Strictly Confidential — (For Internal and Restricted Use Only)

Secondary School Certificate Examination

July' 2018

Marking Scheme — Mathematics 30/1 (Compt.)

General Instructions:

- 1. The Marking Scheme provides general guidelines to reduce subjectivity in the marking. The answers given in the Marking Scheme are suggested answers. The content is thus indicative. If a student has given any other answer which is different from the one given in the Marking Scheme, but conveys the meaning, such answers should be given full weightage.
- 2. Evaluation is to be done as per instructions provided in the marking scheme. It should not be done according to one's own interpretation or any other consideration Marking Scheme should be strictly adhered to and religiously followed.
- 3. Alternative methods are accepted. Proportional marks are to be awarded.
- 4. In question (s) on differential equations, constant of integration has to be written.
- 5. If a candidate has attempted an extra question, marks obtained in the question attempted first should be retained and the other answer should be scored out.
- 6. A full scale of marks 0 to 100 has to be used. Please do not hesitate to award full marks if the answer deserves it.
- 7. Separate Marking Scheme for all the three sets has been given.
- 8. As per orders of the Hon'ble Supreme Court. The candidates would now be permitted to obtain photocopy of the Answer book on request on payment of the prescribed fee. All examiners/ Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

QUESTION PAPER CODE 30/1 EXPECTED ANSWER/VALUE POINTS SECTION A

1. For writing
$$\frac{6\sqrt{5} + 6\sqrt{5}}{2\sqrt{5}}$$

= 6 which is rational
2. Solving for x and y and getting x = 3, y = 1
 \therefore a = 3, b = 1
3. Let α and $\frac{1}{\alpha}$ be the root
 $\therefore \quad \alpha \cdot \frac{1}{\alpha} = \frac{k}{5} = 1$
 $\Rightarrow k = 5$
4. $\frac{ar(\Delta ABC)}{ar(\Delta QRP)} = \left(\frac{BC}{RP}\right)^2$
 $\Rightarrow \frac{9}{4} = \left(\frac{15}{PR}\right)^2 \Rightarrow PR = 10 \text{ cm}$
5. $\frac{a^3}{A^3} = \frac{1}{27}$
 $\Rightarrow \frac{a}{A} = \frac{1}{3}$
Ratio of suffrace area = $\frac{6a^2}{6A^2} = \frac{1}{3}^2 = \frac{1}{9}$

Coordinates of D are (-1, 2)6.

SECTION B

7. Let $2 + \sqrt{3}$ be a rational number.

$$\Rightarrow 2 + \sqrt{3} = \frac{p}{q}, \quad p, q \in I, q \neq 0 \qquad \qquad \frac{1}{2}$$

$$\Rightarrow \quad \sqrt{3} = \frac{p}{q} - 2 = \frac{p - 2q}{q}$$

$$\frac{p-2q}{q}$$
 is rational $\Rightarrow \sqrt{3}$ is rational number

which is a contraduction

$$2 + \sqrt{3}$$
 is irrational number

$\Delta TXN \sim \Delta TCM$ 8.

 $\frac{1}{2}$

 $\frac{1}{2}$

$$\Rightarrow \frac{TX}{TC} = \frac{XN}{CM} = \frac{TN}{TM}$$
$$\Rightarrow TX \times TM = TC \times TN \qquad \dots (i)$$

Again,
$$\Delta TBN \sim \Delta TXM$$

$$\Rightarrow \frac{TB}{TX} = \frac{BN}{XM} = \frac{TN}{TM}$$
$$\Rightarrow TM = \frac{TN \times TX}{TB} \qquad \dots (ii)$$

using (ii) in (i), we get

$$TX^2 \times \frac{TN}{TB} = TC \times TN$$

$$\Rightarrow TX^2 = TC \times TB \qquad \frac{1}{2}$$

9. AC =
$$\sqrt{AB^2 + BC^2}$$

$$=\sqrt{14^2+48^2}=\sqrt{2500}=50\,\mathrm{cm}$$

 $\angle OQB = 90^{\circ} \Rightarrow OPBQ$ is a square

$$\Rightarrow$$
 BQ = r, QA = 14 - r = AR

Again PB = r,

$$PC = 48 - r \Longrightarrow RC = 48 - r$$

(3)

