
	(b) Effect + Reason $\frac{1}{2} + \frac{1}{2}$		
	(a) $I = \frac{V}{\sqrt{R^2 + \omega^2 L^2}}$	1/2	
	When ω increases, I decreases, \therefore brightness decreases	, 2	
		1/2	
	(b) $I = \frac{V}{\sqrt{R^2 + \frac{1}{\omega^2 c^2}}}$	1/2	
		/2	
	When ω increases, I increases, \therefore brightness increases	1/2	
	<u>Alternatively:</u> (a) Brightness decreases	1/2	
	Reason: The impedance of L increases with an increase in angular frequency ω	1⁄2	
	(b) Brightness increases Reason: The impedance of C decreases with an increase in angular frequency ω	1/2 1/2	2
11.			
	(a) Graph of em wave1(b) (i) Relation between c, E_0 and B_0 $\frac{1}{2}$ (ii) Expression for speed of em wave $\frac{1}{2}$		
	(a) x		
	y	1	
	(b) (i) $c = \frac{E_0}{B_0}$	1/2	
	(i) $c = \frac{1}{B_0}$ (ii) $c = \frac{1}{\sqrt{\epsilon_0 \mu_0}}$	1/2	2
12.			
	Formula for Induced Emf1Calculation of Induced Emf1		
		1	
	$E = \frac{1}{2}B\omega r^{2}$ $= \left[\frac{1}{2} \times 8 \times 10^{-5} \times 4\pi \times (0.5)^{2}\right] V$	1/2	
		72	2
	$= 12.56 \times 10^{-5} V$	1⁄2	2
	OR		

	Formula for Induced Emf1Calculation of Induced Emf1		
	$\varepsilon = \frac{-d\phi}{dt}$	1⁄2	
	$= -A \frac{dB}{dt}$	1⁄2	
	$= -A\frac{dB}{dx} \times \frac{dx}{dt} = -Av\frac{dB}{dx}$	1⁄2	
	$= -[(0.1)^2 \times (-8 \times 10^{-3})]V$	1/2	2
	$= 8 \times 10^{-5} V$, 2	2
	SECTION - C		
13.	(a) Reason for circular motion1Expression for radius1(b) Path of the particle when $\Theta \neq 90^0$ 1		
	(a) $\vec{F} = q(\vec{v} \times \vec{B})$	1⁄2	
	Force \vec{F} on a moving charged particle in a magnetic field acts perpendicular to the velocity vector at all instants. It therefore, changes only the direction of velocity without changing its magnitude. This results in a circular motion of the particle for	17	
	which the force \vec{F} provides the needed centripetal force $\left(=\frac{mv^2}{r}\right)$	1/2	
	Here F=qvB sin Θ = qvB (as $\Theta = \pi/2$)		
	$\therefore \frac{mv^2}{r} = qvB$	1⁄2	
	$\therefore r = \frac{mv}{qB}$ (b) If $\Theta \neq 90^{\circ}$, then velocity will have a component along \vec{B} also and the charged	1⁄2	
	particle will move along \vec{B} with this component of velocity while describing circular motion in a plane perpendicular to \vec{B} . Its motion is, therefore, helical.	1	3
	[Note: Award this 1 mark even if a student just writes that the charged particle will describe a helical path / motion.]		
	OR		
	Diagram1Working Principle1Two uses $\frac{1}{2} + \frac{1}{2}$		
ГГ /1 / 2			

