TELANGANA STATE BOARD OF INTERMEDIATE EDUCATION, HYDERABAD

MATHEMATICS - IIB MODEL QUESTION PAPER (w.e.f. 2013-14)

Note: This Question paper consists of three sections A. B and C.

Time: 3 Hrs Max. Marks: 75

SECTION - A

I. Very Short Answer type Questions

(i) Answer all Questions

(ii) Each Question carries 2 marks

 $10 \times 2 = 20$

- 1. If $ax^2 + bxy + 3y^2 5x + 2y 3 = 0$ represents a circle, find the values of a and b. Also find its radius and centre.
- 2. State the necessary and sufficient condition for lx + my + n = 0 to be a, normal to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$
- 3. Find the angle between the circles $x^2 + y^2 12x 6y + 41 = 0$ and $x^2 + y^2 + 4x + 6y 59 = 0$
- 4. Find the equation of the parabola whose focus is S(1, -7) and vertex is A(1, -2).
- 5. Find the angle between the asymptotes of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
- 6. Evaluate $\int \frac{1}{(x+3)\sqrt{x+2}} dx$
- 7. Evaluate $\int \frac{\sin^4 x}{\cos^6 x} dx$
- 8. Evaluate $\int_{0}^{1} \frac{x^2}{x^2 + 1} dx$
- 9. Evaluate $\int_{0}^{\pi} \frac{\sin^2 x \cos^2 x}{\sin^3 x + \cos^3 x} dx$
- 10. Find the order and degree of the differential equation $\left[\frac{d^2y}{dx^2} \left(\frac{dy}{dx}\right)^3\right]^{6/5} = 6y$.

SECTION - B

II. Short Answer type Questions

- (i) Answer any five Questions
- (ii) Each Question carries 4 marks

 $5 \times 4 = 20$

- 11. Show that the tangent at (-1, 2) of circle $x^2 + y^2 4x 8y + 7 = 0$ touches the circle $x^2 + y^2 + 4x + 6y = 0$. Also find its point of contact.
- 12. Find the equation of the circle passing through the points of intersection of the circles $x^2 + y^2 8x 6y + 21 = 0$, $x^2 + y^2 2x 15 = 0$ and (1, 2).
- 13. Find the length of major axis, minor axis, latus rectum, eccentricity of the ellipse $9x^2 + 16y^2 = 144$.
- 14. Show that the point of intersection of the perpendicular tangents to an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, (a > b) lies on a circle.
- 15. Find the equation of the tangents to the hyperbola $3x^2 4y^2 = 12$ which are (i) Parallel to (ii) Perpendicular to the line y = x 7.
- 16. Find the reduction formula for $\int_{0}^{\frac{\pi}{2}} \sin^{n} x \, dx$
- 17. Solve: $(1 + y^2) dx = (Tan^{-1} y x)dy$

SECTION - C

III. Long Answer type Questions

- (i) Answer any five Questions
- (ii) Each Question carries 7 marks

 $5 \times 7 = 35$

- 18. Show that the points (1, 1), (-6, 0), (-2, 2) and (-2, -8), are concyclic.
- 19. Find the direct common tangents to the circles $x^2 + y^2 + 22x 4y 100 = 0$, $x^2 + y^2 22x + 4y + 100 = 0$.
- 20. If $y_{1,}y_{2,}y_{3}$ are the y-coordinates of the vertices of the triangle in the parabola $y^{2} = 4ax$ then show that the area of the triangle is

$$\frac{1}{8a}|(y_1-y_2)(y_2-y_3)(y_3-y_1)|$$
 square units.

- 21. Evaluate $\int \frac{9\cos x \sin x}{4\sin x + 5\cos x}$
- 22. Evaluate $\int \frac{dx}{(1+x)\sqrt{3+2x-x^2}}$
- 23. Evaluate $\int \frac{\log(1+x)}{1+x^2} dx$
- 24. Solve: $\frac{dy}{dx} = \frac{2x + y + 3}{2y + x + 1}$