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $AR + RC = AC \Longrightarrow 14 - r + 48 - r = 50$

$$\Rightarrow$$
 r = 6 cm

10.
$$PA = PB \Rightarrow PA^2 = PB^2$$

$$\Rightarrow (x-1)^{2} + (y-4)^{2} = (x+1)^{2} + (y-2)^{2}$$
1

$$\Rightarrow x^{2} + 1 - 2x + y + 16 - 8y = x^{2} + 1 + 2x + y^{2} + 4 - 4y \qquad \frac{1}{2}$$

$$\Rightarrow x + y - 3 = 0 \qquad \qquad \frac{1}{2}$$

11. $A + B + C = 180^{\circ}$

$$\Rightarrow \quad \frac{A+B}{2} = 90^{\circ} - \frac{C}{2}$$
 1

$$\Rightarrow \operatorname{cosec}\left(\frac{A+B}{2}\right) = \operatorname{cosec}\left(90^{\circ} - \frac{C}{2}\right) = \sec\frac{C}{2}$$
1

12. Let r be the radii of bases of cylinder and cone and h be the height

Slant height of cone =
$$\sqrt{r^2 + h^2}$$
 $\frac{1}{2}$

$$\therefore \quad \frac{2\pi rh}{\pi r\sqrt{r^2 + h^2}} = \frac{8}{5} \qquad \qquad \frac{1}{2}$$

$$\frac{\mathrm{h}}{\sqrt{\mathrm{r}^2 + \mathrm{h}^2}} = \frac{4}{5}$$

$$\Rightarrow \frac{h^2}{r^2 + h^2} = \frac{16}{25}$$
$$\Rightarrow 25h^2 = 16r^2 + 16h^2$$

 $\frac{1}{2}$

$$\Rightarrow 9h^{2} = 16r^{2}$$

$$\Rightarrow \frac{r^{2}}{h^{2}} = \frac{9}{16} \Rightarrow \frac{r}{h} = \frac{3}{4}$$
SECTION C
13. $867 = 255 \times 3 + 102$
 $255 = 102 \times 2 + 51$
 $102 = 51 \times 2 + 0$
 $\Rightarrow HCF = 51$
14. Let two parts be x and 27 - x
 $\therefore \frac{1}{x} + \frac{1}{27 - x} = \frac{3}{20}$
 $\Rightarrow x^{2} - 27x + 150 = 0$
 $\Rightarrow (x - 15) (x - 12) = 0$
 $\Rightarrow x = 12 \text{ or } 15$
 \therefore The two parts are 12 and 15
15. Here, $S_{n} = 3n^{2} + 5n$

$$\Rightarrow S_{1} = 3.1^{2} + 5.1 = 8 = a_{1} \qquad \qquad \frac{1}{2}$$

$$S_{2} = 3.2^{2} + 5.2 = 22 = a_{1} + a_{2}$$

$$a_{2} = 22 - 8 = 14 \Rightarrow d = 6 \qquad \qquad 1$$

$$t_{k} = 164 \Rightarrow 8 + (k - 1)6 = 164 \qquad \qquad \frac{1}{2}$$

$$\Rightarrow k = 27 \qquad \qquad 1$$

(5)

16. Let the coordinates of C and D be (a, b) and (c, d)

17.
$$AB = 8 \text{ cm} \Rightarrow AM = 4 \text{ cm}$$

$$\therefore \quad \text{OM} = \sqrt{5^2 - 4^2} = 3 \,\text{cm}$$

Let AP = y cm, PM = x cm

$$\therefore \quad \Delta OPP \text{ is a right angle triangle}$$

$$\therefore \quad OP^2 = OA^2 = AP^2$$

$$(x + 3)^2 = y^2 + 25$$

$$\Rightarrow \quad x^2 + 9 + 6x = y^2 + 25 \qquad \dots(i) \qquad 1$$
Also $x^2 + 4^2 = y^2 \qquad \dots(ii) \qquad 1$

$$\Rightarrow \quad x^2 + 6x + 9 = x^2 + 16 + 25$$

$$\Rightarrow \quad 6x = 32 \Rightarrow x = \frac{32}{6} \text{ i.e. } \frac{16}{3} \text{ cm}$$

$$\therefore \quad y^2 = x^2 + 16 = \frac{256}{9} + 16 = \frac{400}{9}$$

$$\Rightarrow \quad y = \frac{20}{3} \text{ cm or } 6\frac{2}{3} \text{ cm} \qquad 1$$
OR