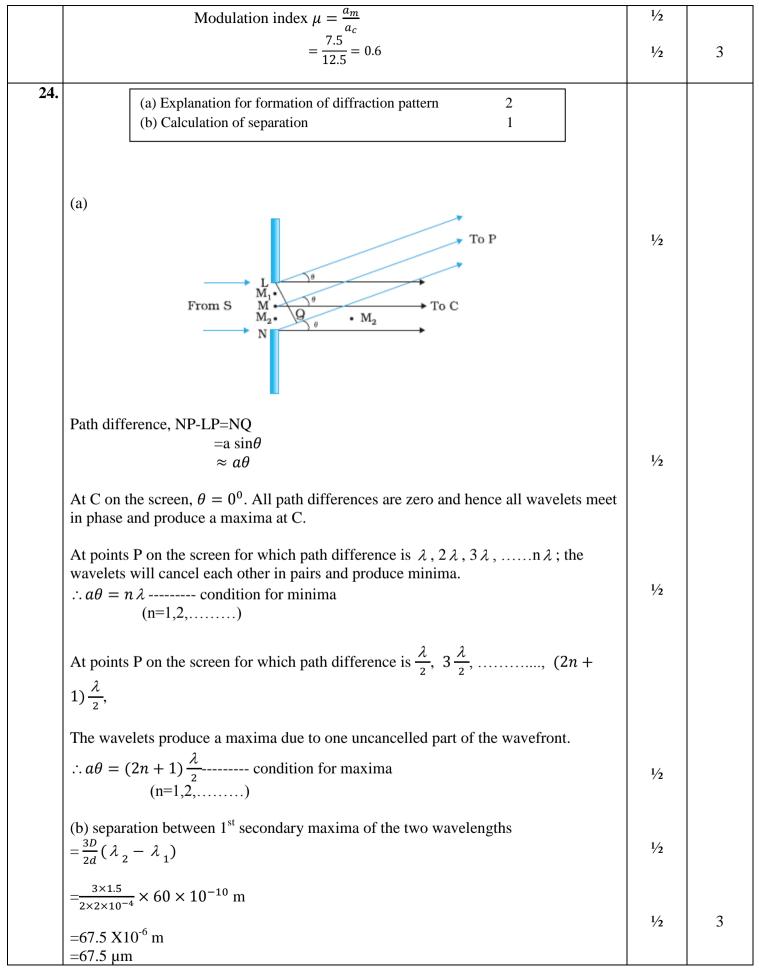

	Magnetic field out of the paper D, OSCILLAT	Deflection plate Exit Port Charged particle D ₃		1	
field makes the charged pris so adjusted as to acceled dees. A relatively small e high energy values. Uses: (i) To accelerate cha (ii) To implant ions [or any other use]	article describe a c rate the particle w lectric field can th arged particles to v	• •	field frequency ce between the	1 1/2 1/2	3
 (b) Reason for ext (c) Two important (a) The colour band seque (Note: Award ½ mark if or given sequence) (b) (i) Compact in size (ii) inexpensive (c) We need to (i) ensure that the jockey if point. (ii) select the standard know the middle of the bridge w (iii) make all connections 	precautions in a m nce would be oran nly two of the colo s not 'dragged' ov own resistance in s rire. in a neat compact	n resistors in electric circuits neter bridge experiment age, blue, yellow, gold ours are correctly indicated yer the wire while locating t	the balance point is near	1 1/2 1/2	
(Any two; also accept any 15. (a) Drift Veloci Relaxation time (b) Change in d (a) <u>Drift Velocity:</u> It is the a	ty and its significance and its significance rift velocity verage velocity w	ce $\frac{1}{2}$ -	1 in a conductor	¹ / ₂ + ¹ / ₂	3

