2019 **MATHEMATICS**

Full marks: 100 Time: 3 hours

General instructions:

- Approximately 15 minutes is allotted to read the question paper and revise the answers.
- ii) The question paper consists of 26 questions. All questions are compulsory.
- Marks are indicated against each question. iii)
- Internal choice has been provided in some questions. iv)
- Use of simple calculators (non-scientific and non-programmable) only is permitted.

N.B: Check that all pages of the question paper is complete as indicated on the top left side.

Section – A Choose the correct answer from the given alternatives:											
	(a)	If $f(x)= x $ and $g(x)=$) is equal to		1						
		(i)-3.7	(ii) 3	(iii) 3.7	(iv) 4						
	(b)	(b) Consider the set Q with the binary operation * as $a*b = \frac{ab}{4}$. Then the id									
		element is (i) $\frac{1}{4}$	(ii) 1	(iii) 4	(iv) 16	1					
	(c)	If a matrix A is both sy (i) A is a diagonal matr (iii) A is a square matri	rix	ymmetric matric, then (ii) A is a zero matrix (iv) none of these							
	(d)	If $y = a^x x^a$ then $\frac{dy}{dx}$: (i) $a^x x^{a-1} (a-x \log a)$ (iii) $a^x x^a (a+x \log a)$	is equal to	(ii) $a^{x} x^{a-1} (a+x) = 0$ (iv) $a^{x} x^{a-1} (x+a) = 0$		1					
	(e)	(e) The point on the curve $y = 2x^2$, where the slope of the tangent is 8, is (i)(0, 2) (ii) (0, 8) (iii) (2, 8) (iv) (8, 2)									
	(f)	The value of $\int \tan^2 x dx$ (i) $x - \tan x + C$		(iii) $\tan x - x + C$	(iv) $x \tan x + C$	1					

		-
20	19/XII/MA	
///	I SI X III/IVI A	

		(2)		2019/XII/MAT						
	(g) The value of $\int_{-1}^{1} \log \left(\frac{2-1}{2+1} \right) dt$	$\left(\frac{x}{x}\right)dx$ is			1					
	(i) -1	(ii) 0	(iii) 1	(iv) 2						
	(h) If $p\hat{i} + 3\hat{j}$ is a vector (i) 0	of magnitude 5, then (ii) 1	the value of p is (iii) ± 3	(iv) ± 4	1					
	(i) Let A and B be events $P(A B) \text{ is equal to}$ (i) $\frac{4}{9}$		$P(B) = \frac{9}{13}$ and $P(B) = \frac{9}{13}$		1					
	(j) If A & B are two ever events A and B are	nts such that $P(A) =$	$\frac{1}{4}$, P(B) = $\frac{1}{3}$, P(A)	\cup B) = $\frac{1}{2}$, then t	he 1					
	(i) independent (iii) mutually exclusive		(ii) dependent (iv) none of these							
Section – B										
2.	Consider the set of real number only if $a^2 + b^2 = 1$ ". Write to	mbers R . Define the the domain of R. Also	relation R on R as "a o, prove that R is not t	R <i>b</i> if and ransitive.	2					
3.	Find $f \circ g$ and $g \circ f$ if $f(x)$	x = x and $g(x) = 4x $	-3. Are they equal?		2					
4.	Find the value of $\tan \left(\tan^{-1} \right)$	$\sqrt{3} + \sin^{-1}\frac{1}{\sqrt{2}} - \cot$	$^{-1}$ 1 $\Big)$		2					
5.	Solve the following equation	for x: $\sin\left(\sin^{-1}\frac{1}{5}\right)$	$\cos^{-1} x = 1$		2					
6.	If $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$, sh	ow that $A'A = I_2$			2					
7.	Differentiate $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$	with respect to x .			2					
8.	If $y = 5\cos x - 3\sin x$, prove	$e \text{ that } \frac{d^2y}{dx^2} + y = 0$			2					
9.	Evaluate $\int \sin^4 x dx$				2					

4.

10. Form a differential equation representing the given curve, $y = ae^{bx}$, where a & b are arbitrary constants.

2

11. Find the value of λ for which \vec{a} and \vec{b} are perpendicular if $\vec{a} = 7\hat{i} - \lambda\hat{j} - 7\hat{k}$ and $\vec{b} = 4\hat{i} + 5\hat{j} - \hat{k}$

2

Section - C

12. **a.** If $A = \begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix}$, show that $2A^{-1} = 9I - A$.