	Correct given, to prove, figure and construction	$\frac{1}{2} \times 4 = 2$
	Correct proof	1
18.	Construction of \triangle ABC with sides 6 cm, 8 cm, 4 cm.	1
	Construction of similar triangle	2

19.
$$\frac{1 + \tan^2 A}{1 + \cot^2 A} = \frac{1 + \tan^2 A}{1 + \frac{1}{\tan^2 A}} = \tan^2 A$$
 $1\frac{1}{2}$

$$\left(\frac{1-\tan A}{1-\cot A}\right)^2 = \left(\frac{1-\tan A}{\frac{\tan A-1}{\tan A}}\right)^2 = (-\tan A)^2 = \tan^2 A$$

$$1\frac{1}{2}$$

Hence
$$\frac{1 + \tan^2 A}{1 + \cot^2 A} = \left(\frac{1 - \tan A}{1 - \cot A}\right)^2 = \tan^2 A$$

OR
 $\frac{\cos 58^\circ}{\sin 32^\circ} + \frac{\sin 22^\circ}{\cos 68^\circ} - \frac{\cos 38^\circ \csc 52^\circ}{\sqrt{3}(\tan 18^\circ \tan 35^\circ \tan 60^\circ \tan 72^\circ \tan 55^\circ)}$
 $= \left(\frac{\cos 58^\circ}{\sin (90 - 58^\circ)} + \frac{\sin 22^\circ}{\cos (90 - 22^\circ)}\right) - \frac{\cos 38^\circ \csc (90 - 38)^\circ}{\sqrt{3}(\tan 18^\circ \tan 35^\circ \cdot \sqrt{3} \cdot \cot 18^\circ \cot 35^\circ)}$ 1+1
 $= 1 + 1 - \frac{\cos 38^\circ \sec 38^\circ}{3.1}$
 $= 2 - \frac{1}{3} = \frac{5}{3}$ 1
Distance travelled by short hand in 48 hours = 4 × 2\pi × 4 cm = 32\pi cm 1

Distance travelled by long hand in 48 hours = $48 \times 2\pi \times 6$ cm = 576π cm 1

Total distance travelled = $(32\pi + 576\pi)$ cm

20.

$$= 608\pi$$
 cm 1

Radius of inner circle = 5 cm
$$\frac{1}{2}$$

Radius of outer circle =
$$5\sqrt{2}$$
 cm 1

Required area = Area of outer circle – Area of inner circle

$$\Rightarrow \quad [(5\sqrt{2})^2 - 5^2] = 25\pi \text{ cm}^2$$

 $\frac{1}{2}$

21.
$$\sin(A+2B) = \frac{\sqrt{3}}{2} \implies A+2B=60^{\circ}$$
 1

$$\cos(A + 4B) = \Rightarrow A + 4B = 90^{\circ}$$

Solving, we get
$$A = 30^\circ$$
, $B = 15^\circ$

2

1

SECTION D

For infinitely many solutions. 23.

$$\frac{3}{m+n} = \frac{4}{2(m-n)} = \frac{-12}{-(5m-1)}$$

$$\frac{3}{m+n} = \frac{4}{2(m-n)} \implies m-5n=0 \qquad \dots (1)$$

$$\frac{4}{2(m-n)} = \frac{12}{5m-1} \implies m-6n = -1 \qquad ...(2)$$

Solving (1) and (2) we get, m = 5, n = 1

 $\frac{1}{2} + \frac{1}{2}$

24.
$$p(x) = 3x^4 - 15x^3 + 13x + 25x - 30$$

 $x - \sqrt{\frac{5}{3}}$ and $x + \sqrt{\frac{5}{3}}$ are factors of $p(x)$
 $\Rightarrow x^2 - \frac{5}{3}$ or $\frac{(3x^2 - 5)}{3}$ is a factor of $p(x)$ 1
 $p(x) = \frac{(3x^2 - 5)}{3}(x^2 - 5x + 6)$
 $= \frac{1}{3}(3x^2 - 5)(x - 3)(x - 2)$

$$\therefore$$
 Zeroes of p(x) are $\sqrt{\frac{5}{3}}, -\sqrt{\frac{5}{3}}, 2$ and 3

