2017 MATHEMATICS

Full marks: 100 Time: 3 hours

General instructions:

- i) Approximately 15 minutes is allotted to read the question paper and revise the answers.
- ii) The question paper consists of 26 questions. All questions are compulsory.
- iii) Marks are indicated against each question.
- iv) Internal choice has been provided in some questions.
- v) Use of simple calculators (non-scientific and non-programmable) only is permitted.

N.B: Check that all pages of the question paper is complete as indicated on the top left side.

Section - A

1. Choose the correct answer from the given alternatives:

(a)	Consider the set $A = \{1, 2, 3, 4\}$. Which one of the following relations R form	
()	a reflexive relation?	1
	(i) $R = \{(1, 1), (1, 2), (2, 2), (3, 4)\}$	
	(ii) $R = \{(1, 1), (2, 2), (2, 3), (3, 3), (3, 4)\}$	
	(iii) $R = \{(1, 1), (2, 2), (2, 3), (3, 3), (3, 4), (4, 4)\}$	
	(iv) $R = \{(1, 1), (2, 1), (2, 3), (3, 3), (3, 4), (4, 4)\}$	

(d) If
$$y = \tan^{-1} \frac{x}{2} - \cot^{-1} \frac{x}{2}$$
, then $\frac{dy}{dx}$ is

(i)
$$\frac{4}{4+x^2}$$
 (ii) $\frac{2}{4+x^2}$ (iii) $\frac{1}{4+x^2}$ (iv) $\frac{2}{1+x^2}$

1

1

1

1

1

2

- (e) If $y = \log \sqrt{\tan x}$, then the value of $\frac{dy}{dx}$ at $x = \frac{\pi}{4}$ is 1
 - (ii) $\frac{1}{2}$ (i) 0 (iii) 1
- (f) If the rate of change of area of a circle is equal to the rate of change of its diameter, then its radius is
- (ii) $\frac{2}{7}$
- (iii) $\frac{\pi}{2}$
- (iv) π

 $(iv) \infty$

- (g) $\int (2x+7)^6 dx$ is equal to
 - (i) $\frac{(2x+7)^7}{14} + C$

- (ii) $\frac{(2x+7)^6}{14} + C$
- (iii) $\frac{(2x+7)^7}{7} + C$
- (iv) $\frac{-(2x+7)^7}{14} + C$
- (h) $\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$ is equal to
 - (i) $\frac{\pi}{2}$ (ii) $\frac{\pi}{3}$

(i)1

(ii) 2

- (iii) $\frac{\pi}{4}$
- (i) The degree of the differential equation $\left(1 + \frac{dy}{dx}\right)^5 = \left(\frac{d^2y}{dx^2}\right)^2$ is
- (j) The direction cosines of the vector $\vec{a} = \hat{i} \hat{j} 2\hat{k}$ are
 - (i) 1, -1, -2

(ii) $\frac{1}{\sqrt{6}}$, $-\frac{1}{\sqrt{6}}$, $-\frac{2}{\sqrt{6}}$

(iii) $\frac{1}{4}$, $-\frac{1}{4}$, $-\frac{2}{4}$

(iv) $\sqrt{\frac{1}{6}}$, $-\sqrt{\frac{1}{6}}$, $-\sqrt{\frac{2}{6}}$

Section - B

- Show that the function $f: \mathbb{N} \to \mathbb{N}$ given by f(1) = f(2) = 1 and f(x) = x 1 for every x > 2 is onto but not one-one.
- 3. Express $\tan^{-1} \left(\frac{\sin x}{1 + \cos x} \right)$ in the simplest form. 2

- 4. Using determinants, show that the points (a+5, a-4), (a-2, a+3) and (a, a)do not lie on a straight line.
- 5. If $y = \sin^{-1}(\cos x) + \cos^{-1}(\sin x)$, prove that $\frac{dy}{dx} = -2$
- 6. If $y = \tan x$, prove that $\frac{d^2 y}{dx^2} = 2y \frac{dy}{dx}$
- 7. Prove that the tangents to the curve $y = x^2 5x + 9$ at the points (2, 0) and (3, 0) are at right angles.
- 8. Evaluate $\int \frac{x^4}{1+x^2} dx$
- 9. Form a differential equation of the curve $\frac{x}{a} + \frac{y}{b} = 1$, where a and b are arbitrary constants.
- 10. Find the angle between the vectors \vec{a} and \vec{b} if $\vec{a} = \hat{i} \hat{j}$ and $\vec{b} = \hat{i} + \hat{j}$
- 11. If A and B are two events such that $P(A) = \frac{7}{13}$, $P(B) = \frac{9}{13}$ and $P(A \cap B) = \frac{4}{13}$, then find (i) $P(A \cup B)$ (ii) $P(\overline{B} | \overline{A})$

Section - C

- 12. Consider the set of integers **Z**. Define a relation R on **Z** as $R = \{(x, y) : x y = 3k, where k is some integer\}$. Prove that R is an equivalence relation.
- 13. a. Using properties of determinants, prove that:

$$\begin{vmatrix} x^2 + 2x & 2x + 1 & 1 \\ 2x + 1 & x + 2 & 1 \\ 3 & 3 & 1 \end{vmatrix} = (x - 1)^3$$

Or b. For the matrix $A = \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix}$, verify that $A^2 + 8I = 8A$. Hence, find A^{-1} .