		1
conductor.		
Significance: The drift velocity controls the net current flowing across any cross		
section./ There is no net transport of charges across any area perpendicular to the	1⁄2	
applied field.		
Relaxation time: It is the average time between successive collisions for the drifting	1⁄2	
electrons in the conductor.		
Significance: It is a (very important) factor in determining the electrical conductivity	1/2	
of a conductor at different temperatures. (It is a factor which determines the drift	, _	
velocity acquired by the electrons under a given applied external electric field)		
(b)		
$v_d = \frac{eV}{mL} \tau$		
$v_d = mL$	1⁄2	
$ u_{d'} = rac{eV}{m imes 5L} au$		
$u m \times 5L^{-1}$		
$=\frac{\nu_d}{5}$	• /	
5	1/2	
OR		
Diagram		
Diagram1/2Expression for equivalent emf and internal resistance2 1/2		
$A I B_1 F_1 F_2 F_2 F_2 F_2 F_2 F_2 F_2 F_2 F_2 F_2$		
$I_2 \xrightarrow{r_2} I_2$	• /	
$\equiv A \xrightarrow{\epsilon_{q}} I \xrightarrow{\epsilon_{q}} I \xrightarrow{\epsilon_{q}} I \xrightarrow{\epsilon_{q}} I$	1/2	
$I = I_1 + I_2$		
	1/2	
$=\left(\frac{E_1-V}{r_1}\right)+\left(\frac{E_2-V}{r_2}\right)$	/2	
	1 /	
$=\left(\frac{E_1}{r_1}+\frac{E_2}{r_2}\right)-V\left(\frac{1}{r_1}+\frac{1}{r_2}\right)$	1/2	
$(r_1 r_2) (r_1 r_2)$		
	1/2	
Hence $V = \left[\frac{E_1 r_2 + E_2 r_1}{1 - I\left(\frac{r_1 r_2}{1 - 1}\right)}\right]$	72	
Hence $V = \left[\frac{E_1 r_2 + E_2 r_1}{r_1 r_2}\right] - I\left(\frac{r_1 r_2}{r_1 + r_2}\right)$	72	
	1/2	
Hence $V = \left[\frac{E_1 r_2 + E_2 r_1}{r_1 r_2}\right] - I\left(\frac{r_1 r_2}{r_1 + r_2}\right)$ $\therefore E_{eff} = \frac{E_1 r_2 + E_2 r_1}{r_1 r_2}$		
$\therefore E_{eff} = \frac{E_1 r_2 + E_2 r_1}{r_1 r_2}$	1⁄2	



	Cross multiply and divide by uvf :		
	$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$	1	3
18.			
10.	Labeled Diagram 1		
	Working ½		
	Limitations ½		
	How the limitations are overcome in a reflecting telescope 1		
	Objective $f_{\overline{o}}$ Eyepiece $H = f_{\overline{e}}$ ar 0 $B' = hA'A'$	1	
	<u>Working</u> The objective forms a real image of a distant object at its second focal point. The eyepiece magnifies this image producing a final inverted image.	1⁄2	
	<u>Limitations</u> It needs large sized lenses which are expensive and very heavy, difficult to make and tend to have chromatic and spherical aberrations and distortions (Award this ¹ / ₂ mark if the student writes any one of these limitations)	1⁄2	
	(Award this 72 mark if the student writes any one of these minitations)		
	Reflecting telescopesReflecting telescopes can overcome these limitations because the mirrors used in them(i) are free from chromatic aberration and can have very little spherical aberration. (ii) are less heavy and easier to support.	1/2 + 1/2	3
19.	(ii) are less neavy and easier to support.		
	(a) Name and Principle of the device $\frac{1}{2} + \frac{1}{2}$ (b) Circuit diagram1Working $\frac{1}{2}$ (c) I- V characteristics $\frac{1}{2}$		
	(a) Zener diode is used as a voltage regulator It works on the principle that after the breakdown voltage V_Z , a large change in the reverse current can be produced by an almost insignificant change in the reverse bias	1⁄2	
	voltage <u>Alternatively:</u> The Zener Voltage remains constant, even when the current through the Zener diode varies over a wide range.	1⁄2	

Page **13** of **26**


[Note: Award ½ mark drawing any diagram]	t if the student just writes the truth table of NAND gate without		1
20.			
	(a) Each of the two definitions 1 + 1 (b) Graph 1		
	requency (for a given photosensitive surface), is the minimum lent radiation that can cause photoemission (from that surface)		
Alternatively			
	$requency = \frac{work \ function \ (for \ the \ given \ surface)}{h}$		
(for a given photosens	sitive surface)		
frequency of incident	ency (for a given photosensitive surface) is that value of the radiation for which the photoelectrons just get emitted from the ctically) zero kinetic energy.	1	
	of the (negative) potential difference between the cathode and e most energetic photoelectrons (getting emitted in a given set		
Alternatively Stopping Potential V_0 v = frequency of inci W= work function of			
[Note: Award this 1 n explaining the symbol	nark even if the student just writes the formula without ls]	1	
<u>Alternatively</u> Stopping Potential V where $v =$ frequency $v_0 =$ threshold frequency			
	nark even if the student just writes the formula without		
(b) The required graph	h is shown below		
	Stopping Potentiae (V) d Frequency of incident Vadiations (D) ->	1	3

