

SAMPLE PAPER SYLLABUS 2018-19

IMC

Total Questions : 50 Time : 1 hr.							
PATTERN & MARKING SCHEME							
Section	(1) Logical Reasoning	(2) Mathematical Reasoning	(3) Everyday Mathematics	(4) Achievers Section			
No. of Questions	15	20	10	5			
Marks per Ques.	1	1	1	3			

SYLLABUS

Section – 1 : Verbal and Non-Verbal Reasoning.

Section – 2: Relations and Functions, Inverse Trigonometric Functions, Matrices and Determinants, Continuity and Differentiability, Application of Derivatives, Integrals, Application of Integrals, Differential Equations, Vector Algebra, Three Dimensional Geometry, Probability, Linear Programming.

Section -3: The Syllabus of this section will be based on the Syllabus of Mathematical Reasoning and Quantitative Aptitude. Section -4: Higher Order Thinking Questions - Syllabus as per Section -2.

LOGICAL REASONING

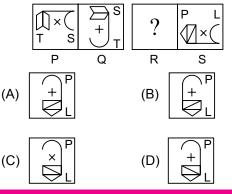
 In the given letter series, some of the letters are missing which are given in that order as one of the options below it. Choose the correct option.

	a_cb_a_aba_cbc_
(A) cccbc	(B) cbbac
(C) bccba	(D) abbba

 There is a group of letters followed by four combinations of digits/symbols. You have to find out which of the combinations correctly represents the group of letters based on the following coding system and the conditions.

Letter: R D A E J M K T B U I P W H F Digit/ 4 8 5 \$ * 1 2 6 % © 7 @ 3 9 # Symbol:

Conditions:


- (i) If the first letter is a consonant and the last letter is a vowel, both are to be coded as d.
- (ii) If both the first and the last letters are consonants, both are to be coded as the code for the last letter.

(iii) If the first letter is a vowel and the last letter is a consonant, their codes are to be interchanged.

METUFB	
--------	--

(A) %\$6©#1	(B) 1\$6©#1
(C) %\$6©#%	(D) 1\$6©#%

 There is a definite relationship between figures P and Q. Establish a similar relationship between figures R and S by selecting a figure from the options that would replace (?) in figure R.

MATHEMATICAL REASONING

4. $\int \frac{dx}{\left[(x-1)^3(x+2)^5\right]^{1/4}} =$ (A) $\frac{4}{3} \left(\frac{x-1}{x+2}\right)^{1/4} + C$ (B) $\frac{4}{3} \left(\frac{x+2}{x-1}\right)^{1/4} + C$

(C)
$$\frac{1}{3}\left(\frac{x-1}{x+2}\right)^{1/4} + C$$
 (D) $\frac{1}{3}\left(\frac{x+2}{x-1}\right)^{1/4} + C$

5. Degree of the differential equation

$$\left[1+2\left(\frac{dy}{dx}\right)^{2}\right]^{3/2} = 5\frac{d^{2}y}{dx^{2}}$$
 is
(A) 1 (B) 2
(C) 3 (D) 4

Sample Paper | Class-12 | S \mathbb{Q} F

6.	The	value	of	х	for	which	the	matrix	product	
----	-----	-------	----	---	-----	-------	-----	--------	---------	--

2	0	7]	[-x	14 <i>x</i>	7x]	
0	1	0	0	1	0	
1	-2	1	x	14 <i>x</i> 1 -4 <i>x</i>	-2 <i>x</i>	

equals an identity matrix is

(A)	$\frac{1}{2}$	(B)	$\frac{1}{3}$
(C)	$\frac{1}{4}$	(D)	$\frac{1}{5}$

EVERYDAY MATHEMATICS

 A can lay railway track between two given stations in 16 days and *B* can do the same job in 12 days. With the help of *C*, they did the job in 4 days only. Then *C* alone can do the job in

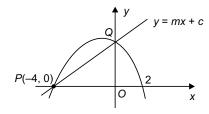
(A)
$$9\frac{1}{5}$$
 days (B) $9\frac{2}{5}$ days

- (C) $9\frac{3}{5}$ days (D) 10 days
- 8. In a group of 6 boys and 4 girls, four children are to be selected. In how many different ways can they be selected such that at least one boy should be there?
 - (A) 159
 - (B) 194
 - (C) 205(D) 209

ACHIEVERS SECTION

9. Consider the following statements.

Statement 1 : A tangent parallel to *x*-axis can be drawn for f(x) = (x - 1)(x - 2)(x - 3) in the interval [1, 3].


Statement 2 : A horizontal tangent can be drawn in Rolle's theorem.

Which of the following option hold?

- (A) Both statement 1 and statement 2 are true.
- (B) Both statement 1 and statement 2 are false.
- (C) Statement 1 is true, Statement 2 is false.
- (D) Statement 1 is false, Statement 2 is true.
- The diagram shows a quadratic curve and a straight line y = mx + c. They meet at the points

P and Q on the x-axis and y-axis respectively.

- (a) Find the equation of the quadratic curve.
- (b) Find the values of *m* and *c* respectively.

(b)
2, 8
6, 4
4, 6
8, 2

SPACE FOR ROUGH WORK

ANSWERS

IMO – 1. (C) 2. (C) 3. (D) 4. (A) 5. (B) 6. (D) 7. (C) 8. (D) 9. (A) 10. (A)