

DELHI PUBLIC SCHOOL GHAZIABAD VASUNDHARA **ANNUAL EXAMINATION 2019-20** CLASS-XI

SUBJECT: MATHEMATICS : 29th JANUARY,2020 TIME: 3Hrs. M.M: 80

General Instructions:

(i) All question are compulsory

- (ii) The question paper consists of 36 questions divided into four section A,B,C and D Section A comprises of 20 questions of one mark each, Section B comprises of 6 questions of two marks each, Section C comprises of 6 questions of four marks each and Section D comprises of 4 questions of six marks each
- (iii) All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
- (iv) There is no overall choice. However, internal choice has been provided.

SECTION - A

(Q.1-Q.10) are multiple choice type questions. Select the correct option.

- Q2. If $= \sqrt{x} + \frac{1}{\sqrt{x}}$, then $\frac{dy}{dx}$ at x = 1 is
 - $(C)\frac{1}{\sqrt{2}}$ (B) 1/2(A) 1 (D) 0
- Q3. The distance of point P(3,4,5) from the yz-plane is (D) √41 units (A) 3units (B) 4units (C) 5units
- Q 4. The area of the circle centred at (1,2) and passing through (4,6) is (D) none of these $(A) 5\pi$ (B) 10π (C) 25π
- Q5. Slope of a line which cuts off intercepts of equal lengths on the axes is (C) $\sqrt{3}$ (D) none of these (A) - 1
- 96. Given the integers r > 1, n > 2, and coefficients of $(3r)^{th}$ and $(r + 2)^{th}$ terms in the Binomial expansion of $(1 + x)^{2n}$ are equal, then
 - (A) n=2r(B) n=3r
 - (C) n=2r+1
- (D) none of these

	Q7. The total num (A)102	nber of terms in the (B)25	expansion of $(x + a)^{51}$ – $(C)^{26}$	$(x-a)^{51}$ after simplification is (D)51						
			er then $ z = 4$, represent a (C) parabola	(D) hyperbola						
				n-empty relations that can be						
	defined from		on the total named of ho	ompty remaind and our co						
	(A) m^n	(B) $n^m - 1$	• (C) mn-1	(D) $2^{mn} - 1$						
•			ements. The number of sulvalues of m and n are resp	bsets of the first set is 112 more						
	(A) 4,7	(B) 7,4	(C) 8,5	(D) none of these						
	(Q.11-Q.15) Fill i	n the blanks.								
	Q11. If the varian	ice of a data is 121,	then the standard deviation	n of the data is .						
	Q 12. If the focus of a parabola is $(0,-3)$ and its directrix is $y = 3$, then its equation is									
	/			, then its equation is						
1	913 . If $sin\theta + co$	$os\theta = 1$, then the va	lue of $sin 2\theta$ is OR							
	General solu	ution of $\cos 3\theta = \frac{1}{2}$								
	001101411 0011	2								
,	Q 14. If A and B a	are finite sets such th	$nat A \subset B, then n(A \cup B)$	=						
-	$Q15. \text{ If } x+2 \le$	9, then $x \in \underline{\hspace{1cm}}$.								
	(Q.16-Q.20) Ansv	wer the following q	uestions.							
,	Q 16. The third ter	rm of G.P is 4. Find	the product of its first 5 to	erms.						
	/.		OR 5 5 5							
	· Find the sur	m to infinity of the	G.P. $-\frac{3}{4}, \frac{3}{16}, -\frac{3}{64}$							
	Q 17. Find the dor	main of $\sqrt{a^2 - x^2}$,	(a > 0).							
-	O 18 Write the m	iddle term in the eve	pansion of $(x + \frac{1}{x})^{10}$.							
7	O Solve: $4x -$	$-2 < 8$, when $x \in \mathbb{Z}$	7.							
	Q 20. Describe th	e set {10,11,12,13,	14,15} in set-builder form							

SECTION- B

- Q21. Find the eccentricity and length of latusrectum of the ellipse $36x^2 + 4y^2 = 144$
- Q22 Find the equation of hyperbola whose vertices are $(\pm 2,0)$ and foci at $(\pm 3,0)$.
- 923. If the points A(3,2,-4), B(9,8,-10) and C(5,4,-6) are collinear, find the ratio in which C divides AB.

OR

- The centroid of a ABC is at the point (1,1,1). If the coordinates of A and B are (3,-5,7) and (-1,7,-6) respectively, find the coordinates of the point C.
- Q24. Let $R = \{(x, y): x, y \in Z, y = 2x 4\}$. If (a, -2) and $(4, b^2) \in R$, then find the values of 'a' and 'b'.
- 925. The letters of word 'SOCIETY' are placed at random in a row. What is the probability that three vowels come together?

OR

In a single throw of three dice, determine the probability of getting a total of at least 5.

Q.26. Differentiate $sin^2 2x$. tan 3x with respect to x.

SECTION-C

Q27. Prove by using the principle of mathematical induction for all n ε N

$$1.3 + 2.3^{2} + 3.3^{2} + \dots + n.3^{n} = \frac{(2n-1)3^{n+1} + 3}{4}$$

OR

• Prove by using the principle of mathematical induction for all $n \varepsilon N$

 $11^{n+2} + 12^{2n+1}$ is divisible by 133 for all neN.

- Q 28. Exhibit graphically the solution set of linear inequations: $x \le 5000$, $y \le 5000$, $x + y \le 8000$, $x + y \ge 4000$, $x \ge 0$, $y \ge 0$
- Q 29. Differentiate the function with respect to x by first principle, $f(x) = \frac{3+2x}{2-3x}$
- Q30. If 4-digit numbers greater than 5,000 are randomly formed from the digits 0,1,3,5 and 7. What is the probability of forming a number divisible by 5? when (i) repetition of digits is not allowed. (ii) repetition of digits is allowed.

OR

Five marbles are drawn from a bag which contains 7 blue marbles and 4 black marbles. What is the probability that

(i) all will be blue (ii) 3 will be blue and 2 black.

- Q31. Find real x such that $\frac{3+2isinx}{1-2isinx}$ is purely real.
- Q32. Find the mean deviation about the mean

X	5	10	15	20	25
f	7	4	6	3	5

SECTION-D

- Q 33. A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions.
- . Q.34. Find $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$, when $\tan x = -\frac{4}{3}$, x lies in quadrant II.

Show that
$$\tan(60^0 + \theta) \tan(60^0 - \theta) = \frac{2\cos 2\theta + 1}{2\cos 2\theta - 1}$$

- Q35. A person standing at the junction (crossing) of two straight paths represented by the equations 2x 3y + 4 = 0 and 3x + 4y 5 = 0 wants to reach the path whose equation is 6x 7y + 8 = 0 in the least time. Find the equation and length of the path that he should follow.
- Q.36. The ratio of the A.M and G.M of two positive numbers a and b, is m:n. Show that $a: b = (m + \sqrt{m^2 n^2}): (m \sqrt{m^2 n^2})$.

OR

If S_1 , S_2 , S_3 be respectively the sum of n, 2n, 3n terms of a G.P, then prove that $S_1^2 + S_2^2 = S_1(S_2 + S_3)$