55/1/2

Page 15 of 26

22.			
	(a) Highest energy level to which atom will be excited 1		
	(b) Calculation of longest Lyman wavelength 1		
	(c) Calculation of longest Balmer wavelength 1		
	(a) Maximum Energy that the excited hydrogen atom can have is E=-13.6eV + 12.5eV=-1.1 eV		
	Now $E_3 = \frac{-13.6}{3^2} eV = -1.5 eV$ (< (-1.1 eV))	1⁄2	
	$E_4 = \frac{-13.6}{4^2} eV = -0.85 eV (> (-1.1 eV))$		
	It follows that the electron can only be excited up to the n=3 state.		
	It follows that the election can only be excited up to the h-s state.	1⁄2	
	(b) Longest wavelength of Lyman series:		
	$\frac{1}{\lambda_L} = R \left[\frac{1}{1^2} - \frac{1}{2^2} \right] = R \cdot \frac{3}{4}$	1⁄2	
	$\therefore \lambda_L = \frac{4}{3} \times \frac{1}{R}$ $= \frac{4}{3 \times 1.1 \times 10^7} m \cong 1218 A^0$		
	$=\frac{4}{3 \times 1.1 \times 10^7} m \cong 1218 A^0$	1⁄2	
	Longest wavelength of Balmer series: $\frac{1}{\lambda_B} = R \left[\frac{1}{2^2} - \frac{1}{3^2} \right]$	1/2	
	$\lambda_B = \left(\frac{36}{5 \times 1.1 \times 10^7}\right) m \approx 6560 A^0$	72	
	$\lambda_B = \left(\frac{36}{5 \times 1.1 \times 10^7}\right) m \approx 6560 A^0$	1/2	3
23.	(a) Explanation of amplitude modulation1 ½(b) Calculation of modulation index1 ½		
	دده م ¹ ۲۰۰۰ (۱۹۹۰) ۲۰۰۰ (۱۹۹۰) ۲۰۰۰ (۱۹۹۰) ۲۰۰۰ (۱۹۹۰) ۲۰۰۰ (۱۹۹۰) ۲۰۰۰ (۱۹۹۰) ۲۰۰۰ (۱۹۹۰)	1⁄2	
	m(t) 0	1/2	
		/ -	
	c_(t) for AM 0	1⁄2	
	$-\frac{20}{100} \frac{1}{100} $		
	[Note: Award 1 mark here if the student just draws the diagram of the amplitude, modulated wave without drawing the 'carrier wave' and the 'message signal'		
	diagrams]		
	$a_m + a_c = 20 V$		
	$a_c - a_m = 5 V$	17	
	$=>a_{c}=12.5 V$	1/2	
	$a_m = 12.5 V$		

