CHEMISTRY MARKING SCHEME 2015 56/2/RU

. NO.	Value points	MARKS
Q.1	Due to coagulation of colloidal clay particles	1
Q.2	X_4Y_3	1
Q.3	H_2SO_3 $H_2SO_4H_2S_2O_8$, H_2SO_5 (any two formulae)	1/2 + 1/2
Q.4	1-ethoxy-2-methylpropane	1
Q.5	CH ₃ -CH(Br)-CH ₃	1
Q.6	(i) PCC / Cu at 573 K	1
	(ii) NH_3 , Δ (heat) OR	1
Q.6	(i) $C_6H_5COCH_3 < CH_3COCH_3 < CH_3CHO$	1
	(ii) $CH_3COOH < CI - CH_2 - COOH < F - CH_2 - COOH$	1
Q.7	(i) Negative deviation ,temperature will increase.	1/2 +1/2
	(ii) Blood cell will swell due to osmosis, water enters into the cell.	1/2+1/2
Q.8	(i) Pentaamminechloridocobalt(III) ion	1
	(ii) K ₂ [NiCl ₄]	1
Q.9		
	Cu^{2+} + 2e → Cu 63.5 g Cu is deposited = 2x96500 C	
	1.27 g Cu is deposited = 2x96500x1.27/63.5 C = ixt (Q = ixt)	1
	$t = 2x96500x1.27/63.5 \times 2 = 1930s$	1
	Or by Faraday First law	
	m = zx i xt	1/2
	z = atomic mass/valencyxF	
	1.27 = 63.5x2xt/2x96500	1/2
	t = 1930 s	1

		1
	(ii) $CH_3CH_2CI + AgNO_2 \rightarrow CH_3CH_2 NO_2 + AgCI$	1
	(iii) $CH_3CH_2CH_2CH(Br)CH_3 + KOH (alc.) \rightarrow CH_3CH_2CH=CHCH_3$	1
Q.12	(i) Stoichiometric defect	1
	(ii) Schottky defect e.g.NaCl (or any other example)	1/2 + 1/2
	(iii) Density of crystal decreases	1
Q.13	$\Lambda_{\rm m} = \frac{1000 \ \text{sk}}{M} \ \text{Scm}^2 \text{mol}^{-1}$	1/2
	$\Lambda_{\rm m} = \frac{1000 \times 5.25 \times 10^{-5}}{2.5 \times 10^{-4}} {\rm Scm}^2 {\rm mol}^{-1}$	1
	= 210Scm ² mol ⁻¹	
	$\Lambda_{m}^{0} \text{ HCOOH} = \lambda^{0} \text{ HCOO}^{-} + \lambda^{0} \text{H}^{+}$ (50.5 + 349.5) S cm ² mol ⁻¹ = 400 S cm ² mol ⁻¹ $\alpha = \Lambda_{m} / \Lambda_{m}^{0}$	1∕2
	$\alpha = 210/400 = 0.525$	1
Q.14	i) (CH ₃) ₂ C= N-NH ₂ ii) / benzoic acid iii) / m-bromobenzoic acid	1+1+1
Q.15	 (a) (i) Because Cu⁺ undergoes disproportionation as 2Cu⁺ → Cu + Cu²⁺ (ii) Because of small size of metal, high ionic charge and availability of vacant d –orbital. 	1 1
	(b) $Cr_2O_7^{2-}$ + $8H^+$ + $3NO_2^- \rightarrow 2Cr^{3+}$ + $3NO_3^-$ + $4H_2O$ (Balanced equation only)	1
Q.16	(i) ethylene glycol HO-CH ₂ -CH ₂ -OH	¹ / ₂ + ¹ / ₂
	Terephthalic acid	

