Secondary School Certificate Examination ## **July'2018** ## Marking Scheme — Mathematics 30/3 (Compt.) #### General Instructions: - 1. The Marking Scheme provides general guidelines to reduce subjectivity in the marking. The answers given in the Marking Scheme are suggested answers. The content is thus indicative. If a student has given any other answer which is different from the one given in the Marking Scheme, but conveys the meaning, such answers should be given full weightage. - 2. Evaluation is to be done as per instructions provided in the marking scheme. It should not be done according to one's own interpretation or any other consideration Marking Scheme should be strictly adhered to and religiously followed. - 3. Alternative methods are accepted. Proportional marks are to be awarded. - 4. In question (s) on differential equations, constant of integration has to be written. - 5. If a candidate has attempted an extra question, marks obtained in the question attempted first should be retained and the other answer should be scored out. - 6. A full scale of marks 0 to 100 has to be used. Please do not hesitate to award full marks if the answer deserves it. - 7. Separate Marking Scheme for all the three sets has been given. - 8. As per orders of the Hon'ble Supreme Court. The candidates would now be permitted to obtain photocopy of the Answer book on request on payment of the prescribed fee. All examiners/ Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme. ## QUESTION PAPER CODE 30/3 # EXPECTED ANSWER/VALUE POINTS #### **SECTION A** 1. $$\frac{a^3}{A^3} = \frac{1}{27}$$ $$\frac{1}{2}$$ $$\Rightarrow \frac{a}{A} = \frac{1}{3}$$ Ratio of sufrace area = $$\frac{6a^2}{6A^2} = \frac{1}{3}^2 = \frac{1}{9}$$ $$\frac{1}{2}$$ 2. Let α and $\frac{1}{\alpha}$ be the root $$\therefore \quad \alpha \cdot \frac{1}{\alpha} = \frac{k}{5} = 1$$ $$\frac{1}{2}$$ $$\Rightarrow$$ k = 5 $$\frac{1}{2}$$ 3. Coordinates of D are (-1, 2) $$AD = \sqrt{(5+1)^2 + (1+2)^2}$$ $$=\sqrt{37}$$ units 4. Solving for x and y and getting x = 3, y = 1 $$\therefore \quad a = 3, b = 1$$ $$\frac{1}{2}$$ 30/3 5. $$\frac{\operatorname{ar}(\Delta \operatorname{ABC})}{\operatorname{ar}(\Delta \operatorname{QRP})} = \left(\frac{\operatorname{BC}}{\operatorname{RP}}\right)^2$$ $$\Rightarrow \frac{9}{4} = \left(\frac{15}{PR}\right)^2 \Rightarrow PR = 10 \text{ cm}$$ $\frac{1}{2}$ **6.** For writing $$\frac{6\sqrt{5} + 6\sqrt{5}}{2\sqrt{5}}$$ #### **SECTION B** Let r be the radii of bases of cylinder and cone and h be the height Slant height of cone = $\sqrt{r^2 + h^2}$ $$\therefore \frac{2\pi rh}{\pi r \sqrt{r^2 + h^2}} = \frac{8}{5}$$ $$\frac{h}{\sqrt{r^2 + h^2}} = \frac{4}{5}$$ $$\Rightarrow \frac{h^2}{r^2 + h^2} = \frac{16}{25}$$ \Rightarrow 9h² = 16r² $$\Rightarrow 25h^2 = 16r^2 + 16h^2$$ $$\frac{1}{2}$$ $$\Rightarrow \frac{r^2}{h^2} = \frac{9}{16} \Rightarrow \frac{r}{h} = \frac{3}{4}$$ 30/3 **(2)** ## 8. $PA = PB \Rightarrow PA^2 = PB^2$ $$\Rightarrow$$ $(x-1)^2 + (y-4)^2 = (x+1)^2 + (y-2)^2$ $$\Rightarrow$$ $x^2 + 1 - 2x + y + 16 - 8y = x^2 + 1 + 2x + y^2 + 4 - 4y$ $$\frac{1}{2}$$ $$\Rightarrow$$ $x + y - 3 = 0$ $$\frac{1}{2}$$ 9. $$\Delta TXN \sim \Delta TCM$$ $$\frac{1}{2}$$ $$\Rightarrow \frac{TX}{TC} = \frac{XN}{CM} = \frac{TN}{TM}$$ $TX \times TM = TC \times TN$ $$\frac{1}{2}$$ $$\Rightarrow \quad \frac{TB}{TX} = \frac{BN}{XM} = \frac{TN}{TM}$$ $$\Rightarrow TM = \frac{TN \times TX}{TB} \qquad ...