SECTION - D	
(a) Derivation of the expression for the average power3(b) Definition of terms (i) watt less current (ii) Quality factor1 + 1	
a) Power at any instant 't'	
P=Vi	
$= (V_m \sin wt)(i_m \sin(wt + \varphi))$	1/2
$=\frac{V_m i_m}{2} (2\sin wt \sin(wt + \varphi))$	1⁄2
$=\frac{V_m i_m}{2} \left[\cos\varphi - \cos(2wt + \varphi)\right]$	14
The term $\cos(2wt + \varphi)$ is time dependent and its average over a cycle is zero.	$\frac{1/2}{1/2}$
Therefore average power	/2
Vmim	1/2
$\bar{P}_{P} = \frac{V_{m}i_{m}}{2}cos\varphi$	/2
Vmim	
$\bar{P} = \frac{V_m i_m}{\sqrt{2}\sqrt{2}} cos \varphi$	
- 17	1/
$\bar{P} = V_{rms} i_{rms} cos \varphi$	1⁄2
(b) (i) When no power is dissipated even through a current is flowing in the circuit, the current is then called a wattles current.	
<u>Alternatively</u> The net power dissipation in a circuit containing an ideal inductor or a capacitor is	1
zero. Therefore, the associated current is wattless current.	1
(ii) O factor of LCD circuit is defined as the ratio of its resonant engular frequency	
(ii) Q factor of LCR circuit is defined as the ratio of its resonant angular frequency (ω_0) to the band width $(2\Delta\omega)$ of the circuit.	
$Q = \frac{\omega_0}{2\Delta\omega}$	
$Q = \frac{\omega_0}{2\Delta\omega}$	
$Q = \frac{\omega_0}{2\Delta\omega}$	
$Q = \frac{\omega_0}{2\Delta\omega}$ $Q = \frac{\omega_0 L}{R}$	
$Q = \frac{\omega_0}{2\Delta\omega}$ $Q = \frac{\omega_0 L}{R}$ Alternatively	
$Q = \frac{\omega_0}{2\Delta\omega}$ Alternatively $Q = \frac{\omega_0 L}{R}$ Alternatively Quantity factor is the ratio of rms voltage drop across inductor or the capacitor, in resonance condition, to the rms voltage applied to the circuit.	
$Q = \frac{\omega_0}{2\Delta\omega}$ Alternatively $Q = \frac{\omega_0 L}{R}$ Alternatively Quantity factor is the ratio of rms voltage drop across inductor or the capacitor, in resonance condition, to the rms voltage applied to the circuit.	
$Q = \frac{\omega_0}{2\Delta\omega}$ Alternatively $Q = \frac{\omega_0 L}{R}$ Alternatively Quantity factor is the ratio of rms voltage drop across inductor or the capacitor, in	

Alternatively

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

OR

(a) Statement of Faraday's Laws	1
(b) Derivation of the expression for the emf induced across the en	nds of a
straight conductor	2
(c) Derivation of Magnetic energy stored	2

(a) (i) Whenever there is a change in magnetic flux linked with a coil, an emf is induced in the coil, however it lasts so long as magnetic flux keeps on changing.

(ii) The magnitude of the induced emf is equal to the rate of change of magnetic flux through the circuit

Alternatively

 $\varepsilon = \frac{-d\phi}{dt}$

(b)

x	x	×	× I	×	x	×	ľ	x	
								x	М
×	× × ×	×	×	×	×	x	×	×	
x	Í×	×	×	x	×	x	×	×	
x	↓×	×	×.,	×	×	×	9	×	Ν
×	×F	×	x	×	×	×	U ×	×	

Straight conductor PQ of length 'l' is moving with velocity 'v' in uniform magnetic field B, which is perpendicular to the plane of the system.

Length RQ=x, RS=PQ=l

Instantaneous flux= (normal) field \times area The magnetic flux (ϕ_B) enclosed by the loop PQRS,

