DELHI PUBLIC SCHOOL GHAZIABAD

VASUNDHARA

ANNUAL EXAMINATION 2019-20

CLASS-XI

SUBJECT: MATHEMATICS

TIME: 3Hrs.
DATE : 29 ${ }^{\text {th }}$ JANUARY, 2020

General Instructions:

(i) All question are compulsory
(ii) The question paper consists of 36 questions divided into four section A, B, C and D Section A comprises of 20 questions of one mark each, Section B comprises of 6 questions of two marks each, Section C comprises of 6 questions of four marks each and Section D comprises of 4 questions of six marks each
(iii) All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
(iv) There is no overall choice. However, internal choice has been provided.

SECTION - A

(Q.1-Q.10) are multiple choice type questions. Select the correct option.

Q1. $\lim _{x \rightarrow 1} \frac{x^{m}-1}{x^{n}-1}$ is
(A) 1
(B) m / n
(C) $-m / n$
(D) $\frac{m^{2}}{n^{2}}$

Q2. If $=\sqrt{x}+\frac{1}{\sqrt{x}}$, then $\frac{d y}{d x}$ at $\mathrm{x}=1$ is
(A) 1
(B) $1 / 2$
(C) $\frac{1}{\sqrt{2}}$
(D) 0

Q3. The distance of point $\mathrm{P}(3,4,5)$ from the $y z$-plane is
(A) 3units
(B) 4units
(C) 5units
(D) $\sqrt{41}$ units

Q 4. The area of the circle centred at $(1,2)$ and passing through $(4,6)$ is
(A) 5π
(B) 10π
(C) 25π
(D) none of these

Q 5. Slope of a line which cuts off intercepts of equal lengths on the axes is
(A) -1
(B) 0
(C) $\sqrt{3}$
(D) none of these

Q6. Given the integers $r>1, n>2$, and coefficients of $(3 r)^{t h}$ and $(r+2)^{\text {th }}$ terms in the Binomial expansion of $(1+x)^{2 n}$ are equal , then

- (A) $n=2 r$
(B) $n=3 r$
(C) $\mathrm{n}=2 \mathrm{r}+1$
(D) none of these

Q7. The total number of terms in the expansion of $(x+a)^{51}-(x-a)^{51}$ after simplification is
(A)102
(B) 25
c) 26
(D) 51

Q 8.If $Z=x+i y$ is any complex number then $|z|=4$, represent a
(A) straight line .
(B) circle
(C) parabola
(D) hyperbola

Q9. Let $n(A)=m$ and $n(B)=n$. Then the total number of non-empty relations that can be defined from A to B is
(A) m^{n}
(B) $n^{m}-1$

- (C) mn-1
(D) $2^{m n}-1$

Q 10. Two finite sets have m and n elements. The number of subsets of the first set is 112 more than that of the second set. The values of m and n are respectively.
(A) 4,7
.(B) 7,4
(C) 8,5
(D) none of these

(Q.11-Q.15) Fill in the blanks.

Q11. If the variance of a data is 121 , then the standard deviation of the data is \qquad .

Q12. If the focus of a parabola is $(0,-3)$ and its directrix is $y=3$, then its equation is \qquad .

Q13. If $\sin \theta+\cos \theta=1$, then the value of $\sin 2 \theta$ is \qquad .

OR

General solution of $\cos 3 \theta=\frac{1}{2}$ is \qquad .

Q 14. If A and B are finite sets such that $A \subset B$, then $n(A \cup B)=$ \qquad .

Q15. If $|x+2| \leq 9$, then $x \in$ \qquad .

(Q.16-Q.20) Answer the following questions.

Q16. The third term of G.P is 4. Find the product of its first 5 terms.

OR

-Find the sum to infinity of the G.P. $-\frac{5}{4}, \frac{5}{16},-\frac{5}{64}$
Q17. Find the domain of $\sqrt{a^{2}-x^{2}},(a>0)$.
Q 18. Write the middle term in the expansion of $\left(x+\frac{1}{x}\right)^{10}$.

