CHEMISTRY MARKING SCHEME

2015 56/1/RU

	56/1/RU	T
. NO.	Value points	MARKS
Q.1	H ₂ SO ₃ H ₂ SO ₄ H ₂ S ₂ O ₈ ,H ₂ SO ₅ (any two formulae)	1/2 + 1/2
Q.2	1-ethoxy-2-methylpropane	1
Q.3	Due to coagulation of colloidal clay particles	1
Q.4	CH ₃ -CH(Br)-CH ₃	1
Q.5	X_4Y_3	1
Q.6	Similarity: Both show contraction in size /Both show irregularity in their electronic configuration/Both are stable in +3oxidation state (any one)	1
	Difference: Actinoids are mainly radioactive but lanthanoids are not/Actinoids show wide range of oxidation states but lanthanoids do not/Actinoid contraction is greater than lanthanoid contraction. (any other one similarity and one difference)	1
Q.7	(i) Pentaamminechloridocobalt(III) ion	1
	(ii) K ₂ [NiCl ₄]	1
Q.8	(i) PCC / Cu at 573 K	1
	(ii) NH ₃ , Δ (heat)	1
8.	OR (i) C ₆ H ₅ COCH ₃ < CH ₃ COCH ₃ < CH ₃ CHO	1
	(ii) CH₃COOH <cl-ch₂-cooh <="" f-ch₂-cooh<="" td=""><td>1</td></cl-ch₂-cooh>	1
Q.9	(i) Negative deviation ,temperature will increase.	1/2 +1/2
	(ii) Blood cell will swell due to osmosis , water enters into the cell.	1/2+1/2
Q.10	Cu^{2+} + 2e \rightarrow Cu 63.5 g Cu is deposited = 2x96500 C	
	1.27 g Cu is deposited = 2x96500x1.27/63.5 C = ixt (Q = ixt)	1
	t = 2x96500x1.27/63.5 x 2 = 1930s Or	1

	by Faraday First law	
	m = zx i xt	1/2
	z = atomic mass/valencyxF	
	4.27 62.5.2.1/2.06500	1/
	1.27 = 63.5x2xt/2x96500	1/2
	1, 4020 -	
0.11	t = 1930 s	1
Q.11	$p^0 - p = w_s x M solvent$, $s = solute$	1
	p ⁰ M _s x Wsolvent	4
	$(32-31.84)/32 = 10 \times 18/Ms \times 200$	1
	NA 100 - /	1
0.12	$M_s = 180 \text{ g/mol}$	1
Q.12	(i) Zone refining	1
	(") CO and an file the course of the form of the file of the course of the	1
	(ii) SiO ₂ act as flux to remove the impurity of Iron oxide	1
0.12	(iii) Depressants prevent one type of sulphide ore forming the froth with air bubbles.	1
Q.13	(i) Starch.	1
	/** - Half and analysis shades a stability of he shades have been discounted by the same of the stability of he shades have been decided by the same of the same o	
	(ii) α- Helix polypeptide chains are stabilized by intramolecular H-bonding whereas β- pleated	4
	sheet is stabilized by intermolecular H-bonding. (or any other difference)	1
	(iii) Pagaisiana agasais	1
0.11	(iii) Pernicious anaemia	1
Q.14	(i) Hydration isomerism	1
	(ii) Floatnonic configuration ist 4/on by discuss	1
	(ii) Electronic configuration ist _{2g} ⁴ / or by diagram	1
	(iii) Hybridization is sp ³ d ² and shape is octahedral.	1/2 + 1/2
0.15		/2 + /2
Q.15	(i)	
	+ -	
	NH_2 NaNO + HX N_2X	
	NH_2 NaNO ₂ + HX N_2X	1
	273-278 К	1
	Benzene diazonium	
	halide	
	+ - 	
	N_2X Cu_2X_2 $+$ N	
	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	
	(where X=Br)	
	(ii)	