 $\therefore \ \phi_B{=}Blx$

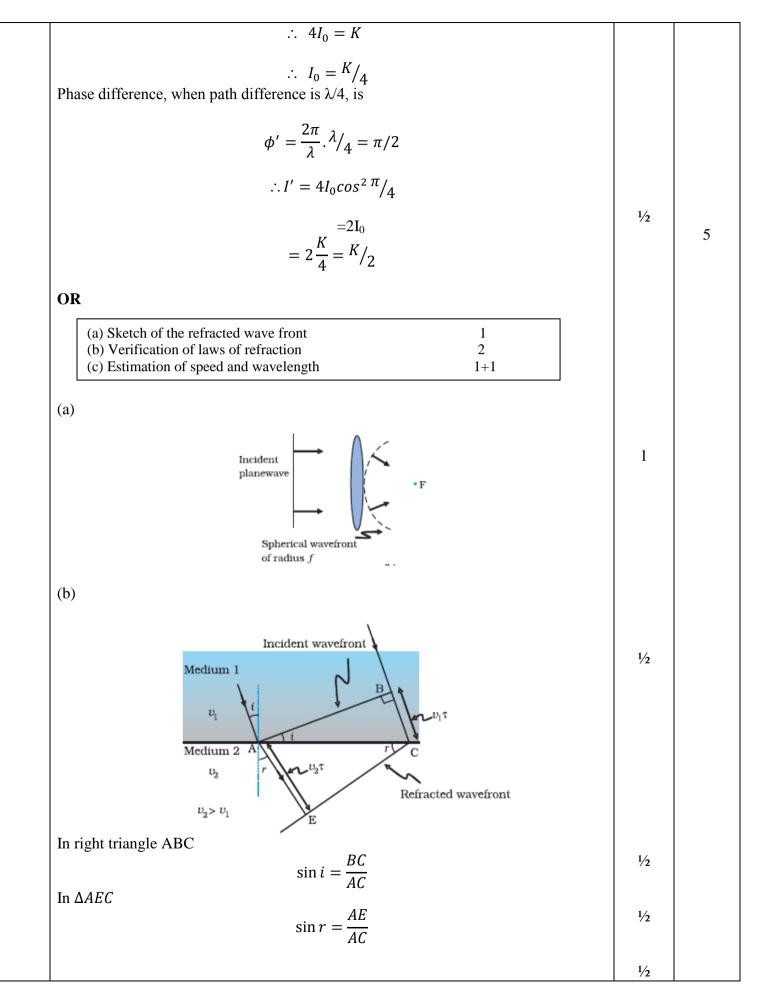
Since 'x' is changing with time, there is a change of magnetic flux. The rate of change of this magnetic flux determines the induced emf

$$\therefore e = \frac{-d\phi}{dt} = \frac{-d}{dt} (Blx)$$
$$= -Bl \frac{dx}{dt}$$