Solve : $4 x-2<8$, when $x \in Z$.

Q20. Describe the set $\{10,11,12,13,14,15\}$ in set-builder form.

SECPION-B

Q21. Find the eccentricity and length of latusrectum of the ellipse $36 x^{2}+4 y^{2}=144$
Q22. Find the equation of hyperbola whose vertices are $(\pm 2,0)$ and foci at $(\pm 3,0)$.
Q^{2}
23. If the points $\mathrm{A}(3,2,-4), \mathrm{B}(9,8,-10)$ and $\mathrm{C}(5,4,-6)$ are collinear, find the ratio in which C divides AB .

OR

- The centroid of a ABC is at the point $(1,1,1)$. If the coordinates of A and B are $(3,-5,7)$ and $(-1,7,-6)$ respectively, find the coordinates of the point C .

Q24. Let $R=\{(x, y): x, y \in Z, y=2 x-4\}$. If $(a,-2)$ and $\left(4, b^{2}\right) \in R$, then find the values of ' a ' and ' b '.

- Q25. The letters of word 'SOCIETY' are placed at random in a row. What is the probability that three vowels come together?

OR

In a single throw of three dice, determine the probability of getting a total of at least 5 .
Q26. Differentiate $\sin ^{2} 2 x \cdot \tan 3 x$ with respect to x .

SECTION-C

Q27. Prove by using the principle of mathematical induction for all $\mathrm{n} \varepsilon \mathrm{N}$

$$
1.3+2.3^{2}+3.3^{2}+\ldots \ldots \ldots . .+n .3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}
$$

- Drove by using the principle of mathematical induction for all $\mathrm{n} \varepsilon \mathrm{N}$
$11^{n+2}+12^{2 n+1}$ is divisible by 133 for all $n \varepsilon N$.
Q 28. Exhibit graphically the solution set of linear inequations:
$x \leq 5000, y \leq 5000, x+y \leq 8000, x+y \geq 4000, x \geq 0, y \geq 0$
Q29. Differentiate the function with respect to x by first principle, $f(x)=\frac{3+2 x}{2-3 x}$
NS

30. If 4 -digit numbers greater than 5,000 are randomly formed from the digits $0,1,3,5$ and 7 . What is the probability of forming a number divisible by 5 ?
when (i) repetition of digits is not allowed. (ii) repetition of digits is allowed.

OR

Five marbles are drawn from a bag which contains 7 blue marbles and 4 black
marbles. What is the probability that
(i) all will be blue (ii) 3 will be blue and 2 black.

Q21. Find real x such that $\frac{3+2 i \sin x}{1-2 i \operatorname{sinx}}$ is purely real.
Q 32. Find the mean deviation about the mean

x	5	10	15	20	25
f	7	4	6	3	5

SECTION-D

Q33. A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions.
Q.34. Find $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$, when $\tan x=-\frac{4}{3}$, x lies in quadrant II.

OR
Show that $\tan \left(60^{\circ}+\theta\right) \tan \left(60^{\circ}-\theta\right)=\frac{2 \cos 2 \theta+1}{2 \cos 2 \theta-1}$
Q35. A person standing at the junction (crossing) of two straight paths represented by the equations $2 x-3 y+4=0$ and $3 x+4 y-5=0$ wants to reach the path whose equation is $6 x-7 y+8=0$ in the least time. Find the equation and length of the path that he should follow.
Q 36. The ratio of the A.M and G.M of two positive numbers a and b, is $m: n$. Show that $a: b=\left(m+\sqrt{m^{2}-n^{2}}\right):\left(m-\sqrt{m^{2}-n^{2}}\right)$.

OR

If S_{1}, S_{2}, S_{3} be respectively the sum of $\mathrm{n}, 2 \mathrm{n}, 3 \mathrm{n}$ terms of a G.P, then prove that $S_{1}^{2}+S_{2}^{2}=S_{1}\left(S_{2}+S_{3}\right)$