	(ii) 1,3- butadiene CH ₂ =CH-CH=CH ₂	
	$CH = CH_2$	1/2 + 1/2
	Styrene	
	(iii) Chloroprene CH ₂ =C(Cl)-CH=CH ₂	1
Q.17	(Note: Half mark for name/s and half mark for structure/s in each case) $p^{0}-p = w_{s}x$ Msolvent , s = solute	1
Q.17	$p^0 = M_s \times Wsolvent$, $s = solute$ $M_s \times Wsolvent$	1
	$(32 - 31.84)/32 = 10 \times 18/$ Ms x 200	1
		-
	M _s = 180 g/mol	1
Q.18	(i) Zone refining	1
	(ii) SiO ₂ act as flux to remove the impurity of Iron oxide	1
	(iii) Depressants prevent one type of sulphide ore forming the froth with air bubbles.	1
Q.19	Physisorption : adsorbate is held by weak van der Waals' force	1,1,1
	non-specific	
	It forms multimolecular layer	
	Chemisorption : adsorbate molecules are held by strong forces like a chemical bond	
	It is specific	
	It forms unimolecular layer	
	(or any correct three points)	
Q.20	(i) Phenoxide ion is stabilized by resonance as compared to CH ₃ O ⁻ / In phenol, oxygen acquires	1
	+ ve charge due to resonance and releases H^+ ion easily whereas there is no resonance in	
	methanol.	
	(ii) Due to lone pair-lone pair repulsion on oxygen.	1
	(iii) $(CH_3)_3 C^+$ is 3^0 carbo-cation which is more stable than CH_3^+ for $S_N 1$ reaction.	1
Q.21	(i) Starch.	1
		-
	(ii) α - Helix polypeptide chains are stabilized by intramolecular H-bonding whereas β - pleated	
	sheet is stabilized by intermolecular H-bonding. (or any other difference)	1
	(iii) Pernicious anaemia	1
Q.22	(i) Hydration isomerism	1
	(ii) Electronic configuration ist _{2g} ⁴ / by diagram	1
		1/
	(iii) Hybridization is sp ³ d ² and shape is octahedral.	$\frac{1}{2} + \frac{1}{2}$

	k =0.0693 s ⁻¹	1
	t = 20s k = $\frac{2.303}{t} \log \frac{[A_0]}{[A]}$	
	$k = \frac{2.303}{20 \text{ s}} \log \frac{0.10}{0.025}$ k = 0.0693 s ⁻¹	1
	As the rate constant is same , it follows pseudo first order reaction.	1⁄2
	(b) Average rate of reaction = $-\Delta[R]/\Delta t$	1∕₂
	= - [0.025 – 0.05 / 20 - 10]	½ 1
Q25	= $0.0025 \text{ mol } L^{-1} s^{-1}$	Ŧ
	OR (a) (i) Rate of reaction becomes 4 times (ii) Over all order of reaction = 2	1 1
	(b) $t_{1/2} = \frac{0.693}{k}$	
	30min = <u>0.693</u>	
	$k = 0.0231 \text{min}^{-1}$	1
	$k = \frac{2.303}{t} \log \frac{[A_0]}{[A]}$	1⁄2
	$t = \frac{2.303}{0.0231} \log \frac{100}{10}$	1/2

	t = <u>2.303</u> min	
	0.0231	
		1
	t = 99.7min	
Q.26	(a) (i) Due to decrease in bond dissociation enthalpy from HF to HI , there is an increase in acidic	1
Q.20	character observed.	
	(ii)Oxygen exists as diatomic O_2 molecule while sulphur as polyatomic S_8	1
	(iii)Due to non- availability of d orbitals	1
	(b)	
	i) F i	1+1
Q26	OR	
	(i) White Phosphorus, because it is less stable due to angular strain	1/2 , 1/2
	(ii)Nitrogen oxides emitted by supersonic jet planes are responsible for depletion of ozone layer. Or $NO+O_3 \rightarrow NO_2+O_2$	1
	(iii)due to small size of F, large inter electronic repulsion / electron- electron repulsion among the	
	lone pairs of fluorine	1
	(iv) Helium	1
	(v) $XeF_2 + PF_5 \rightarrow [XeF]^+ [PF_6]^-$	1