5

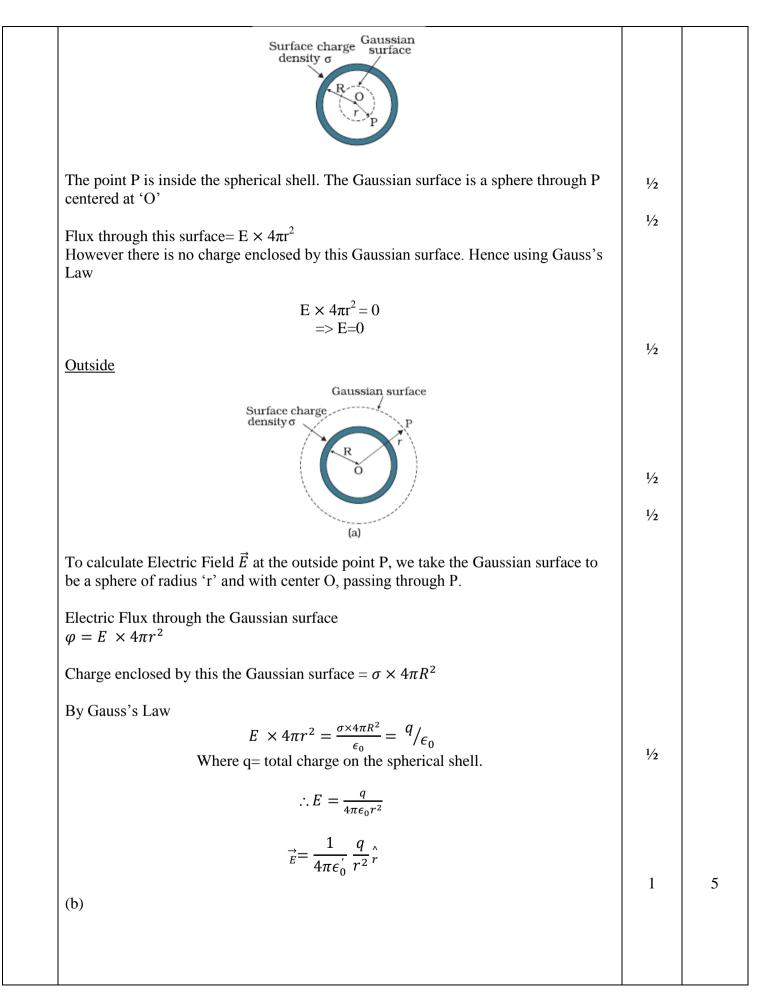
1

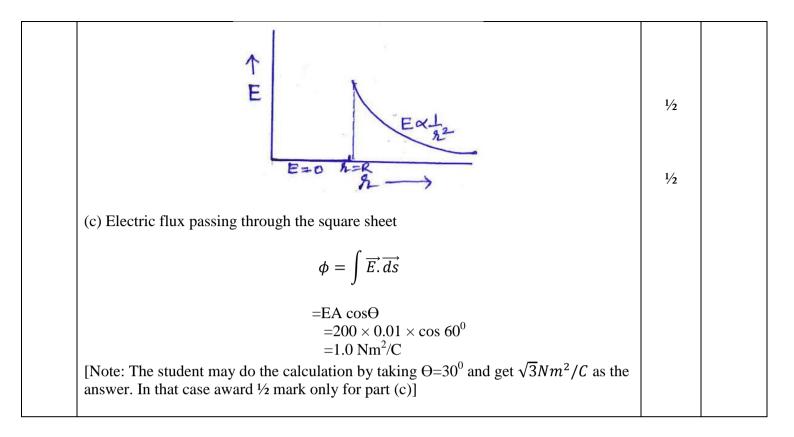
1


 $1/_{2}$

1⁄2

1⁄2


	. ار م	1/	
	$e = Blv_{dx}$	1/2	
	as $\frac{dx}{dt} = -v$		
	(c) Work done (that gets stored as the magnetic potential energy) when current 'I' flows in the solenoid. $dW = (e)(Idt)$ $\therefore dW = \left(L\frac{dI}{dt}\right) . (Idt)$	1⁄2	
	$\therefore dW = LIdI$		
	Total work done $W = \int dW = \int LI dI$		
	$W = \frac{1}{2}L I^2$	1/2	
	For the solenoid, we have $L = \mu_0 n^2 A l$ and $B = \mu_0 n l$	1⁄2	
	$\therefore W = \frac{1}{2} (\mu_0 n^2 A l) [\frac{B}{\mu_0 n}]^2$		
	$=\frac{B^2Al}{2\mu_0}$	1⁄2	5
26.			
	(a) Answer and justification $\frac{1}{2} + \frac{1}{2}$ (b) Explanation of the formation of interference fringes and derivation of expression of fringe width $1 + 2$ (c) Finding the intensity of light1		
	(a) No,	1/2	
	Because to obtain the steady interference pattern, the phase difference between the waves should remain constant with time, two independent monochromatic light sources cannot produce such light waves.	1⁄2	
	(b) When light waves from two coherent sources, in Young's double slit experiment, superpose at a point on the screen, they produce constructive/ destructive interference, depending on the path difference between the two waves.	1	
	G = G = G = G $G = G$	1⁄2	