	$\alpha = 210/400 = 0.525$	1
Q.18	Physisorption : adsorbate is held by weak van der Waals' force non-specific It forms multimolecular layer	1,1,1
	Chemisorption: adsorbate molecules are held by strong forces like a chemical bond It is specific It forms unimolecular layer (or any correct three points)	
Q.19	(i) Phenoxide ion is stabilized by resonance as compared to CH₃O⁻/ In phenol, oxygen acquires + ve charge due to resonance and releases H⁺ ion easily whereas there is no resonance in methanol.	1
	(ii) Due to lone pair-lone pair repulsion on oxygen.	1
	(iii) $(CH_3)_3C^+$ is 3^0 carbo-cation which is more stable than CH_3^+ for S_N1 reaction.	1
Q.20	СООН	1+1+1
	i) (CH ₃) ₂ C= N-NH ₂ ii) / benzoic acid iii) / m-bromobenzoic acid	
Q.21	 (a) (i) Because Cu⁺ undergoes disproportionation as 2Cu⁺ → Cu + Cu²⁺ (ii) Because of small size of metal, high ionic charge and availability of vacant d –orbital. 	1
	(b) $\text{Cr}_2\text{O}_7^{2^-} + 8\text{H}^+ + 3\text{NO}_2^- \rightarrow 2\text{Cr}^{3^+} + 3\text{NO}_3^- + 4\text{H}_2\text{O}$ (Balanced equation only)	1
Q.22	(i) ethylene glycol HO-CH ₂ -CH ₂ -OH	1/2 +1/2
	Terephthalic acid HOOC—COOH	
	(ii) 1,3- butadiene $CH_2=CH-CH=CH_2$ $CH=CH_2$ Styrene	1/2 + 1/2
	(iii) Chloroprene $CH_2=C(CI)-CH=CH_2$ (Note: Half mark for name/s and half mark for structure/s in each case)	1/2 , 1/2
Q.23	(i) Social awareness ,Health conscious, Caring , empathy, concern .(or any other two values)	1/2 , 1/2

1	
1	
1/2	+ ½
acidic 1	
1	
1	
1+	+1
e layer. $\begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix}$	2, 1/2
nong the 1	
$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	
1 6	each

25	OR	
	ОН	
	ii) iii) iii)	1,1,1
	(b) $C_2H_5NH_2<(C_2H_5)_3N < (C_2H_5)_2NH$	1
	(c) Add CHCl $_3$ and alc KOH , C_6H_5 -NH $_2$ gives foul smell of isocyanide whereas C_6H_5 -NH-CH $_3$ does not (or any other correct test)	1
Q.26	(a) $[A]_0 = 0.10 \text{ mol/L}$ $[A] = 0.05 \text{ mol/L}$ at time t = 10s	
	$k = 2.303 \log[A_0]$ t [A]	1/2
	$k = 2.303 \log 0.10$ 10 s 0.05 $k = 0.0693 \text{ s}^{-1}$	1
	$t = 20s$ $k = 2.303 log[A_0]$ $t [A]$	
	$k = 2.303 \log 0.10$ 20 s $0.025k = 0.0693 \text{ s}^{-1}$	1
	As the rate constant is same so it follows pseudo first order reaction.	1/2
	(b) Average rate of reaction = - Δ [R]/ Δ t	1/2
	= - [0.025 - 0.05 / 20 - 10]	1/2
	= $0.0025 \text{ mol } L^{-1} s^{-1}$	1

26	OR (a) (i) Rate of reaction becomes 4 times (ii) Over all order of reaction = 2	1 1
	(b) $t_{1/2} = 0.693$ k	
	30min = $\frac{0.693}{k}$ $k = 0.0231 \text{min}^{-1}$	
	$k = 2.303 \log [A_0]$ t [A]	1 1/2
	t = <u>2.303</u> log <u>100</u> 0.0231 10	1/2
	t = <u>2.303</u> min 0.0231	
	t = 99.7min	1