4

b. Using properties of determinants, prove that:

$$\begin{vmatrix} a+b & b+c & c+a \\ b+c & c+a & a+b \\ c+a & a+b & b+c \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$$

13. **a.** If $y = a \cos(\log x) + b \sin(\log x)$, prove that $x^2 y_2 + x y_1 + y = 0$

4

b. Find the coordinates of the point at which the tangent to the curve $f(x)=x^2-6x+1$ is parallel to the chord joining the points (1, -4) and (3, -8)

14. **a.** If $x = a \sin 2t \left(1 + \cos 2t\right)$, $y = b \cos 2t \left(1 - \cos 2t\right)$, show that $\frac{dy}{dx} = \frac{b}{a}$ at $t = \frac{\pi}{4}$

4

b. If
$$f(x) = \left(\frac{3+x}{1+x}\right)^{2+3x}$$
, find $f'(0)$.

15. Evaluate $\int \frac{\cos^5 x}{\sin x} dx$

4

16. **a.** Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{(1+\sin x)(2+\sin x)} dx$

4

b. Evaluate $\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{x}{1+\sin x} dx = \pi \left(\sqrt{2} - 1\right)$

4

4

- 17. Solve the differential equation $x \sin \frac{y}{x} \frac{dy}{dx} + x y \sin \frac{y}{x} = 0$, given that $y(1) = \frac{\pi}{2}$
- 18. **a.** If $\vec{a} = \hat{i} \hat{j}$, $\vec{b} = 3\hat{j} \hat{k}$ and $\vec{c} = 7\hat{i} \hat{k}$, find the vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d} = 4$

Or 4

- **b.** Show that the points A, B, C, D with position vectors $4\hat{i} + 8\hat{j} + 12\hat{k}$, $2\hat{i} + 4\hat{j} + 6\hat{k}$, $3\hat{i} + 5\hat{j} + 4\hat{k}$ and $5\hat{i} + 8\hat{j} + 5\hat{k}$ respectively are coplanar.
- 19. Find the foot and the length of the perpendicular drawn from the point (3, 4, 5) to the plane 2x 5y + 3z = 39
- 20. In a bulb factory, machines A, B and C manufacture 60%, 30% and 10% bulbs respectively. Out of these bulbs, 1%, 2% and 3% of the bulbs produced respectively by A, B and C are found to be defective. A bulb is picked up at random from the total production and found to be defective. Find the probability that this bulb was produced by the machine A.
- 21. A die is tossed once. If the random variable X is defined as:

$$X = \begin{cases} 1, & \text{if the die results in an even number} \\ 0, & \text{if the die results in an odd number} \end{cases}$$

Then, find the mean and variance of X.

Section - D

22. **a.** Using elementary row transformations, find the inverse of the matrix $\begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0 \end{bmatrix}$

Or

b. Solve the following system of linear equations using matrix method:

$$2x + 3y + 3z = 5$$

$$x - 2y + z = -4$$

$$3x - y - 2z = 3$$

23. a. Show that the semi-vertical angle of a cone maximum volume and given slant height is $\tan^{-1} \sqrt{2}$

Or 6

- **b.** Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is $\frac{8}{27}$ of the volume of the sphere.
- 24. **a.** Find the area of the smaller region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the

straight line
$$\frac{x}{a} + \frac{y}{b} = 1$$

Or 6

- **b.** Using the method of integration, find the area of the region bounded by the lines 2x + y = 4, 3x 2y = 6 and x 3y + 5 = 0
- 25. **a.** Find the image of the point (1, 3, 4) in the plane 2x y + z + 3 = 0. Also, find the distance of the point from its image.

- **b.** Show that the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-4}{5} = \frac{y-1}{2} = z$ intersect. Also, find their point of intersection.
- 26. a. A housewife wishes to mix two types of food X and Y in such a way that the mixture contains at least 8 units of vitamin A and 10 units of vitamin B. X contains 2 units/kg of vitamin A and 1 unit/kg of vitamin B. While Y contains 1 unit/kg of vitamin A and 2 units/kg of vitamin B. It costs Rs 60/kg of X and Rs 80/kg of Y. Formulate this problem as a linear programming problem to minimize the cost of such a mixture and solve it.

b. A shopkeeper wants to invest Rs 5400 on two types of pens. Type A costs Rs 180 per packet and type B costs Rs 60 per packet. He can get a profit of Rs 15 on type A and Rs 10 on type B. He has a space for 50 packets only. Formulate this as an LPP so as to get the number of each type of packets and the maximum profit. Also, find the maximum profit.