Path difference between the waves reaching at point P from two sources S_1 and S_2		
$S_2P - S_1P \approx \frac{xd}{D}$	1⁄2	
For constructive interference (i.e for nth bright fringe on the screen)		
$\frac{xd}{D} = n\lambda \qquad \text{where } n = 0, \pm 1, \pm 2, \dots \dots$		
$\therefore x_n = \frac{n\lambda D}{d}$ Similarly for (n+1) th bright fringe	1/2	
$x_{n+1} = \frac{(n+1)\lambda D}{d}$ Fringe width $\beta = x_{n+1} - x_n$ $= \frac{\lambda D}{d}$	1/2	
[Alternatively		
Path difference for n th dark fringe on the screen		
$\frac{xd}{D} = (n + \frac{1}{2})\lambda$		
$x_n = \frac{(n + \frac{1}{2})\lambda D}{d}$ For (n+1) th dark fringe		
$x_{n+1} = \frac{(n+\frac{3}{2})\lambda D}{d}$		
Fringe width $\beta = x_{n+1} - x_n$		
$=\frac{\lambda D}{d}$]		
(c) The intensity at a point on the screen where waves meet with a phase difference (ϕ) , is given by		
$I = 4I_0 \cos^2 \phi / 2$	1⁄2	
Phase difference (φ) when path difference is 'x'		
$\phi = \frac{2\pi}{\lambda} \cdot x$		
\therefore for x= λ , we have		
$\phi = 2\pi$ $\therefore \text{ Intensity } I = 4I_0 \cos^2 \pi = K$		

	$\frac{\sin i}{\sin r} = \frac{BC}{AE} = \frac{v_1\tau}{v_2\tau} = \frac{v_1}{v_2} = \mu$		
	(c) Speed of yellow light inside the glass slab	1/2	
	$\nu = \frac{c}{\mu}$ $= \frac{3 \times 10^8}{1.5} m/s$	1⁄2	
	$= 2 \times 10^8 m/s$		
	Wavelength of yellow light inside the glass slab $\lambda' = \frac{\lambda}{\mu}$	1/2	
	$=\frac{590}{1.5}nm$ =393.33nm	1⁄2	5
27.			
	 (a) Derivation of expression for the resultant capacitance in (i) parallel (ii) series 1 ¹/₂ + 1 ¹/₂ (b) Calculation of energy stored in the 12μf capacitor 2 		
	(a) (i) <u>Parallel</u>		
	$\begin{pmatrix} a \end{pmatrix} (1) \underline{r} \underline{araner} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	1⁄2	
	$Q_1 = C_1 V,$ $Q_2 = C_2 V,$ $Q_3 = C_3 V,$	1⁄2	
	But $Q=Q_1 + Q_2 + Q_3$ $\therefore Q = C_1 V + C_2 V + C_3 V$ $\therefore CV = C_1 V + C_2 V + C_3 V$ $C = C_1 + C_2 + C_3$	1⁄2	
	(ii) <u>Series</u>	1⁄2	
55/1/2	Page 22 of 26		

	C1 C2 C3		
Potentia	I difference across the plates of the three capacitors are:		
rotentie	$V_1 = \frac{Q}{Q_1}$		
	$V_{1} = \frac{Q}{C_{1}}$ $V_{2} = \frac{Q}{C_{2}}$ $V_{3} = \frac{Q}{C_{3}}$	1/2	
	$v_2 = \frac{1}{C_2}$		
	$V_3 = \frac{c}{C_3}$		
	But V= V ₁ +V ₂ +V ₃ $V = \frac{Q}{C_1} + \frac{Q}{C_2} + \frac{Q}{C_2}$	1/2	
	$\therefore \frac{Q}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$		
	$\therefore \frac{1}{c_{eq}} = \frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3}$	1/2	
(b) Pote	ntial difference across the capacitor of $4\mu f$ capacitance		
	$V = \frac{Q}{C} = \frac{16\mu C}{4\mu F}$	1/2	
	$V = C = 4\mu F$ =4V		
Potentia	al across $12\mu f$ capacitor = $12 V - 4V$	1/2	
	= 8V	/2	
Energy	stored on this capacitor		
	$U = \frac{1}{2}CV^2$		
	$=\frac{1}{2}(12 \times 10^{-6})8^2$ joule	1/2	
	2		
	=6 X 64 \times 10 ⁻⁶ joule =384 \times 10 ⁻⁶ J		
	=384 µJ		
OR			
	(a) Derivation of expression for the Electric field		
	(i) inside (ii) outside1 + 2(b) Graphical variation of the Electric field1		
	(c) Calculation of Electric flux 1		
(a) (i) <u>Ir</u>	nside		