(ii)$$ $$\frac{1}{2}$$ using (ii) in (i), we get $$TX^2 \times \frac{TN}{TB} = TC \times TN$$ $$\Rightarrow$$ TX² = TC × TB $$\frac{1}{2}$$ 10. Let $2 + \sqrt{3}$ be a rational number. $$\Rightarrow 2 + \sqrt{3} = \frac{p}{q}, \quad p, q \in I, q \neq 0$$ $$\frac{1}{2}$$ $$\Rightarrow \sqrt{3} = \frac{p}{q} - 2 = \frac{p - 2q}{q}$$ $$\frac{1}{2}$$ $$\frac{p-2q}{q}$$ is rational $\Rightarrow \sqrt{3}$ is rational number $\frac{1}{2}$ which is a contraduction $$2 + \sqrt{3}$$ is irrational number $\frac{1}{2}$ 11. AC = $$\sqrt{AB^2 + BC^2}$$ $$=\sqrt{14^2+48^2}=\sqrt{2500}=50 \text{ cm}$$ $\frac{1}{2}$ \angle OQB = 90° \Rightarrow OPBQ is a square $$\Rightarrow$$ BQ = r, QA = 14 - r = AR $\frac{1}{2}$ Again PB = r, $$PC = 48 - r \Rightarrow RC = 48 - r$$ $\frac{1}{2}$ $$AR + RC = AC \Rightarrow 14 - r + 48 - r = 50$$ $$\frac{1}{2}$$ $$\Rightarrow$$ r = 6 cm 12. $$A + B + C = 180^{\circ}$$ $$\Rightarrow \frac{A+B}{2} = 90^{\circ} - \frac{C}{2}$$ $$\Rightarrow \quad \csc\left(\frac{A+B}{2}\right) = \csc\left(90^{\circ} - \frac{C}{2}\right) = \sec\frac{C}{2}$$ ### **SECTION C** 13. Construction of \triangle ABC with sides 6 cm, 8 cm, 4 cm. 2 1 Construction of similar triangle 14. $$\sin(A + 2B) = \frac{\sqrt{3}}{2} \implies A + 2B = 60^{\circ}$$ $$\cos (A + 4B) = \Rightarrow A + 4B = 90^{\circ}$$ Solving, we get A = 30°, B = 15° $$\frac{1}{2} + \frac{1}{2}$$ | 15. | Classes | Frequency | Classes | Cumulative frequency | | |-----|---------|-----------|--------------|----------------------|--| | | 0-15 | 6 | Less than 15 | 6 | | | | 15-30 | 8 | Less than 30 | 14 | | | | 30-45 | 10 | Less than 45 | 24 | | | | 45-60 | 6 | Less than 60 | 30 | | | | 60-75 | 4 | Less than 75 | 34 | | 2 30/3 (5) #### $AB = 8 \text{ cm} \Rightarrow AM = 4 \text{ cm}$ **16.** $$\therefore$$ OM = $\sqrt{5^2 - 4^2} = 3 \text{ cm}$ Let AP = y cm, PM = x cm Δ OPP is a right angle triangle $$\therefore OP^2 = OA^2 = AP^2$$ $$(x+3)^2 = y^2 + 25$$ $$\Rightarrow$$ $x^2 + 9 + 6x = y^2 + 25$...(i) Also $$x^2 + 4^2 = y^2$$...(*ii*) $$\Rightarrow$$ $x^2 + 6x + 9 = x^2 + 16 + 25$ $$\Rightarrow$$ 6x = 32 \Rightarrow x = $\frac{32}{6}$ i.e. $\frac{16}{3}$ cm $$\therefore y^2 = x^2 + 16 = \frac{256}{9} + 16 = \frac{400}{9}$$ $$\Rightarrow y = \frac{20}{3} \text{ cm or } 6\frac{2}{3} \text{ cm}$$ OR Correct given, to prove, figure and construction $$\frac{1}{2} \times 4 = 2$$ Correct proof 1 17. $$867 = 255 \times 3 + 102$$ $$255 = 102 \times 2 + 51$$ 30/3 **(6)** 1 1 1 $$102 = 51 \times 2 + 0$$ $$\Rightarrow HCF = 51$$ 18. Distance travelled by short hand in 48 hours = $4 \times 2\pi \times 4$ cm = 32π cm Distance travelled by long hand in 48 hours = $48 \times 2\pi \times 6$ cm = 576π cm Total distance travelled = $(32\pi + 576\pi)$ cm $$=608\pi \text{ cm}$$ 1 1 1 OR Radius of inner circle = 5 cm $$\frac{1}{2}$$ Radius of outer circle = $5\sqrt{2}$ cm Required area = Area of outer circle – Area of inner circle $$\Rightarrow [(5\sqrt{2})^2 - 5^2] = 25\pi \text{ cm}^2$$ **19.