25. Let the speed of faster train be x km/hr

 \therefore Speed of slower train = (x - 10) km/hr

$$\frac{200}{x-10} - \frac{200}{x} = 1$$

$$\Rightarrow \quad x^2 - 10x - 2000 = 0 \tag{1}$$

$$\Rightarrow (x-50)(x+40) = 0$$

x = 50, -40 rejected

$$\therefore Speed of faster train = 50 \text{ km / hr}$$
Speed of slower train = 40 km / hr

OR

$$\frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$$
$$\Rightarrow \quad \frac{1}{a+b+c} - \frac{1}{x} = \frac{1}{a} + \frac{1}{b}$$

 $\frac{1}{2}$

 $\frac{-(a+b)}{x(a+b+x)} = \frac{a+b}{ab}$

 $(x + a) (x + b) = 0 \Longrightarrow x = -a, -b$

Correct figure, given to prove and construction

 $\Rightarrow x^2 + (a+b)x + ab = 0$

Correct proof

26.

27.

$$\Rightarrow$$
 x = 50 $\sqrt{3}$

A hill

h

в

30

x

30/1

$$\therefore$$
 h = 150

$$\therefore$$
 height of hill = 150 m

OR

Correct figure

 $\frac{1}{2}$ ×4=2

1

2

1

1

30/1

1

1

	30/1	
	$\ln \Delta ABC, \ \frac{h}{x} = \tan 60^{\circ}$	
	\Rightarrow h = x $\sqrt{3}$ (1)	1
	$\ln \Delta ECD, \ \frac{h}{80 - x} = \tan 30^{\circ}$	
	$\Rightarrow h\sqrt{3} = 80 - x$	1
	From (1), $x\sqrt{3} \times \sqrt{3} = 80 - x$	
	\Rightarrow x = 20	
	$\therefore h = 20\sqrt{3}$	
	:. height of poles = $20\sqrt{3}$ m Distances of poles from the point are 20 m and 60 m	1
28.	Surface area of bucket = $\pi(r_1 + r_2)l + \pi r_1^2$	
	$l = \sqrt{h^2 + (r_2 - r_1)^2} = \sqrt{20^2 + (36 - 21)^2}$	
	$=\sqrt{625} = 25 \text{ cm}$	$\frac{1}{2}$
	$\therefore \text{Surface area of 1 bucket} = \frac{22}{7} [(36+21) \times 25 + 21^2]$	
	$=\frac{22}{7}\times 1866 \mathrm{cm}^2$	1
	Surface area of 10 buckets = $\frac{22}{7} \times 18660 \text{ cm}^2$	$\frac{1}{2}$
	Cost of aluminium sheet = $\overline{\underbrace{\frac{22}{7} \times \frac{18660 \times 42}{100}}}$	1
	=₹24631.20	
	Any relevant comment	1

30/1

Classes	Frequency	x _i	$\mathbf{f_i}\mathbf{x_i}$
10-20	4	15	60
20-30	8	25	200
30-40	10	35	350
40-50	12	45	540
50-60	10	55	550
60-70	4	65	260
70-80	2	75	150
Total	50		2110

2

1

$$\overline{\mathbf{x}} = \frac{\sum f_i \mathbf{x}_i}{\sum f_i} = \frac{2110}{50} = 42.2$$

40-50 is modal class

29.

Mode =
$$l + \frac{(f_1 - f_0)}{2f_1 - f_0 - f_2} \times h$$

= $40 + \frac{12 - 10}{24 - 10 - 10} \times 10 = 45$ 1

30. (*i*) Prime numbers from 1 to 20 are 2, 3, 5, 7, 11, 13, 17, 19 i.e. 8

$$P(\text{prime number}) = \frac{8}{20} \text{ or } \frac{2}{5} \qquad \qquad 1\frac{1}{2}$$

(*ii*) Composite number from 1 to 20 are

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20 i.e. 11

$$P(\text{Composite number}) = \frac{11}{20} \qquad \qquad 1\frac{1}{2}$$

(*iii*) Number divisible by 3 from 1 to 20 are

3, 6, 9, 12, 15, 18 i.e 6

P(number divisible by 3) =
$$\frac{6}{20}$$
 or $\frac{3}{10}$ 1

OR

Total number of cards = 52 - 3 = 49

$$(i) \quad P(\text{spade}) = \frac{13}{49}$$

(*ii*)
$$P(\text{black king}) = \frac{1}{49}$$
 1

$$(iii) \quad P(club) = \frac{10}{49}$$

$$(iv) \quad P(Jack) = \frac{3}{49}$$