4

4

14.a. Show that the following function f(x) is continuous at x = -3 but discontinuous at x = 3:

$$f(x) = \begin{cases} |x|+3, & \text{if } x \le -3 \\ -2x, & \text{if } -3 < x < 3 \\ 6x+2, & \text{if } x \ge 3 \end{cases}$$

)r

b. If $y = (\tan^{-1} x)^2$, show that $(1+x^2)^2 y_2 + 2x(1+x^2)y_1 = 2$

15. Evaluate
$$\int_{0}^{\pi} \frac{x}{1+\sin x} dx$$

16.**a.** Evaluate
$$\int \left\{ \frac{1}{\log x} - \frac{1}{(\log x)^2} \right\} dx$$

Or 4

b. Evaluate
$$\int \frac{dx}{2\sin x + \cos x + 3}$$

17. Solve the differential equation
$$2ye^{\frac{x}{y}}dx + \left(y - 2xe^{\frac{x}{y}}\right)dy = 0$$

18. **a.** If $\vec{a} = 4\hat{i} + 5\hat{j} - \hat{k}$, $\vec{b} = \hat{i} - 4\hat{j} + 5\hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j} + \hat{k}$, then find the vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{d} \cdot \vec{c} = 21$.

Or 4

- **b.** If \vec{a} , \vec{b} , \vec{c} are three vectors with magnitudes 3, 5, 7 respectively such that $\vec{a} + \vec{b} + \vec{c} = 0$, then find the angle between \vec{a} and \vec{b} .
- 19. Find the Cartesian and vector equations of the plane through the points (-1, 1, 1) and (1, -1, 1) and perpendicular to the plane x + 2y + 2z = 5.
- 20. A random variable X has the following probability distribution:

x_i	0	1	2	3	4	5	6	7
p_i	0	k	2 <i>k</i>	2 <i>k</i>	3 <i>k</i>	k^2	$2k^2$	$7k^2 + k$

Determine: (i) k (ii) P(X < 3) (iii) P(0 < X < 3)

21.a. Two cards are drawn successively with replacement from a well-shuffled deck of 52 cards. Find the mean and variance of the number of kings.

Or 4

b. In a bolt factory, three machines A, B, C manufacture 25%, 35% and 40% of the total production respectively. Of their respective outputs, 5%, 4% and 2% are defective. A bolt is drawn at random from the total product and it is found to be defective. Find the probability that it was manufactured by the machine C.

Section - D

22.a. Using elementary row transformations, find the inverse of the matrix $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$

Or 6

b. Using matrix method, solve the following system of linear equations:

$$x - y + z = 1$$

$$2x + y - z = 2$$

$$x - 2y - z = 4$$

23.a. Find the point on the curve $y^2 = 4x$ which is nearest to the point (2, -8).

Or 6

- **b.** An open box with a square base is to be made out of a given quantity of sheet of area a^2 . Show that the maximum volume of the box is $\frac{a^3}{6\sqrt{3}}$.
- 24. **a.** Using integration, find the area of the triangle whose vertices are A(1, 3), B(2, 5) and C(3, 4).

b. Using integration, find the area of the region bounded by the lines: y = 1 + |x + 1|, x = -2, x = 3 and y = 0

25. a. Show that the following lines intersect and find the point of their intersection:

$$\vec{r} = \hat{i} + \hat{j} - \hat{k} + \lambda (3\hat{i} - \hat{j}) \text{ and}$$

$$\vec{r} = 4\hat{i} - \hat{k} + \mu (2\hat{i} + 3\hat{k})$$
Or

- **b.** Find the distance of the origin from the plane x + 2y + z = 4 measured parallel to the line $\frac{x+1}{2} = \frac{y-1}{2} = \frac{z+2}{1}$
- 26. a. A gardener has a supply of fertilizers of type A which consists of 10% nitrogen and 5% phosphoric acid and of type B which consists of 5% nitrogen and 10% phosphoric acid. After testing the soil, it is found that at least 15 kg of nitrogen and 15 kg of phosphoric acid is required for a good crop. The fertilizer of type A costs Rs 3 per kg and type B costs Rs 4 per kg. How many kilograms of each fertilizer should be used to meet the requirements so that the cost is minimum?

Or 6

b. A manufacturer produces nuts and bolts. It takes 1 hour of work on machine A and 3 hours on machine B to produce a packet of nuts while it takes 3 hours on machine A and 1 hour on machine B to produce a packet of bolts. He earns a profit of Rs 17.50 per packet on nuts and Rs 7 per packet on bolts. How many packet of each should be produced each day so as to maximize his profit if he operates his machines for at most 12 hours a day? Also find the maximum profit.