** Here, $S_n = 3n^2 + 5n$ $$\Rightarrow S_1 = 3.1^2 + 5.1 = 8 = a_1$$ $$S_2 = 3.2^2 + 5.2 = 22 = a_1 + a_2$$ $$a_2 = 22 - 8 = 14 \Rightarrow d = 6$$ $$t_k = 164 \Rightarrow 8 + (k-1)6 = 164$$ $\frac{1}{2}$ $$\Rightarrow$$ k = 27 30/3 (7) 20. Let two parts be x and 27 - x $$\therefore \frac{1}{x} + \frac{1}{27 - x} = \frac{3}{20}$$ 1 $$\Rightarrow x^2 - 27x + 150 = 0$$ $$\Rightarrow$$ $(x-15)(x-12)=0$ $$\Rightarrow$$ x = 12 or 15 :. The two parts are 12 and 15 21. $$\frac{1+\tan^2 A}{1+\cot^2 A} = \frac{1+\tan^2 A}{1+\frac{1}{\tan^2 A}} = \tan^2 A$$ $$\left(\frac{1-\tan A}{1-\cot A}\right)^2 = \left(\frac{1-\tan A}{\tan A-1}\right)^2 = (-\tan A)^2 = \tan^2 A$$ $$1\frac{1}{2}$$ Hence $$\frac{1+\tan^2 A}{1+\cot^2 A} = \left(\frac{1-\tan A}{1-\cot A}\right)^2 = \tan^2 A$$ OR $$\frac{\cos 58^{\circ}}{\sin 32^{\circ}} + \frac{\sin 22^{\circ}}{\cos 68^{\circ}} - \frac{\cos 38^{\circ} \csc 52^{\circ}}{\sqrt{3}(\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ} \tan 72^{\circ} \tan 55^{\circ})}$$ $$= \left(\frac{\cos 58^{\circ}}{\sin (90 - 58^{\circ})} + \frac{\sin 22^{\circ}}{\cos (90 - 22^{\circ})}\right) - \frac{\cos 38^{\circ} \cos ec (90 - 38)^{\circ}}{\sqrt{3}(\tan 18^{\circ} \tan 35^{\circ} \cdot \sqrt{3} \cdot \cot 18^{\circ} \cot 35^{\circ})}$$ $$= 1 + 1 - \frac{\cos 38^{\circ} \sec 38^{\circ}}{3.1}$$ $$=2-\frac{1}{3}=\frac{5}{3}$$ 22. Let the coordinates of C and D be (a, b) and (c, d) (8) 30/3 $$\therefore \quad \frac{3+a}{2} = 2 \Rightarrow a = 1$$ and $$\frac{2+b}{2} = -5 \Rightarrow b = -12$$ Also $$\frac{c+1}{2} = -5 \Rightarrow c = 3$$ and $$\frac{d+0}{2} = -5 \Rightarrow d = -10$$ $$\therefore$$ Coordinate of C and D are $(1, -12)$ and $(3, -10)$ OR Ar $$(\Delta ABC) = 4$$ $$\Rightarrow \frac{1}{2}[x(4-5)+4(5-3)+3(3-4)] = 4$$ 1\frac{1}{2} $$\Rightarrow$$ $(-x+5)=8$ $$\Rightarrow -x + 5 = 8$$ $$\Rightarrow x = -3$$ #### **SECTION D** 23. Let the speed of faster train be x km/hr $$\therefore \text{ Speed of slower train} = (x - 10) \text{ km/hr}$$ $$\frac{200}{x - 10} - \frac{200}{x} = 1$$ $$\Rightarrow \quad x^2 - 10x - 2000 = 0$$ $$\Rightarrow (x-50)(x+40) = 0$$ $$x = 50, -40$$ rejected 30/3 (9) :. Speed of faster train = 50 km/hrSpeed of slower train = 40 km/hr 1 OR $$\frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$$ $$\Rightarrow \quad \frac{1}{a+b+c} - \frac{1}{x} = \frac{1}{a} + \frac{1}{b}$$ $$\frac{-(a+b)}{x(a+b+x)} = \frac{a+b}{ab}$$ $$\Rightarrow x^2 + (a+b)x + ab = 0$$ $$(x+a)(x+b) = 0 \Rightarrow x = -a, -b$$ 24. Correct figure 1 $\ln \Delta ABC$, $\frac{h}{x} = \tan 60^{\circ}$ $$\Rightarrow h = x\sqrt{3}$$ $$\ln \Delta BCD$$, $\frac{50}{x} = \tan 30^{\circ}$ $$\Rightarrow \quad x = 50\sqrt{3}$$ $$\therefore h = 150$$ $$\therefore$$ height of hill = 150 m OR (10) 30/3 Correct figure 1 $\ln \Delta ABC$, $\frac{h}{x} = \tan 60^{\circ}$ $$\Rightarrow$$ h = $x\sqrt{3}$(1) 1 $\ln \Delta ECD$, $\frac{h}{80 - x} = \tan 30^{\circ}$ $$\Rightarrow h\sqrt{3} = 80 - x$$ 1 From (1), $x\sqrt{3} \times \sqrt{3} = 80 - x$ $$\Rightarrow$$ x = 20 $$\therefore \quad h = 20\sqrt{3}$$ 1 1 height of poles = $20\sqrt{3}$ m Distances of poles from the point are 20 m and 60 m **25.** $p(x) = 3x^4 - 15x^3 + 13x + 25x - 30$ $$x - \sqrt{\frac{5}{3}}$$ and $x + \sqrt{\frac{5}{3}}$ are factors of p(x) \Rightarrow $x^2 - \frac{5}{3}$ or $\frac{(3x^2 - 5)}{3}$ is a factor of p(x) $p(x) = \frac{(3x^2 - 5)}{3}(x^2 - 5x + 6)$ $$= \frac{1}{3}(3x^2 - 5)(x - 3)(x - 2)$$ 30/3 **(11)** $$\therefore \quad \text{Zeroes of p(x) are } \sqrt{\frac{5}{3}}, -\sqrt{\frac{5}{3}}, 2 \text{ and } 3$$ **26.** Surface area of bucket = $\pi(r_1 + r_2)l + \pi r_1^2$ $$1 = \sqrt{h^2 + (r_2 - r_1)^2} = \sqrt{20^2 + (36 - 21)^2}$$ $$=\sqrt{625} = 25 \text{ cm}$$ $$\therefore \quad \text{Surface area of 1 bucket} = \frac{22}{7} [(36 + 21) \times 25 + 21^2]$$ $$=\frac{22}{7}\times1866\,\mathrm{cm}^2$$ Surface area of 10 buckets = $$\frac{22}{7} \times 18660 \text{ cm}^2$$ $\frac{1}{2}$ Cost of aluminium sheet = $$\frac{22}{7} \times \frac{18660 \times 42}{100}$$ Any relevant comment | 27. | Classes | Frequency | $\mathbf{x_i}$ | $f_i x_i$ | | |-----|---------|-----------|----------------|-----------|---| | | 10-20 | 4 | 15 | 60 | | | | 20-30 | 8 | 25 | 200 | | | | 30-40 | 10 | 35 | 350 | | | | 40-50 | 12 | 45 | 540 | 2 | | | 50-60 | 10 | 55 | 550 | | | | 60-70 | 4 | 65 | 260 | | | | 70-80 | 2 | 75 | 150 | | | | Total | 50 | | 2110 | | (12) 30/3 1 $$\overline{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{2110}{50} = 42.2$$ 40-50 is modal class Mode = $$l + \frac{(f_1 - f_0)}{2f_1 - f_0 - f_2} \times h$$ $$= 40 + \frac{12 - 10}{24 - 10 - 10} \times 10 = 45$$ **28.** For infinitely many solutions. $$\frac{3}{m+n} = \frac{4}{2(m-n)} = \frac{-12}{-(5m-1)}$$ $$\frac{3}{m+n} = \frac{4}{2(m-n)} \implies m-5n=0$$...(1) $$\frac{4}{2(m-n)} = \frac{12}{5m-1} \implies m-6n = -1 \qquad ...(2)$$ 1 Solving (1) and (2) we get, $$m = 5$$, $n = 1$ **29.** (*i*) Prime numbers from 1 to 20 are 2, 3, 5, 7, 11, 13, 17, 19 i.e. 8 P(prime number) = $$\frac{8}{20}$$ or $\frac{2}{5}$ (ii) Composite number from 1 to 20 are $$P(\text{Composite number}) = \frac{11}{20}$$ 1\frac{1}{2} (iii) Number divisible by 3 from 1 to 20 are P(number divisible by 3) = $$\frac{6}{20}$$ or $\frac{3}{10}$ 30/3 (13) OR Total number of cards = 52 - 3 = 49 (i) $$P(\text{spade}) = \frac{13}{49}$$ $$(ii)$$ P(black king) = $\frac{1}{49}$ $$(iii) \quad P(\text{club}) = \frac{10}{49}$$ $$(iv) \quad P(Jack) = \frac{3}{49}$$ 30. Correct figure, given to prove and construction $$\frac{1}{2} \times 4 = 2$$ (14) 30/3